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Editorial on the Research Topic

The Embodied Brain: Computational Mechanisms of Integrated Sensorimotor Interactions

With a Dynamic Environment

The paradigm shift toward an action-oriented view (Engel et al., 2013) stresses that cognition
permits meaningful interactions with a dynamic environment and cannot be reduced to thinking-
related mental representations. Consequently, the emerging field of embodied neuroscience has
been inspired by recent achievements in robotics. At the same time, the fields of robotics
and artificial intelligence increasingly turn to neuroscience to utilize insights on the neural
underpinnings of sensorimotor interactions and embodied cognition.

As contribution to this integration of computational neuroscience, artificial intelligence,
robotics and neurobiology, this Research Topic provides an overview of recent advances in
sensorimotor integration and embodied cognition from a multidisciplinary perspective. A total
of nine contributions present important scientific insights into embodied sensorimotor systems
while another four contributions present comprehensive frameworks and toolchains that support
the interdisciplinary study of embodied agents.

EMBODIED SENSORIMOTOR SYSTEMS

Embodied agents need to be able to autonomously and adaptively interact with their environment.
Grossberg presents a large-scale visuomotor architecture: the Self-Organizing, Vision, Expectation,
Recognition, Emotion, Intelligent, Goal-oriented Navigation model (SOVEREIGN; Gnadt and
Grossberg, 2008). This architecture consists of several sensory, motor and memory components
and is able to perform motor sequences under different motivational states as well as to learn
more efficient sequences in response to rewards. Grossberg reviews the SOVEREIGN architecture
as well as advancements in the field over the past decade and presents an updated version of
the architecture, SOVEREIGN2. SOVEREIGN2 incorporates resonant dynamics which allow new
perceptual, cognitive and navigational properties to emerge.
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One highly complex cognitive aspect of sensorimotor
integration, involving the recruitment and concerted interplay
among a large number of cortical and subcortical brain regions,
is action selection. Koprinkova-Hristova et al. capture this
complexity with a biologically plausible large-scale architecture
able to generate eye movement decisions. This architecture,
implemented as a hierarchical spiking neural network (SNN),
consists of multiple layers including the retina, several thalamic
nuclei as well as cortical regions along the dorsal stream from
V1 to the lateral intraparietal cortex. When probed with stimuli
mimicking optic flow patterns of forward self-motion, the model
selects eye movements that correctly align its gaze with the
direction of self-motion.

Tekülve et al. approach a sequential pointing task from the
perspective of dynamic field theory (Schöner and Spencer, 2016).
Their contribution presents a spiking neural network (SNN)
architecture comprised of: a perceptual subnetwork able to create
a working memory representation of the visual scene, a motor
subnetwork able to generate movement commands for a robotic
arm, and a cognitive subnetwork able to represent positions in
a sequence as well as to initiate shifts between positions. This
architecture allows a robot to memorize a sequence of distinct
objects (presented by a human), and subsequently point at these
objects for random spatial arrangements of these objects.

Another robotic agent able to perform pointing movements is
presented by Tieck et al.. They developed an SNN of the primary
motor cortex that is able to adaptively combine motor primitives,
a low-dimensional vocabulary of motor actions (Rizzolatti et al.,
1988; Santello et al., 1998; Ciocarlie et al., 2007). A humanoid
robot, utilizing this network, could successfully point at different
targets marked on a plane.

The cerebellum is a key structure for sensorimotor control,
as it coordinates voluntary movements through prediction
and sensory feedback (Johansson and Westling, 1988; Wolpert
and Flanagan, 2001; Xu-Wilson et al., 2009; Manto et al.,
2012). Capolei et al. present a cerebellar microcircuit which,
supplanted with a classic control method, allows for adaptive
and robust control of a robot’s movements as it balances a
board with a rolling ball. The contributors show that cerebellar
plasticity contributes to learning of dynamics related to arm-
object interactions, and thus supports adaptive corrections to
executed actions.

Inspired by the fact that evolution does not act on static,
but rather on plastic systems learning from experiences in their
environment, Massi et al. combine cerebellar plasticity with
an evolutionary algorithm for optimizing quadruped robotic
locomotion. Their control structure consists of a spinal central
pattern generator (CPG) and a cerebellar adaptive controller able
to learn online from feedback, while the parameters of the CPG
are optimized offline via an evolutionary algorithm. Their results
show that locomotion in a quadruped robot improves when
the cerebellar controller is allowed to learn during evolutionary
optimization as opposed to only afterwards. This suggests that
parameters controlling the CPG need to be selected to benefit
optimally from the adaptive controller.

