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Sequence learning is a fundamental cognitive function of the brain. However, the

ways in which sequential information is represented and memorized are not dealt with

satisfactorily by existing models. To overcome this deficiency, this paper introduces

a spiking neural network based on psychological and neurobiological findings at

multiple scales. Compared with existing methods, our model has four novel features:

(1) It contains several collaborative subnetworks similar to those in brain regions with

different cognitive functions. The individual building blocks of the simulated areas

are neural functional minicolumns composed of biologically plausible neurons. Both

excitatory and inhibitory connections between neurons are modulated dynamically using

a spike-timing-dependent plasticity learning rule. (2) Inspired by the mechanisms of

the brain’s cortical-striatal loop, a dependent timing module is constructed to encode

temporal information, which is essential in sequence learning but has not been processed

well by traditional algorithms. (3) Goal-based and episodic retrievals can be achieved at

different time scales. (4) Musical memory is used as an application to validate the model.

Experiments show that the model can store a huge amount of data on melodies and

recall them with high accuracy. In addition, it can remember the entirety of a melody

given only an episode or the melody played at different paces.

Keywords: spiking neural network, sequential memory, episodic memory, spike-timing-dependent plasticity, time

perception, musical learning

1. INTRODUCTION

The human brain is a powerful machine for processing information about the world as it changes
over time. Much of the knowledge that is acquired by a person in daily life is stored and retrieved in
ordered sequences of, for example, actions, sounds, and images. Episodic memory allows a person
to relive an event from their recollections of that event in space and time, in what can be termed the
context of sequential events. Thus, remembering the order of information is critical for decision-
making, prediction, planning, and other cognitive behaviors. It is evident that sequential memory
is a fundamental part of the memory system. However, it is an extremely complex process.

Over the past few decades, a variety of methods based on different theories have been developed
to model sequential memory processes, and attempts have been made to apply these methods to
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practical problems. In particular, one traditional machine
learning technique, recurrent neural networks (RNNs)
(Hochreiter and Schmidhuber, 1997; Schuster and Paliwal,
1997), has been widely used to process sequential learning
tasks, such as natural language processing (Elman, 1990;
Socher et al., 2010; Sutskever et al., 2014), video classification
and representation (Srivastava et al., 2015; Yue-Hei Ng et al.,
2015), speech enhancement and recognition (Graves et al., 2013;
Weninger et al., 2015), human action recognition (Du et al., 2015;
Liu et al., 2016), and musical learning (Eck and Schmidhuber,
2002; Eck and Lapalme, 2008). Although they have been studied
in depth and used widely, RNNs are incapable of operating as
efficiently as the brain. It has been shown that these models have
limited capacity for long-term storage of information. Their
ability to represent sequential data also appears to be limited.
Furthermore, tuning of the parameters is a time-consuming and
very difficult task, since the computational processes, and indeed
the whole network, on which these models are based have no
clear biological interpretations. These drawbacks have motivated
the development of various other models inspired by the brain.
A supervised learning model called sequential-temporal memory
(Hu et al., 2016) aims to learn ordered information based on the
formation of neural assemblies. This model has been adapted to
a hardware architecture (Liu et al., 2019) to analyze associative
memory and episodic memory. Another spike-based model
(Tully et al., 2016) learns and recalls sequences in combination
with Bayesian theory. George and Hawkins (2009) and Hawkins
and Ahmad (2016) have presented a hierarchical temporal
memory network inspired by cortical structure to encode and
learn sequential features. This model has been used, for example,
for prediction and anomaly detection. A model that is capable
of learning and reproducing sequences based on functional
networks and which has the potential for memory and rhythm
generation has been described by Verduzco-Flores et al. (2012).

In this paper, we develop a spike-based model that is inspired
by the human brain and is capable of storing and retrieving
a large number of musical pieces. To provide a basis for the
work, we first need to understand the mechanisms of sequential
memory as well as the areas of the brain that are involved
and the ways in which they cooperate. There have been many
investigations into how the brain learns and preserves sequential
events. It has been found that the hippocampus plays a critical
role in encoding and preserving temporal orders of sequences
(Davachi and Dubrow, 2015). In some species, the activity of
“place cells” occurs in the same order as prior experience (Skaggs
et al., 1996). “Time cells” may encode successive moments
between events, temporal location, and even ongoing behavior
(MacDonald et al., 2011). As well as the medial temporal
lobe (MTL), the prefrontal cortex (PFC) and the striatum
also contribute to temporal memory (McAndrews and Milner,
1991; Tubridy and Davachi, 2011; Meier et al., 2013). One
study reported that the activities of the MTL and PFC are
enhanced when information is represented and retrieved during
the establishment of temporal context memory (Jenkins and
Ranganath, 2010). It has been found that the sensory cortex
(auditory, visual, and motor cortex) also has a role in sequential
memory. Taking these findings together, this paper attempts to

bridge the gap between traditional models and the real brain. We
construct a neural network model inspired by relevant evidence
and validate the model using musical examples. Compared
with existing models, the innovative aspects of this work are
as follows:

• The model is to some extent biologically plausible. It is
composed of several collaborative subnetworks that are similar
to corresponding areas of the brain. Three critical processes—
encoding, storage, and retrieval—are involved in sequential
memory and episodic memory.
• A dependent timing module is modeled according to the

mechanisms of time perception in the brain. Time intervals
between sequential elements are perceived by temporal
minicolumns, and a pacemaker population is introduced to
control the speed of the retrieval process.
• For individual neurons, the Izhikevich model is adopted and

can simulate multiple spiking patterns of neurons.
• Synaptic connections (including two types, excitatory and

inhibitory) with different transmission delays are included
in the model and exist between neurons from any layers.
Contextual memory can be represented with connections from
different layers. A spike-timing-dependent plasticity learning
rule allows the network to modulate weights during the
learning process.
• The numbers of neurons and synapses change dynamically

during the learning process, which makes the model more
flexible.
• Musical memory is a typical example of sequential memory.

We use the model to encode and store many melodies and
retrieve them based on a MIDI dataset (Krueger, 2018).

The remainder of the paper has the following structure: section 2
describes the model and the associated methods. Section 3
presents the experimental results. Section 4 gives a summary and
discusses possible future work.

2. MODEL AND METHODS

2.1. Model Description
The model is composed of four neural clusters. The functions of
these clusters are similar to those of specific brain areas. It should
be noted that our goal is to design an efficient network rather than
merely simulate the brain.

2.1.1. Network Architecture
Work on rodents has indicated that hippocampal place cells
encode ordered sequences or positions and may predict
upcoming locations (Lisman and Redish, 2009). Time cells in
the MTL fire at successive moments in ordered, structured
events and work in parallel with place cells (Eichenbaum, 2014).
Furthermore, the results of recent studies have highlighted the
role of the hippocampus in representation and retrieval in
episodic memory (Fortin et al., 2002). Meanwhile, it has been
shown that cortical-basal ganglia loops play an important role in
time perception (Buhusi andMeck, 2005; Merchant et al., 2013a),
and it has been found that striatal populations, in particular, can
encode relative time and adjust animal behaviors (Matell and
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Meck, 2004; Mello et al., 2015). Inspired by all of these results,
we design the underlying architecture of the model. Before
describing this in detail, we first define two features of a sequence,
namely, the spatial pattern and temporal pattern, as shown in
Figure 1. A collection of the contents of sequential elements
can be considered a spatial pattern, and a collection of time
intervals between these elements can be considered a temporal
pattern. Our network is an associative model and contains
four interrelated subnetworks inspired by different brain regions
(Figure 2A). The relationships between the subnetworks are
shown in Figure 2B.

