
ORIGINAL RESEARCH
published: 13 July 2020

doi: 10.3389/fncom.2020.00059

Frontiers in Computational Neuroscience | www.frontiersin.org 1 July 2020 | Volume 14 | Article 59

Edited by:

Daya Shankar Gupta,

Camden County College,

United States

Reviewed by:

Markus Rothermel,

RWTH Aachen University, Germany

Christiane Linster,

Cornell University, United States

*Correspondence:

Krishnan Padmanabhan

Krishnan_Padmanabhan@

urmc.rochester.edu

†ORCID:

Zhen Chen

orcid.org/0000-0002-5590-3552

Krishnan Padmanabhan

orcid.org/0000-0002-3255-8346

Received: 31 March 2020

Accepted: 22 May 2020

Published: 13 July 2020

Citation:

Chen Z and Padmanabhan K (2020)

Top-Down Control of Inhibitory

Granule Cells in the Main Olfactory

Bulb Reshapes Neural Dynamics

Giving Rise to a Diversity of

Computations.

Front. Comput. Neurosci. 14:59.

doi: 10.3389/fncom.2020.00059

Top-Down Control of Inhibitory
Granule Cells in the Main Olfactory
Bulb Reshapes Neural Dynamics
Giving Rise to a Diversity of
Computations
Zhen Chen 1† and Krishnan Padmanabhan 2*†

1Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, United States, 2Department of

Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States

Growing evidence shows that top-down projections from excitatory neurons in piriform

cortex selectively synapse onto local inhibitory granule cells in the main olfactory bulb,

effectively gating their own inputs by controlling inhibition. An open question in olfaction

is the role this feedback plays in shaping the dynamics of local circuits, and the

resultant computational benefits it provides. Using rate models of neuronal firing in

a network consisting of excitatory mitral and tufted cells, inhibitory granule cells and

top-down piriform cortical neurons, we found that changes in the weight of feedback to

inhibitory neurons generated diverse network dynamics and complex transitions between

these dynamics. Changes in the weight of top-down feedback supported a number of

computations, including both pattern separation and oscillatory synchrony. Additionally,

the network could generate gamma oscillations though a mechanism we termed

Top-down control of Inhibitory Neuron Gamma (TING). Collectively, these functions

arose from a codimension-2 bifurcation in the dynamical system. Our results highlight

a key role for this top-down feedback, gating inhibition to facilitate often diametrically

different computations.

Keywords: dynamical system, olfactory bulb, oscillations, pattern separation, synchrony, bifurcation, feedback,

top-down

INTRODUCTION

Growing evidence suggests that top-down centrifugal feedback from higher cortical areas
specifically target inhibitory interneurons in primary sensory regions. In the olfactory system, axons
from excitatory neurons in the piriform cortex (PCx) synapse onto the inhibitory granule cells in
olfactory bulb (OB), whereby they can modulate the function of the mitral/tufted cells (M/T), the
principal relays of olfactory information from the bulb to the brain (Shipley and Adamek, 1984;
Boyd et al., 2012; Markopoulos et al., 2012; Oswald and Urban, 2012b; Padmanabhan et al., 2016,
2019). This circuit motif results in piriform cortical neurons receiving input from only excitatory
M/T cells but exerting influence on the local circuit dynamics in the OB via inhibitory populations.
Consequently, the information relayed to piriform cortical neurons comes from M/T cells, but
feedback intervenes in network dynamics through the local inhibitory granule cells. Although this
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network motif constitutes major feature of the olfactory system,
the computational role of this top-down control of inhibition
remains largely unknown.