The benefits conveyed by the cerebellum are intricately
linked to its complex electroresponsive dynamics afforded by the
plethora of cerebellar neuron types. Geminiani, Casellato et al.

present a novel point neuron model able to capture the
dynamics of several neurons of the olivocerebellar circuit.
Their Extended-Generalized Leaky Integrate-And-Fire (E-GLIF)
neuron is optimized to capture the input-output relationships
of Golgi cells, granule cells, Purkinje cells, molecular layer
interneurons, deep cerebellar nuclei cells and inferior olivary
cells. Geminiani, Pedrocchi, et al. utilize the E-GLIF to investigate
how single neuron dynamics in conjunction with geometrical
modular connectivity profiles shape the dynamics exhibited by
cerebellar circuits involved in eye blink classical conditioning.
Their simulations produce response properties in Purkinje and
deep nuclei cells similar to those reported in vivowhen relying on
the E-GLIF neuron model, but not when using simplified point
neuron models.

This highlights the significance of neuron dynamics.
Importantly, these dynamics are not only affected by
neuron morphology. Vergara et al. argue that the balance
between energy income, expenditure and availability determine
neural dynamics to a significant extent. Importantly, the
contributors argue, the effects of these factors manifest
themselves at all levels from molecular to behavioral. In arguing
their case, the contributors provide a comprehensive overview of
energy demands of neurons culminating in the proposal of the
Energy Homeostasis Principle.

TOOLCHAINS AND FRAMEWORKS

Constructing state-of-the-art embodied systems that are able
to intelligently interact with their environment in a closed
loop, requires the development of large-scale architectures
incorporating several structural as well as functional
components. The immensity of this task requires a high
degree of collaboration among research disciplines. In order
to facilitate such collaboration, universally available platforms,
toolchains, and shared frameworks are indispensable.

One platform aiming to facilitate integration of several
structural and functional components into an embodied agent is
the neurorobotics platform (NRP; Falotico et al., 2017). Bornet
et al. show how the NRP enables to connect models of diverse
visual functions, developed by different research groups, into a
coherent architecture. Their architecture, consisting of a retina
model, a saliency model and a segmentation model, is able to
explain visual crowding phenomena.

Jordan et al. present a novel toolchain for reinforcement
learning in autonomous agents controlled by biologically
plausible neural networks. This toolchain connects
benchmarking tools from machine learning with network
simulators from computational neuroscience. The collaborators
demonstrate the functionality of the toolchain by implementing
a rate neuron actor critic architecture in the NEST simulator
(Gewaltig and Diesmann, 2007) and training on the grid world
and mountain car environments.

The possibility to perform online reward-based learning with
spiking neurons in the NEST simulator is provided by the
Synaptic Plasticity with Online Reinforcement learning (SPORE)
framework (Kappel et al., 2015, 2017, 2018). Kaiser et al. utilize
the NRP to evaluate SPORE for training robotic agents on a
closed loop reaching and lane-following task. The contributors
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show that SPORE was capable of learning shallow feedforward
policies online for moderately difficult embodied tasks.

Mascaro et al. present an iterative loop between experiment
and model simulation to refine and validate models with
experimental data as well as adjust experiments based on
simulations. The contributors demonstrate the feasibility of
their iterative loop for two separate scenarios. In the first,
the iterative loop allowed them to replicate the evolution of
functional connectivity in the mouse brain after stroke using
neural mass model simulations. In the second, the contributors
integrated their iterative loop with the NRP to embody a spinal
cord model of the mouse and were able to reproduce goal-
directed forelimb movements. Such a framework that simulates
all relevant components of an experimental study, facilitates the
continuous integration of novel experimental results into model
simulations. In turn, modeling results can contribute to ongoing
improvements in experimental design.

CONCLUSION

Understanding how an embodied brain can meaningfully
interact with its dynamic external environment while
managing inner homeostatic requirements is a challenging
task. Indeed, identifying the functional capacities that an
embodied nervous system needs to implement, the physical

constraints it is subjected to as well as specifying representations,
transformations and dynamics realizing these capacities requires
input from computational neuroscientists, roboticists, machine
learning experts, and neurobiologists. Contributions to this
Research Topic reflect current advances in embodied action
mechanisms across fields. However, for a comprehensive
understanding of embodied cognition and its utilization in
neurorobotics, it is essential that efforts become increasingly
collaborative in the future. For this collaboration to be fruitful,
support by an infrastructure enabling researchers to effectively
integrate their empirical results and modeling efforts into
large-scale closed-loop architectures will be indispensable.
The frameworks and toolchains presented within the present
Research Topic are an important step in that direction.
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