• Spatial subnetwork. The blue area is the spatial subnetwork,

which mainly encodes spatial patterns and learns the

order of sequential elements. This subnetwork consists of

a series of non-overlapping neural minicolumns, and its
connections are shown in Figure 3A. A minicolumn is
composed of about 100 neurons and has a small but specific

function. Each organization of horizontal neurons is called
a layer. Connections between neurons in the same layer are
inhibitory, with only one neuron being excited at a given
time. Connections from adjacent layers are excitatory and
represent the ordered information of sequential elements,
and connections between neurons that cross layers carry
history information. To improve the network performance,
a mechanism for transmission delay is introduced (Swadlow,
1985, 1988, 1992), by which the transmission delay of a
connection is set proportional to the number of layers
between the neurons (see Figure 3B). This means that action
potentials have long journeys on long connections. However,
the transmission delays are restricted to lie in the range
0–60ms, so action potentials decay to 0mV after 60ms, and
postsynaptic neurons cannot receive spikes that travel for
more than 60ms along connections. The experimental
results show that these connections are crucial for
context memory.

FIGURE 1 | Description of sequential spatial and temporal patterns: the color of a circle represents the content of a sequential element, and the distance between two

circles represents the time interval.

FIGURE 2 | (A) Main regions of the brain related to sequential memory. (B) Architecture of the model: the green area is the goal cluster, the purple area is the

pacemaker cluster, and the blue and orange areas are the spatial and temporal subnetworks, respectively; these areas collaborate via their connections.
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FIGURE 3 | (A) Connection architecture of spatial and temporal subnetworks. (B) Synaptic connections have different transmission delays between neurons.

• Temporal subnetwork. The orange area in Figure 2B

is the temporal subnetwork, which is responsible for
representing and storing temporal information between
sequential elements. Just like the spatial subnetwork, the
temporal subnetwork is composed of minicolumns in which
neurons are sensitive to the length of the time interval. The
connection architecture of this subnetwork is the same as that
of the spatial subnetwork.
• Goal cluster. The green area in Figure 2B represents the

“goal” or “label” cluster to which a sequence belongs; for
example, these clusters could be names of songs or goals of
actions. It is reasonable to assume that a goal or a label can
be activated at the same time during learning and retrieval
of a series of events. This area contains numerous neurons
that represent different goals of sequences associated with
the subnetworks processing spatial and temporal patterns.
In contrast to the spatial and temporal subnetworks, there
are no internal connections between neurons in this cluster.
Moreover, external synaptic connections between the “goals”
cluster and the other two subnetworks are dynamically
generated during the learning process.
• Pacemaker cluster. The purple area in Figure 2B is called the

pacemaker cluster, which works like a pacemaker to adjust
time scales during the retrieval process. All neurons in this
cluster project their feedforward connections to neurons in
the temporal subnetwork. This cluster also lacks internal
connections. The mean firing rate of this population controls
the speed of the retrieval process. For example, a person can
play the same melody on a piano at different speeds.

2.1.2. Neural Dynamics
Individual neuronal dynamics are described using the Izhikevich
spiking model (Izhikevich, 2003). This model is a two-
dimensional non-linear model and is more computationally

efficient than the Hodgkin-Huxley model (Hodgkin and Huxley,
1952). The Izhikevich neuronal model can be expressed in terms
of the two equations

dv

dt
= 0.04v2 + 5v+ 140− u+ I, (1)

du

dt
= a(bv− u). (2)

The variables u and v are reset according to the following
conditions after emission of a spike:

if v ≥ 30 mV, then

{

v← c,

u← u+ d.
(3)

Here, v represents the membrane potential of a neuron, and u
is a membrane recovery variable; a, b, c, and d are parameters
that modulate the model to adapt to different spiking patterns.
The I in Equation (1) is the input current, which carries
information from external stimuli and from other neurons.
When the membrane potential reaches the peak value (30mV),
the neuron emits a spike and u and v are reset, after which the
neuron will be silent for a while. Here, we use the regular spiking
pattern described by Izhikevich (2003), with the parameters a =
0.02, b = 0.2, c = −65, and d = 8.

2.1.3. Synaptic Plasticity
Synaptic plasticity is a biological mechanism that adjusts the
strength of neuronal connections during the learning process.
This paper uses spike-timing-dependent plasticity (STDP) (Bi
and Poo, 1998) to modulate network connections. According
to this learning rule, if a presynaptic neuron fires just before
the postsynaptic neuron within a short time window, then the
synaptic strength will be increased; otherwise, it will decrease.
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These two forms of change in synaptic strength are called long-
term potentiation and long-term depression, respectively. The
STDP learning rule can be described as follows in terms of the
total synaptic weight change Wsyn induced by stimulation by N
pairs of presynaptic and postsynaptic spikes:

Wsyn(i, j) =
N

∑

f=1

N
∑

n=1
1w(tni − t

f
j ), (4)

where t
f
j is the arrival time of presynaptic spike f at synapse j and

tni is the firing time of the nth spike at postsynaptic neuron i. The
STDP function (or learning window) is given by

1w(x) =

{

A+e−x/τ+ , x > 0,

−A−ex/τ− , x < 0,
(5)

where A+ and A− are parameters for adjusting the weights, τ+
and τ− are time constants, and x = ti − tj denotes the time
difference between the presynaptic and postsynaptic spikes.

2.2. Encoding
Encoding information is an extremely important but difficult
task. Population coding (Hu et al., 2016) and sparse coding
(Byrnes et al., 2011) have been used to encode sequences. In
fact, neurons within a given region in the nervous system
always have identical receptive fields and also encode similar
features. For example, regions of the cochlear nucleus, located
in the subcortical part of the auditory pathway, are stimulated
selectively by different sound frequencies and exhibit sustained
spiking activity (Mcdermott and Oxenham, 2008; Oxenham,
2012). Orientation minicolumns located in the primary visual
cortex of cats and other mammals respond to their preferred

directions (Hubel and Wiesel, 1959, 1968). In macaque motor
areas, cells organized into a group prefer specific direction vectors
(Amirikian and Georgopoulos, 2003). Evidence has also been
found that modules of cells in the “rewired” auditory cortex
share a preferred orientation during the receipt of inputs from
the retina (Sharma et al., 2000). There are a large number of
minicolumns distributed widely in the cortex that implement
various functions. In this paper, both spatial and temporal
subnetworks are constructed using functional minicolumns as
building blocks. The main ideas of the encoding process are
that (1) neurons located in the same minicolumn have the same
preference, (2) the Izhikevich neural model is used to simulate
the neurons and transform preferred information into spike
activities, (3) the input current of the Izhikevich neural model,
denoted by I in Equation (1), is computed by a Gaussian filter.

2.2.1. Encoding of Spatial Patterns
A sequence can be defined as a collection

S = {x1, t12, x2, t23, x3, . . . , xr , tr r+1, xr+1, . . . , xn−1, tn−1 n, xn}

where xr denotes the content of a sequential element and tr r+1
denotes the time interval between xr and xr+1. Then, a sequence
can be divided into two sets, SP = {xr | r = 1, 2, . . . , n} and
TP = {tr r+1 | r = 1, 2, . . . , n − 1}, which represent spatial and
temporal patterns, respectively.