A number of studies have previously explored the dynamics
of M/T cells and granule cells in OB as a two-population
network of excitatory (E) and inhibitory (I) neurons (Cleland
and Linster, 2005; Brea et al., 2009; Kay et al., 2009; Li and
Cleland, 2017) in parallel with a broader literature on excitatory-
inhibitory (E-I) networks (Wilson and Cowan, 1972; Ermentrout
and Kopell, 1990; Tsodyks et al., 1997; Tiesinga and Sejnowski,
2009; Ledoux and Brunel, 2011; Franci et al., 2018). The studies in
olfaction have revealed not only the mechanisms by which these
dynamics emerge, but also how changes in the oscillatory power
(Nusser et al., 2001) result in alterations in behavior, including
in odor discrimination tasks (Abraham et al., 2010). The recent
evidence that cortical feedback directly synapses onto inhibitory
interneurons (Boyd et al., 2012; Markopoulos et al., 2012)
suggests that the local dynamics of excitatory and inhibitory
neurons in OB can be gated by centrifugal projections from
olfactory cortex. How the local E-I network’s activity in the bulb
is changed by centrifugal input, what these changes mean more
broadly for neural dynamics in the early olfactory system, and
the role of these dynamics play in neural computation remains an
open question.

To address this, we built a three-node network model
consisting of an excitatory population of mitral/tufted cells
(M), an inhibitory population of granule cells (G) and a
top-down population of pyramidal/semilunar cells (P) in
PCx, and studied how firing rate dynamics were influenced
by top-down weights onto inhibition. Changing the weight
of the top-down connections to local inhibitory neurons
reshaped the dynamics of the local E-I circuit in a way that
enhanced sensory discrimination as well as generated oscillatory
synchrony including entraining gamma oscillations in the
local circuit [Top-down control of Inhibitory Neuron Gamma,
(TING)]. Finally, the mechanism underlying the dynamics,
as well as the functional roles played by top-down control
of inhibition occurred via a codimension-2 bifurcation in
the dynamical system. By gating the weight of connections
from piriform cortex to the inhibitory neurons in the bulb,
a number of seemingly disparate computations could be
supported by a single circuit, providing an additional framework
for the diversity of inhibitory interneuron function in the
olfactory bulb.

MATERIALS AND METHODS

Network Model
The network model was composed of three nodes, the local
excitatory population, corresponding to mitral and tufted cells
(M) and inhibitory population corresponding to granule cells
(G) which were reciprocally coupled, and a top-down population
corresponding to the principal neurons in piriform cortex (P)
that received input from the local M population and projected
back to the inhibitory G population (Figure 1A). In the model,
ri (t) , i = 1, 2, 3 represented the firing rates of the three neuron

populations, respectively, whose dynamics were determined by
Wilson-Cowan equations (Wilson and Cowan, 1972) as follows:







τ1ṙ1 = −r1 + S (w11r1 + w12r2 + µ)

τ2ṙ2 = −r2 + S (w21r1 + w22r2 + w23r3)
τ3ṙ3 = −r3 + tanh (w31r1 + w33r3)

(1)

where S is the sigmoid function:

S (x) =
1

1+ e−x
(2)

which described the non-linear relationship between the mean
synaptic input and average firing rate (normalized to a range
between 0 and 1). The parameter τi, i = 1, 2, 3 was the time
constant for each population, characterizing how quickly the
dynamics of each population evolved. The mitral/tufted cell
population (M) received an external stimulus µ, that represented
the only external input to the system. The connection weight
from population j to population iwas denoted bywij, i, j = 1, 2, 3,
among which w11,w21,w31,w23,w33 > 0 and w12,w22 < 0.
The connection weight wij, i, j = 1, 2, 3 represented the average
synaptic input received by the neuron population i from the
population j. Throughout this paper, we set the parameters
as follows: w11 = 8.7, w12 = −10, w21 = 7.0, w22 =