The spatial subnetwork contains mS minicolumns (as shown
in Figure 4A) and can be defined as {sgi | i = 1, . . . ,mS}. Each
vertical group sgi is considered a minicolumn in which neurons
SNi = {snij | j = 1, . . . , sS} have identical selectivity (marked
in the same color) for the same content. The selectivity of a
neuron can be interpreted as a preference or a filter of external
stimulation. This property transforms an external stimulus into
a current. In reality, neurons with a specific selectivity can be

FIGURE 4 | Representation of spatial and temporal patterns. (A) Minicolumns that prefer the contents of sequential elements. (B) Temporal minicolumns, which are

sensitive to time intervals.
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triggered within a range around a preferred input rather than
at a precise value. Hence, the current resulting from external
stimulation of each neuron sni,j is computed by a Gaussian filter
as follows:

Is_extij = k1
1

√
2π σsi

e−(xr−µsi)
2/σ 2

si , (6)

where xr is the external stimulus, and µsi and σsi are respectively
the mean and variance of the preference of the neuron snij. This
current is then used as the input I to the Izhikevich neural model;
see Equation (1). Neurons in the same minicolumn sgi have the
same µsi and σsi, and k1 is a modulating coefficient to make
the current strength suitable for the Izhikevich model. Actually,
µsi and σsi can be interpreted as the neural preference and the
range of preference, respectively. The closer xr is to the preference
µsi, the larger Is_extij is. Since Is_extij is the input current of the
Izhikevich model, the neuron exhibits sustained spike activity if
Is_extij is large enough. In other words, this formula means that
neurons will emit spikes if they prefer xr ; otherwise, they will be
resting. Usually, the range of the neural receptive field is small.
Therefore, σsi is set to a correspondingly small value.

2.2.2. Encoding of Temporal Patterns
Time perception is another critical issue in this study. At present,
there is no consensus among researchers in this field. Merchant
and his team (Merchant et al., 2013a) summarized three possible
timing mechanisms. One theory is that the basal ganglia-
cerebellum-thalamus is the common timing system, whereas
according to another theory timing is an intrinsic capability
of any cortical circuit (Gupta, 2014). A third theory postulates
that both of the preceding mechanisms are present in the
brain and that they interact with each other. In this paper,
we adopt the second theory to encode time intervals. It has
been found that a large population of medial premotor cortex
cells are tuned to various signal durations, with a distribution
of preferred durations covering all intervals in hundreds of
milliseconds (Merchant et al., 2013a; Gupta, 2014). Cells found
in other sensory cortices have similar properties (Merchant
et al., 2013a,b). Based on these mechanisms, encoding of
temporal patterns can be achieved in a similar way to that of
spatial patterns.

The temporal subnetwork {tgi | i = 1, . . . ,mT} is shown in
Figure 4B. Neurons TNi = {tnij | j = 1, . . . , sT} in minicolumn
tgi all have the same preferred duration. Each neuron receives the
input time interval tr r+1 and generates a current

It_extij = k2
1

√
2π σti

e−(xr r+1−µti)
2/σ 2

ti (7)

where xr r+1 is the time interval between two spatial elements.
The mean µti and variance σti of neurons in minicolumn tgi are
set to adapt the scope of their preferred time interval; k2 is also
an experiential value. The neuronal dynamics are then computed
using Equation (1). In this way, time intervals are transformed
into corresponding neuronal activities. It is important to note
that, based on the time perceptionmechanismsmentioned above,
our model expands the perceptual scope of durations from tens

of milliseconds to a few seconds to satisfy the demands of
practical applications.

2.2.3. Encoding of the Goal Cluster
The goal cluster contains numerous neurons rather than
minicolumns, as shown in Figure 5. Each neuron stands for the
label (goal) of a sequence; in other words, a label (goal) is set as a
neural preference.

During the encoding process, the external stimulation is a
label (e.g., the name of a musical piece), and all the neurons
in this cluster are traversed to find the one whose preference
matches the external stimulation. If the match is successful, we
inject a 20mA current into the neuron directly, rather than using
a Gaussian filter. Neurons in this cluster are also simulated using
the Izhikevich regular spiking neuronal model.

2.3. Storage
Sequence storage is an associative process in which spatial
patterns, temporal patterns, and goals are concentrated into
network circuits simultaneously. Storage is based on the encoding
process: ordered sequential elements lead to neurons firing in
an orderly manner, and thereby connections between these
neurons are potentiated or reduced by the STDP learning
rule. At the beginning of this process, the model is empty.
Then, the model learns sequential elements one by one. To
explain the model clearly, we use a sample sequence, written
as G1 :{B, 270ms,A, 330ms,D, 230ms,C} where G1 denotes the
goal, to describe the storage process.

The spatial and temporal patterns of the sample are
SP(G1) = {B,A,D,C} and TP(G1) = {270ms, 330ms, 230ms}.
Figure 6 shows the learning process of the spatial and temporal
subnetworks with the input of the sample.

• Step 1. Sequential element B triggers the minicolumn
preferring B (marked in blue), and neuron sn21 responds to
this stimulation. This neuron then fires and inhibits other

FIGURE 5 | The goal cluster sends feedforward and feedback connections to

the spatial and temporal subnetworks. The internal connections of these two

subnetworks are shown here as gray arrows.
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FIGURE 6 | Synaptic connections in the spatial and temporal subnetworks are trained during the learning process.

neurons in the same layer. The time duration for which
each neuron continues to fire is set to 3ms, after which the
membrane potential decays to 0mV.
• Step 2. After 270ms, element A triggers the firing of a

neuron sn12 in the minicolumn that prefers A. Simultaneously
neuron tn31, which represents a time interval of 270ms
between B and A in the temporal subnetwork, fires. Because
of internal conduction delay in the spatial subnetwork, this
neuron exactly receives the spikes of neuron sn21, and the
synaptic weight between these two firing neurons is enhanced
by the STDP learning rule. It is important to note that
conduction delays only help connections to store the order
between neurons, while real-time intervals are stored by
temporal neurons.
• Step 3. Element D leads to the firing of neuron sn43, and

the connection representing the ordered information between
this neuron and sn12 is enhanced. The contextual connection
between sn21 and sn43 (marked by the orange arrow) is
strengthened owing to the exact arrival of spikes. This means
that historical contexts have an impact on current neuronal
activities. Meanwhile, neuron tn42 emits spikes because it is
sensitive to a time interval of 330ms. The connection between
tn31 and tn42 is also strengthened.

• Step 4. The last element C and the time interval 230ms
excite the neurons sn34 and tn33 in the spatial and temporal
networks, respectively. Contextual connections with different
time delays are also updated.

Besides the internal learning processes of the spatial and
temporal subnetworks, external connections between the goal
cluster and these two subnetworks are generated and updated
simultaneously. A neuron allocated to encode G1 and labeled as
gn1 in the goal cluster fires continuously until the end of the
last learning step. In fact, gn1 and other firing neurons in the
spatial and temporal subnetworks form resonant relationships
because of their similar neuronal spiking patterns. As shown
in Figure 7, in each step, synaptic (including feedforward and
feedback) connections between gn1 and neurons in the spatial
subnetwork are generated first because of their synchronous
oscillations, after which feedforward connections (green arrows)
are updated by the STDP learning rule. Connections between gn1
and neurons in the temporal subnetwork are also generated and
updated in the same way. However, the weights of the feedback
connections (red dashed arrows) are set to fixed values; this is
designed to reduce the computational cost, but has yet to be
supported by neurobiological findings.

Overall, we can conclude that neurons in the spatial
and temporal subnetworks receive multiple types of currents.
Therefore, the input current I of each neuron can be
computed as

I(i) = wsIsame + waIadj + wcIcrossing + wgIgoal, (8)

where I(i) denotes the input current of any neuron i in either
the spatial or the temporal subnetwork, since computational
processes are the same in these subnetworks, Isame is the input
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FIGURE 7 | Synaptic connections between the goal cluster and the spatial and temporal subnetworks are dynamically generated and trained during the storage

process.

current from neurons in the same layer, Iadj is the current from
neurons in the adjacent layer, Icrossing is the current from neurons
crossing layers, and Igoal is the current from the neuron of the
goal cluster; ws, wa, wc, and wg are empirical weights of these
respective currents. The four types of currents are computed
as follows:

Isame(i) =
∑

j∈nsame

Wsyn(i, j), (9)

Iadj(i) =
∑

j∈nadj

Wsyn(i, j), (10)

Icrossing(i) =
∑

j∈ncrossing

Wsyn(i, j), (11)

Igoal(i) =
∑

j∈ngoal

Wsyn(i, j), (12)

where nsame, nadj, ncrossing, and ngoal denote collections of
neurons from the same layer, from the adjacent layer, crossing
layers, and from the goal cluster, respectively, andWsyn(i, j) is the
current between presynaptic neuron ni and postsynaptic neuron
nj computed from the STDP learning rule in Equation (4).

2.4. Retrieval
We focus mainly on two types of sequential memory retrieval.
One is goal-based retrieval, in which a whole sequence, including

spatial and temporal patterns, is recalled given only goal
information; for example, given the name of a melody, the
musical sequence can be remembered. In the other type, called
contextual retrieval, the associative sequential elements and the
goal are recalled gradually, given only contextual information.

2.4.1. Goal-Based Retrieval
It is reasonable to remember all the sequential
events after giving the goal information. Figure 8A

shows a network that has memorized two sequences,
G1 = {B, 270ms,A, 330ms,D, 230ms,C} and G2 =
{C, 60ms,A, 180ms,A}. Connections in this graph are simplified,
and only adjacent and goal-connected synapses are shown.

Suppose we are going to recall G2 represented by gn2. In
this case, neuron gn2 will receive a strong external stimulus
and will emit abundant spikes. Because of the trained synapses,
sn31 and tn11, which encode C and 60ms respectively, will be
triggered and emit spikes first. Then, neurons sn12 and tn22
will receive the currents from goal information gn2 as well as
contextual signals from sn31 and tn11, respectively, and will
rapidly release action potentials. After sn12 fires, neurons sn13
and sn43 will receive signals because of the trained synapses.
Since sn13 receives currents not only from sn12 but also from
gn2, it will release spikes first, sending inhibitory signals to sn43
on account of the inhibitory synapse between them, and will
exhibit the maximum firing rate. Here, we use the winner-take-all
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FIGURE 8 | Goal-based retrieval: ordered activities of neurons in different clusters. (A) Synapses between the goal cluster and the spatial and temporal subnetworks;

there are two sequences that have been stored in the model, and synapses with the same color belong to the same sequence. (B) Activities of neurons during the

retrieval process.

principle, and sn43 will decay gradually and eventually fail in this
competition. Figure 8B shows the spiking sequences over time
during this process.

2.4.2. Contextual Retrieval
Humans have the capability of episodic memory, which includes
not only the content of an event but also temporal information.
It has been found that the hippocampus, MTL, and PFC are
heavily involved in the contextual retrieval process (Jenkins and
Ranganath, 2010). Inspired by these findings, our spiking neural
network can also implement this important memory process. We
present an example to explain the process.

• Step 1. As shown in Figure 9A, where neurons
and connections are drawn in a simplified
manner, suppose that our model has learned
three sequences, G1 = {A, 120ms,B, 120ms,E},
G2 = {A, 120ms,B, 240ms,C, 120ms,D}, and
G3 = {B, 120ms,C, 120ms,E}. An episode, {B, 120ms,C}, is
given to recall the relevant sequence; what does the network
do next?
• Step 2. As shown in Figure 9B, event B of the episode

initially stimulates the minicolumn encoding B in the spatial
subnetwork, and all the neurons in this minicolumn fire and
transmit their action potentials along the trained connections
marked by red arrows. Then the postsynaptic neurons G1, G2,
and G3 are triggered and fire with lower firing rates. Actually,
during this step, the postsynaptic neurons C and E also receive
the spikes from their connections, but these neurons cannot
be activated since the currents at this moment are not strong
enough to trigger their firing or to make them fire regularly
and continuously.
• Step 3. Event C occurs, and the time interval 120ms

stimulates t1 in the temporal subnetwork, and, as shown in

Figure 9C, neurons encoding C and 120ms in the spatial and
temporal subnetworks, respectively, release spikes. Similarly,
goal neurons connected to these neurons receive synaptic
currents again. Then, the goal neuronG3 receives the strongest
synaptic currents.
• Step 4.With the end of the input episode, neuron G3 exhibits

the most significant firing rate and wins the competition
based on the winner-take-all rule, as shown in Figure 9D. The
activity of G3 then wakes up the resting neurons E as well
as their time interval neuron t2. In the end, sequence G3 is
recalled, and the last event E and the time interval 120ms are
also remembered.

From this example, we can see that contextual retrieval is an
associative process in which the goal cluster and the spatial and
temporal subnetworks need to collaborate. Synaptic connections
between these clusters play a key role throughout the whole
process. A critical issue that needs to be mentioned is that
neurons that do not belong to G3 may fire since their adjacent
neurons release spikes, but their firing rates are very low and their
membrane potentials decay over time, and therefore these useless
neurons, which can be viewed as noise, will not affect the running
process too much.

2.4.3. Temporal Scalable Retrieval
The brain is able to represent time over many scales. For example,
a musician can play an instrument at different paces. The
neural mechanisms underlying relative time and temporal scaling
are not completely understood. However, it has been reported
that basal ganglia-cortical-thalamic circuits contribute to time
interval encoding (Buhusi and Meck, 2005; Merchant et al.,
2013a). In particular, it has been found that striatal populations
can encode relative time (Mello et al., 2015) and the activities of
the striatum adjust motor behavior to adapt to new intervals. It
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has been proposed that this process can be explained in terms of
a theoretical model known as the striatal beat-frequency model
(Matell and Meck, 2004). Although a variety of computational
models have been constructed to encode scalable time intervals
(Fukai, 1999; Matell and Meck, 2004; Piras and Coull, 2011;
Hardy and Buonomano, 2016; Hardy et al., 2018), they are
difficult to apply to practical problems.

Inspired by the neural mechanisms mentioned above, we
propose a scalable temporal model to retrieve sequences at
different speeds. As illustrated in Figure 10, a neural population

called the pacemaker cluster is added to simulate the striatum’s
function of rescaling time intervals. All neurons in the temporal
subnetwork are connected to this population with fixed weights.
We adjust the response frequencies of spatial neurons by
changing the mean firing rates of pacemaker neurons. This
means that the firing rates of pacemaker neurons determine the
basic rhythm of the retrieval process. Fast spiking of pacemaker
neurons leads to generation ofmusic at a fast pace. In the retrieval
process, time intervals encoded by neurons of the temporal
subnetwork determine the length of time during which the spatial

FIGURE 9 | Contextual retrieval: neurons with substantial activities are shown in red. (A) State of the model when it has stored three sequences. (B) State of the

network on the arrival of B of the input episode. (C) Stimulation of the network by C and t2. (D) Final result of this process.

FIGURE 10 | Neurons in the pacemaker cluster project their connections to the temporal subnetwork, and the oscillatory input makes pacemaker neurons exhibit

spikes with different frequencies.
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neurons fire continuously. Rapid activities of temporal neurons
caused by the pacemaker population rescale time intervals. To
tune the mean firing rate of the pacemaker population, neurons
in this cluster are simulated by the integrate-and-fire model, and
their membrane potentials obey the equation

τ
dVi

dt
= −Vi + Vrest + Vosc (13)

where τ is a time constant, Vi is the membrane potential, Vrest

is the resting potential after the neuron has emitted a spike, and
Vosc is an oscillatory input to make the neuron fire at a specific
frequency. Here, Vosc is given by

Vosc(t) = a cos(2π ft) (14)

where a is the amplitude and f is the frequency of oscillation.
Hence, the mean firing rate of the pacemaker population can be
tuned by f .

During the retrieval process, the input current of each
temporal neuron is computed as

I(i) = wsIsame+waIadj+wcIcrossing+wgIgoal+woIpacemaker (15)

where wo is the weight of the input from pacemaker neurons and
is a constant value, and Ipacemaker refers to the signals from the
pacemaker neurons and is computed as

Ipacemaker =
N

∑

j=1

M
∑

f=1
κδ(t − t

f
j ), (16)

with κ being the fixed weight of the connection between a

temporal neuron and a pacemaker neuron, t
f
j the spiking time of

pacemaker neuron j during a 3ms time window, N the number
of pacemaker neurons, and M the number of spikes emitted by
a pacemaker neuron during a time window. The other terms
in Equation (15) are defined in the text following Equation (8).
Then, the new interval encoded by each temporal neuron can be
computed as

tnew = c
tori

f
(17)

where tnew denotes the new interval of the temporal neurons as
tuned by the pacemaker neurons, c is a constant coefficient, tori is
the length of time that the neuron originally encoded, and f is the
mean firing rate of this neuron.

3. RESULTS

3.1. Model Application: Musical Learning
We use musical learning as an example to validate our model.
In this paper we mainly consider pure music without lyrics,
and the main instrument is the piano; other instruments will be
considered in future work.

A musical melody is composed of a series of notes, which
have three essential attributes: pitch, duration, and intensity. If

we look at Figure 1 and regard the color of a circle there as the
pitch of a note and the distance between consecutive circles as the
duration of a note (the length of time for which it is played), then
a musical melody can be expressed in terms of a spatial pattern
and a temporal pattern. Here we ignore the intensities of notes,
which will be considered in future work.

It has been found that each neuron in the primary auditory
cortex (PAC) has a preferred pitch, and thus the PAC provides
a map, which has been called a tonotopic map (Kalat, 2015).
However, although the way in which the brain perceives
the rhythms of music has been studied for many decades,
there remains more controversy than consensus. Numerous
neuroscientific experiments have indicated that auditory-motor
interactions contribute to rhythm perception (Chen et al., 2006,
2008; Zatorre et al., 2007), but how this mechanism works is
still not clear. Therefore, we have to make some assumptions
here regarding musical rhythm perception. Inspired by findings
mentioned in section 2.2.3, we assume that neurons preferring
different time intervals can encode the duration of a note.

Figure 11A shows that pitches can be encoded by
minicolumns of the spatial subnetwork. Each minicolumn has
its preferred pitch. The spatial subnetwork has 88 minicolumns
to encode pitches corresponding to the 88 keys on a piano
keyboard. Equation (6) is used to compute the injected currents
of neurons, and the input value of this equation is the pitch
frequency. Similarly, the durations of notes can be encoded by
minicolumns of the temporal subnetwork. It is important to
note that we cannot define the absolute number of milliseconds
for which a note lasts, which depends on how fast a performer
is playing the instrument. As is shown in Figure 11B, the time
perceived by each temporal minicolumn is related to the number
of beats. As a rule of thumb, one crochet generally lasts from a
few hundred milliseconds to a few seconds.

3.2. Experiments
The dataset used in this paper is derived from a classical
piano database (Krueger, 2018). We collect 331 MIDI files of
classical pianomelodies to validate our model. MIDI, theMusical
Instrument Digital Interface, is a standard protocol that connects
digital musical devices and computers. MIDI files contain
lists of instructions for tracks, notes, meters, and instruments,
together with other data, which can represent complete musical
information for users1.

As shown in Figure 12, a musical melody always has multiple
parts represented as tracks in the MIDI file. We create spatial and
temporal subnetworks for each track, and the goal cluster stores
the names of the melodies. These subnetworks work together
during the whole process. For simplicity, we take the first track
as an example to describe the experiments.

3.2.1. Encoding
A MIDI file defines 128 pitches, which are represented by the
digits 0–127. However, our spatial subnetwork is composed of
88 minicolumns to encode the standard pitches corresponding
to the piano keys. We use the pitch index defined by the MIDI

1Further details can be found at https://www.midi.org/.
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FIGURE 11 | Application to musical learning. (A) Encoding of the pitch of a note using a spatial minicolumn. (B) Representation of the duration of a note as the

preference of a temporal minicolumn.

FIGURE 12 | Episode of Bach’s BWV 846: the green graph describes the tracks of this work in MIDI files, and the model creates spatial and temporal subnetworks for

each track.

standard, rather than the pitch frequency, as a spatial neuronal
preference. The encoding process of the spatial subnetwork
thereby becomes straightforward and precise.

A MIDI file also defines the number of ticks (usually 480)
for which a crotchet lasts as the time reference. According to
this basic crotchet unit, we create 64 temporal minicolumns
that can encode note durations from a demisemiquaver to
two semibreves. Here, we use a classical piano work, Mozart’s

Sonata No. 16 in C Major, KV 545, to estimate the encoding
ability of temporal neurons. The encoding process is shown in
Figures 13A,B: as the simulated time passes, the neurons of the
spatial and temporal subnetworks fire when they receive the
external information. The neuron encoding the name of this
melody in the goal cluster is excited throughout the process. For
simplicity, this figure shows only 20 notes. In addition, since
there are some errors (tenuto, broken chords, etc.) during the
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FIGURE 13 | Results of the encoding process. (A,B) Activities of neurons in the spatial and temporal subnetworks, respectively, when we input Mozart’s KV 545_1.

The horizontal axis represents the simulation time and the vertical axis the information encoded by neurons in these two subnetworks. (C) Parsing accuracy of the

MIDI files. The labels on the horizontal axis are the names of works in our dataset; we show only some of these labels because of space limitations. (D) Encoding

accuracy of our model in general.

parsing process of the MIDI file, we first compute the recall
rate of the parsing process. According to the piano score, this
work includes 2, 488 notes; however, 2, 502 notes are resolved
out by parsing the related MIDI file. The reason this discrepancy
occurs is that chords are divided into individual notes during the
parsing process. Because the parsing algorithm is not precise and
musical pieces recorded in MIDI files are played by a human, this
process cannot be completely accurate. The recall rates of notes
of different durations are shown in Figure 13C, and the total
recall rate is 93.81%. Figure 13D shows the encoding accuracy of
note duration based on the recalled notes; the average encoding
accuracy for this work is 99.87%.

3.2.2. Storage
The scale of the model changes during the storage process.
Figure 14A counts the number of notes of every musical work
in the dataset. The increasing curve of the number of neurons
during the learning process is shown in Figure 14B. We can
conclude that the size of the network does not grow indefinitely
with the amount of training data. The total number of neurons
depends on the longest musical melody. Based on our dataset,
the model finally consists of about 20,000 neurons.

3.2.3. Retrieval
• Goal-based retrieval

For the goal-based retrieval process, we take 50 musical
pieces selected randomly from the dataset. The model shows

the first 100 notes, including pitch and duration information,
according to the input titles of the musical pieces. We first
calculate the retrieval accuracy of each musical work, and the
results are plotted in Figure 15A. The retrieval accuracy for
most of the musical works is 100% because synapses between
the goal cluster and the spatial and temporal subnetworks play
an important role. Based on these results, the average accuracy
of the goal-based retrieval is 99.9%.
• Contextual retrieval

For contextual retrieval, the test set is a collection of
short musical episodes played by us and recorded in MIDI
files. There are 30 MIDI files in the test set: 20 pieces are
derived from the artistic works in our dataset, and the others
come from Chinese or pop music. The length of each test
piece is not fixed. The model shows the rest of the 50 notes
and the name information after input of the test episodes.
Both the pitch and the duration of a note must be recalled
correctly, or else we consider that the note has failed to be
recalled. Figure 15B shows details of this process, with blue
bars indicating the notes that should be recalled and red bars
the notes retrieved by our model; random_1 to random_10
correspond to pieces played randomly by one of us. According
to these results, the notes and goal information can generally
be recalled accurately. However, compared with other works,
the retrieval accuracy of pieces by Chopin is relatively low,
since they tend to be full of variations (tercets or various slurs).
Errors may occur during the course of the retrieval process.
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FIGURE 14 | Results of the storage process. (A) Number of notes in each classical work in our dataset. (B) Increasing curve of the scale of our model during the

learning process.

FIGURE 15 | Results of retrieval. (A) Accuracy of goal-based retrieval. (B) Contextual retrieval based on our test set. (C) A fast firing rate leads to retrieval at a fast

speed. (D) Adjustment of the retrieval process to a low pace.

Based on these experiments, the average accuracy of contextual
retrieval is about 97%.
• Temporal scalable retrieval

We again use Mozart’s Sonata No. 16 in C Major,
KV 545, to test this process. We modulate the firing rate
of the pacemaker population, and the speed of retrieval is
then changed correspondingly. Figures 15C,D show seven
retrieved notes (the first phrase) of the first track of this

piano piece when the parameter f of the oscillatory input is
set to 8.8 and 3, respectively, in Equation (14). The ordinate
represents the spatial neuron index, which corresponds to
the pitch index defined in the MIDI format. The horizontal
axis represents the simulation time (in milliseconds). These
two graphs are simplified to show only the mean firing rate
of the pacemaker population. Compared with Figure 15C,
the retrieval of notes in Figure 15D takes more time.
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Correspondingly, the intervals between the successive pitches
are prolonged.

4. DISCUSSION

This paper introduces a spiking neural model of sequential
memory based on brain mechanisms. Musical learning is used
as a typical application to evaluate the network. Four neural
clusters, namely, a goal cluster, a pacemaker cluster, and
spatial and temporal subnetworks, are involved in encoding,
storage, and retrieval sequences. Minicolumns with different
preferences encode the contents and time lengths of sequences.
The connection architecture, which takes into account not
only ordered information but also sequential context, can
store a large number of sequences. An STDP learning rule is
adopted to update connection weights during the memorization
process. Experiments show that the model can store a large
number of musical melodies. Because of the associative property
of the network, both goal-based and contextual retrieval
give highly accurate results. The melody can be retrieved at
different speeds by tuning the frequency of the pacemaker
population, and this process makes the model behave similarly
to human memory.

In theory, the model can store a very large number of
sequences. The scale of the network varies with the number of
input sequences. If there are n elements and m is the length
of the longest sequence, then the model can store nm different
sequences. However, if we take musical learning as an example,
we can see that it is impossible for a musical melody to consist
of the full arrangement of notes. The capacity of the model will
not reach saturation, but will be limited by m. This issue will be
considered in our future work.

Sequential memory is a fundamental cognitive process of the
brain. It involves many interesting and important aspects, some
of which will be examined in our future work.

• We plan to construct a hierarchically structured model
that is able to process bottom-up sequential information.
Neural assemblies distributed at high levels can represent
more advanced information. For example, in a music
learning problem, notes, meters, phrases, sections, and even
movements can be learned using such a hierarchical model.
• Time perception is a key issue in sequential memory. We

believe that the mechanism of time perception is very complex

and needs to be studied more deeply in future work. For
example, it has been found that neural circuits with conduction
delays are able to encode time information. This mechanism
can cooperate with the temporal subnetwork and basal ganglia
to allow a more precise perception of time. We aim to improve
our model on the basis of these findings. Additionally, real-
time simulation needs to be considered, although this is a
challenging problem.
• In its application to music learning, the model will focus on

representation of chords and pauses. An essential component
of this task is finding out how to represent and learn chords.
Pauses are also present throughout musical pieces, and these
need to be taken into account in future development of the
model. Another essential topic to be dealt with is that of
musical generation.
• Forgetting mechanisms also need to be incorporated into the

model. At present, the model is able to allocate new neurons to
store further information; how it can be modified to delete or
alter neurons will be considered in future work.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: http://www.piano-midi.de/.

AUTHOR CONTRIBUTIONS

QL and YZ designed the study and performed the experiments.
QL, YZ, and BX developed the algorithm and performed the
analysis of the results. QL and YZ wrote the manuscript.

FUNDING

This study was supported by the Strategic Priority Research
Program of the Chinese Academy of Sciences (Grant
No. XDB32070100), the Beijing Municipality of Science and
Technology (Grant No. Z181100001518006), the Major Research
Program of Shandong Province (Grant No. 2018CXGC1503),
the Beijing Natural Science Foundation (Grant No. 4184103),
the National Natural Science Foundation of China (Grant
No. 61806195), and the Beijing Academy of Artificial
Intelligence (BAAI).

REFERENCES

Amirikian, B., and Georgopoulos, A. P. (2003). Modular organization of

directionally tuned cells in the motor cortex: is there a short-range order? Proc.

Natl. Acad. Sci. U.S.A. 100, 12474–12479. doi: 10.1073/pnas.2037719100

Bi, G.-Q., and Poo, M.-M. (1998). Synaptic modifications in cultured

hippocampal neurons: dependence on spike timing, synaptic

strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472.

doi: 10.1523/JNEUROSCI.18-24-10464.1998

Buhusi, C. V., and Meck, W. H. (2005). What makes us tick? Functional

and neural mechanisms of interval timing. Nat. Rev. Neurosci. 6, 755–765.

doi: 10.1038/nrn1764

Byrnes, S., Burkitt, A. N., Grayden, D. B., and Meffin, H. (2011). Learning a sparse

code for temporal sequences using stdp and sequence compression. Neural

Comput. 23, 2567–2598. doi: 10.1162/NECO_a_00184

Chen, J. L., Penhune, V. B., and Zatorre, R. J. (2008). Listening to musical

rhythms recruits motor regions of the brain. Cereb. Cortex 18, 2844–2854.

doi: 10.1093/cercor/bhn042

Chen, J. L., Zatorre, R. J., and Penhune, V. B. (2006). Interactions between auditory

and dorsal premotor cortex during synchronization to musical rhythms.

Neuroimage 32, 1771–1781. doi: 10.1016/j.neuroimage.2006.04.207

Davachi, L., and Dubrow, S. (2015). How the hippocampus preserves

order: the role of prediction and context. Trends Cogn. Sci. 19, 92–99.

doi: 10.1016/j.tics.2014.12.004

Frontiers in Computational Neuroscience | www.frontiersin.org 15 July 2020 | Volume 14 | Article 51

https://doi.org/10.1073/pnas.2037719100
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.1038/nrn1764
https://doi.org/10.1162/NECO_a_00184
https://doi.org/10.1093/cercor/bhn042
https://doi.org/10.1016/j.neuroimage.2006.04.207
https://doi.org/10.1016/j.tics.2014.12.004
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Liang et al. Brain-Inspired Sequence Learning Model

Du, Y., Wang, W., and Wang, L. (2015). “Hierarchical recurrent neural network

for skeleton based action recognition,” in 2015 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) (Boston, MA), 1110–1118.

Eck, D., and Lapalme, J. (2008). LearningMusical Structure Directly from Sequences

of Music. University of Montreal, Department of Computer Science, CP, 6128.

Eck, D., and Schmidhuber, J. (2002). “Finding temporal structure in music: blues

improvisation with LSTM recurrent networks,” in Proceedings of the 12th IEEE

Workshop on Neural Networks for Signal Processing (Martigny: IEEE), 747–756.

doi: 10.1109/NNSP.2002.1030094

Eichenbaum, H. (2014). Time cells in the hippocampus: a new dimension for

mapping memories. Nat. Rev. Neurosci. 15, 732–744. doi: 10.1038/nrn3827

Elman, J. L. (1990). Finding structure in time. Cogn. Sci. 14, 179–211.

doi: 10.1207/s15516709cog1402_1

Fortin, N. J., Agster, K. L., and Eichenbaum, H. B. (2002). Critical role of the

hippocampus in memory for sequences of events. Nat. Neurosci. 5, 458–462.

doi: 10.1038/nn834

Fukai, T. (1999). Sequence generation in arbitrary temporal patterns from theta-

nested gamma oscillations: a model of the basal ganglia-thalamo-cortical loops.

Neural Netw. 12, 975–987. doi: 10.1016/S0893-6080(99)00057-X

George, D., and Hawkins, J. (2009). Towards a mathematical

theory of cortical micro-circuits. PLoS Comput. Biol. 5:e1000532.

doi: 10.1371/journal.pcbi.1000532

Graves, A., Mohamed, A.-R., and Hinton, G. (2013). “Speech recognition with

deep recurrent neural networks,” in 2013 IEEE International Conference on

Acoustics, Speech and Signal Processing (Vancouver, BC: IEEE), 6645–6649.

doi: 10.1109/ICASSP.2013.6638947

Gupta, D. S. (2014). Processing of sub- and supra-second intervals in the primate

brain results from the calibration of neuronal oscillators via sensory, motor, and

feedback processes. Front. Psychol. 5:816. doi: 10.3389/fpsyg.2014.00816

Hardy, N. F., and Buonomano, D. V. (2016). Neurocomputational models

of interval and pattern timing. Curr. Opin. Behav. Sci. 8, 250–257.

doi: 10.1016/j.cobeha.2016.01.012

Hardy, N. F., Goudar, V., Romero-Sosa, J. L., and Buonomano, D. V. (2018). A

model of temporal scaling correctly predicts that motor timing improves with

speed. Nat. Commun. 9:4732. doi: 10.1038/s41467-018-07161-6

Hawkins, J., and Ahmad, S. (2016). Why neurons have thousands of synapses,

a theory of sequence memory in neocortex. Front. Neural Circ. 10:23.

doi: 10.3389/fncir.2016.00023

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. J. Physiol.

117, 500–544. doi: 10.1113/jphysiol.1952.sp004764

Hu, J., Tang, H., Tan, K., and Li, H. (2016). How the brain formulates memory: a

spatio-temporal model research frontier. IEEE Comput. Intell. Mag. 11, 56–68.

doi: 10.1109/MCI.2016.2532268

Hubel, D. H., and Wiesel, T. N. (1959). Receptive fields of single neurones in the

cat’s striate cortex. J. Physiol. 148, 574–591. doi: 10.1113/jphysiol.1959.sp006308

Hubel, D. H., and Wiesel, T. N. (1968). Receptive fields and functional

architecture of monkey striate cortex. J. Physiol. 195, 215–243.

doi: 10.1113/jphysiol.1968.sp008455

Izhikevich, E. (2003). Simple model of spiking neurons. IEEE Trans. Neural Netw.

14:1569. doi: 10.1109/TNN.2003.820440

Jenkins, L. J., and Ranganath, C. (2010). Prefrontal and medial temporal lobe

activity at encoding predicts temporal context memory. J. Neurosci. 30,

15558–15565. doi: 10.1523/JNEUROSCI.1337-10.2010

Kalat, J. W. (2015). Biological Psychology. Stamford, CT: Nelson Education.

Krueger, B. (2018). Classical Piano MIDI Page. Available online at: http://piano-

midi.de/.

Lisman, J., and Redish, A. (2009). Prediction, sequences and the hippocampus.

Philos. Trans. R. Soc. Lond. 364, 1193–1201. doi: 10.1098/rstb.2008.0316

Liu, J., Shahroudy, A., Xu, D., and Wang, G. (2016). “Spatio-temporal LSTM

with trust gates for 3D human action recognition,” in European Conference on

Computer Vision (Amsterdam: Springer), 816–833. doi: 10.1007/978-3-319-464

87-9_50

Liu, K., Cui, X., Zhong, Y., Kuang, Y., Wang, Y., Tang, H., et al. (2019).

A hardware implementation of SNN-based spatio-temporal memory model.

Front. Neurosci. 13:835. doi: 10.3389/fnins.2019.00835

MacDonald, C., Lepage, K., Eden, U., and Eichenbaum, H. (2011). Hippocampal

“time cells” bridge the gap in memory for discontiguous events. Neuron 71,

571–573. doi: 10.1016/j.neuron.2011.07.012

Matell, M. S., andMeck,W. H. (2004). Cortico-striatal circuits and interval timing:

coincidence detection of oscillatory processes. Cogn. Brain Res. 21, 139–170.

doi: 10.1016/j.cogbrainres.2004.06.012

McAndrews, M. P., and Milner, B. (1991). The frontal cortex and

memory for temporal order. Neuropsychologia 29, 849–859.

doi: 10.1016/0028-3932(91)90051-9

Mcdermott, J. H., and Oxenham, A. J. (2008). Music perception,

pitch, and the auditory system. Curr. Opin. Neurobiol. 18, 452–463.

doi: 10.1016/j.conb.2008.09.005

Meier, B., Weiermann, B., Gutbrod, K., Stephan, M. A., Cock, J., Müri, R. M.,

et al. (2013). Implicit task sequence learning in patients with Parkinson’s

disease, frontal lesions and amnesia: the critical role of fronto-striatal loops.

Neuropsychologia 51, 3014–3024. doi: 10.1016/j.neuropsychologia.2013.10.009

Mello, G. B., Soares, S., and Paton, J. J. (2015). A scalable population code for time

in the striatum. Curr. Biol. 25, 1113–1122. doi: 10.1016/j.cub.2015.02.036

Merchant, H., Harrington, D. L., and Meck, W. H. (2013a). Neural basis of

the perception and estimation of time. Annu. Rev. Neurosci. 36, 313–336.

doi: 10.1146/annurev-neuro-062012-170349

Merchant, H., Perez, O., Zarco, W., and Gamez, J. (2013b). Interval tuning in the

primate medial premotor cortex as a general timing mechanism. J. Neurosci. 33,

9082–9096. doi: 10.1523/JNEUROSCI.5513-12.2013

Oxenham, A. J. (2012). Pitch perception. J. Neurosci. 32, 13335–13338.

doi: 10.1523/JNEUROSCI.3815-12.2012

Piras, F., and Coull, J. T. (2011). Implicit, predictive timing draws upon the

same scalar representation of time as explicit timing. PLoS ONE 6:e18203.

doi: 10.1371/journal.pone.0018203

Schuster, M., and Paliwal, K. K. (1997). Bidirectional recurrent neural networks.

IEEE Trans. Signal Process. 45, 2673–2681. doi: 10.1109/78.650093

Sharma, J., Angelucci, A., and Sur, M. (2000). Induction of visual orientation

modules in auditory cortex. Nature 404, 841–847. doi: 10.1038/35009043

Skaggs, W. E., McNaughton, B. L., Wilson, M. A., and Barnes, C. A.

(1996). Theta phase precession in hippocampal neuronal populations

and the compression of temporal sequences. Hippocampus 6, 149–172.

doi: 10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K

Socher, R., Manning, C. D., and Ng, A. Y. (2010). “Learning continuous phrase

representations and syntactic parsing with recursive neural networks,” in

Proceedings of the NIPS-2010 Deep Learning and Unsupervised Feature Learning

Workshop (Vancouver), 1–9.

Srivastava, N., Mansimov, E., and Salakhudinov, R. (2015). “Unsupervised learning

of video representations using LSTMs,” in International Conference on Machine

Learning (Lille), 843–852.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). “Sequence to sequence learning

with neural networks,” in Advances in Neural Information Processing Systems,

eds Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, K. Q. Weinberger

(Montreal: MIT Press), 3104–3112.

Swadlow, H. (1985). Physiological properties of individual cerebral axons

studied in vivo for as long as one year. J. Neurophysiol. 54, 1346–1362.

doi: 10.1152/jn.1985.54.5.1346

Swadlow, H. (1988). Efferent neurons and suspected interneurons in binocular

visual cortex of the awake rabbit: receptive fields and binocular properties. J.

Neurophysiol. 59, 1162–1187. doi: 10.1152/jn.1988.59.4.1162

Swadlow, H. (1992). Monitoring the excitability of neocortical efferent neurons to

direct activation by extracellular current pulses. J. Neurophysiol. 68, 605–619.

doi: 10.1152/jn.1992.68.2.605

Tubridy, S., and Davachi, L. (2011). Medial temporal lobe contributions to episodic

sequence encoding. Cereb. Cortex 21, 272–280. doi: 10.1093/cercor/bhq092

Tully, P. J., Lindén, H., Hennig, M. H., and Lansner, A. (2016). Spike-

based bayesian-hebbian learning of temporal sequences. PLoS Comput. Biol.

12:e1004954. doi: 10.1371/journal.pcbi.1004954

Verduzco-Flores, S. O., Bodner, M., and Ermentrout, B. (2012). A model for

complex sequence learning and reproduction in neural populations. J. Comput.

Neurosci. 32, 403–423. doi: 10.1007/s10827-011-0360-x

Weninger, F., Erdogan, H., Watanabe, S., Vincent, E., Le Roux, J., Hershey, J. R.,

et al. (2015). “Speech enhancement with LSTM recurrent neural networks and

its application to noise-robust ASR,” in Latent Variable Analysis and Signal

Frontiers in Computational Neuroscience | www.frontiersin.org 16 July 2020 | Volume 14 | Article 51

https://doi.org/10.1109/NNSP.2002.1030094
https://doi.org/10.1038/nrn3827
https://doi.org/10.1207/s15516709cog1402_1
https://doi.org/10.1038/nn834
https://doi.org/10.1016/S0893-6080(99)00057-X
https://doi.org/10.1371/journal.pcbi.1000532
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.3389/fpsyg.2014.00816
https://doi.org/10.1016/j.cobeha.2016.01.012
https://doi.org/10.1038/s41467-018-07161-6
https://doi.org/10.3389/fncir.2016.00023
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1109/MCI.2016.2532268
https://doi.org/10.1113/jphysiol.1959.sp006308
https://doi.org/10.1113/jphysiol.1968.sp008455
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.1523/JNEUROSCI.1337-10.2010
http://piano-midi.de/
http://piano-midi.de/
https://doi.org/10.1098/rstb.2008.0316
https://doi.org/10.1007/978-3-319-46487-9_50
https://doi.org/10.3389/fnins.2019.00835
https://doi.org/10.1016/j.neuron.2011.07.012
https://doi.org/10.1016/j.cogbrainres.2004.06.012
https://doi.org/10.1016/0028-3932(91)90051-9
https://doi.org/10.1016/j.conb.2008.09.005
https://doi.org/10.1016/j.neuropsychologia.2013.10.009
https://doi.org/10.1016/j.cub.2015.02.036
https://doi.org/10.1146/annurev-neuro-062012-170349
https://doi.org/10.1523/JNEUROSCI.5513-12.2013
https://doi.org/10.1523/JNEUROSCI.3815-12.2012
https://doi.org/10.1371/journal.pone.0018203
https://doi.org/10.1109/78.650093
https://doi.org/10.1038/35009043
https://doi.org/10.1002/(SICI)1098-1063(1996)6:2$<$149::AID-HIPO6$>$3.0.CO;2-K
https://doi.org/10.1152/jn.1985.54.5.1346
https://doi.org/10.1152/jn.1988.59.4.1162
https://doi.org/10.1152/jn.1992.68.2.605
https://doi.org/10.1093/cercor/bhq092
https://doi.org/10.1371/journal.pcbi.1004954
https://doi.org/10.1007/s10827-011-0360-x
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Liang et al. Brain-Inspired Sequence Learning Model

Separation, eds E. Vincent, A. Yeredor, Z. Koldovský, P. Tichavský (Liberec:

Springer-Verlag), 91–99. doi: 10.1007/978-3-319-22482-4_11

Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga,

R., and Toderici, G. (2015). “Beyond short snippets: deep networks

for video classification,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (Boston, MA), 4694–4702.

doi: 10.1109/CVPR.2015.7299101

Zatorre, R. J., Chen, J. L., and Penhune, V. B. (2007). When the brain plays music:

auditory-motor interactions in music perception and production. Nat. Rev.

Neurosci. 8, 547–558. doi: 10.1038/nrn2152

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Liang, Zeng and Xu. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 17 July 2020 | Volume 14 | Article 51

https://doi.org/10.1007/978-3-319-22482-4_11
https://doi.org/10.1109/CVPR.2015.7299101
https://doi.org/10.1038/nrn2152
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Temporal-Sequential Learning With a Brain-Inspired Spiking Neural Network and Its Application to Musical Memory
	1. Introduction
	2. Model and Methods
	2.1. Model Description
	2.1.1. Network Architecture
	2.1.2. Neural Dynamics
	2.1.3. Synaptic Plasticity

	2.2. Encoding
	2.2.1. Encoding of Spatial Patterns
	2.2.2. Encoding of Temporal Patterns
	2.2.3. Encoding of the Goal Cluster

	2.3. Storage
	2.4. Retrieval
	2.4.1. Goal-Based Retrieval
	2.4.2. Contextual Retrieval
	2.4.3. Temporal Scalable Retrieval


	3. Results
	3.1. Model Application: Musical Learning
	3.2. Experiments
	3.2.1. Encoding
	3.2.2. Storage
	3.2.3. Retrieval


	4. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References