−13,w31 = 1.5, w33 = 0.5. The parameters in the model
were chosen based on previous studies of Wilson-Cowan rate
model (Ermentrout and Kopell, 1990; Ledoux and Brunel, 2011;
Veltz and Sejnowski, 2015), and their relative values were
adjusted according to experimentally recorded excitatory and
inhibitory postsynaptic inputs of M/T and granule cells in OB
(Urban and Sakmann, 2002; Egger et al., 2005; Kapoor and
Urban, 2006). For instance, the value of recurrent excitation
(w11) was determined by mapping recorded excitatory post-
synaptic potentials (EPSP) in M/T cells and the weight of
inhibition from granule cells (w12) was determined using similar
mappings of whole cell recordings of inhibitory post-synaptic
potentials (IPSP) in M/T cells (Urban and Sakmann, 2002). The
weights between populations were determined by integrating
synaptic potentials with known connectivity densities using
trans-synaptic viral tracers that allowed for estimates of the
number of pre-synaptic cells for each population (Willhite et al.,
2006; Miyamichi et al., 2011; Padmanabhan et al., 2016) to yield
the relative weights for instance, |w12| > |w21|. Estimates of
synaptic weights for the projections to piriform cortex and the
feedback connections were estimated from Franks and Isaacson
(2006), Suzuki and Bekkers (2011), and Boyd et al. (2012). Time
constants, for example the time constant τ2 for granule cells,
were derived from data using both calcium imaging and whole
cell recordings across the types of neurons that constituted the
populations in our model (Franks and Isaacson, 2006; Kapoor
and Urban, 2006; Suzuki and Bekkers, 2011). As there was no
inhibitory synaptic input into the piriform pyramidal/semilunar
cell population (P), the combination w31r1 + w33r3 was non-
negative due to w31 > 0 and w33 > 0. Sigmoid function
(2) for the third equation of system (1) would mean that the
lowest r3 value that an equilibrium could reach would be 0.5.
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FIGURE 1 | Reduced network model exhibiting complex dynamics. (A) A schematic diagram illustrating the topology of the reduced network model. Each node

denotes a neuron population and the connection weights are defined by wij (excitatory: arrows; inhibitory: circles). (B) Network responses [color-coded firing rates

match population nodes in (A)] to different levels of stimulus strength (left: µlow = 0.1, middle: µmed = 1.5, right: µhigh = 3.0) with the other parameters fixed. (C) A

distribution of all possible steady states r3 over a wide range of parameter choices: µ ∈ [0, 5] , w31 ∈ [0, 5] , w23 ∈ [0, 30] shows the diversity of responses the

network can generate. (D) Trajectories of the firing rate responses plotted in (B) are visualized in the phase space spanned by (r1, r2, r3). The color bar indicates

stimulus strengths for three representative levels as in (B).

In this framework, even without an input, at least half of the
pyramidal/semilunar cells would keep firing. Thus, we used
the hyperbolic tangent function tanh (x) in order ensure that
piriform cortical cell firing rates were low in the absence of
odors (Stettler and Axel, 2009; Davison and Ehlers, 2011), and
to exploit the entire range [0, 1] of r3 (Figure 1C). However, it
should be noted that such choice of non-linearity did not affect
our findings since all bifurcations supporting the computations
of the network we identified were found in the system using the
sigmoid function (2).

Definition of Period of a Limit Cycle
From the perspective of dynamical system, a limit cycle in the
phase space corresponds to the oscillation of firing rates in
the temporal space. Since the time constants in our model had
units of millisecond, the frequency of oscillations was defined as
1,000/T, with T denoting the period of limit cycles, which was

defined as follows: if ri (t) , i = 1, 2, 3 denote the firing rate
of neural population in the model, then a limit cycle satisfies
the periodicity:

ri (t) = ri (t + T) , i = 1, 2, 3 (3)

for some T > 0 and all t∈ R. Theminimal T for which the above
equality holds is the period of the limit cycle.

Metric Definition
As representations of the network (ω-limit sets) could take on
different forms, an equilibrium or a limit cycle, we defined two
quantitative metrics: dE (�1,�2) and dS

(

r3 |�1 , r3 |�2

)

which
served to measure the distance between different types of ω-
limit sets in responses to any given stimulus pair (µ1,µ2) where
µ2 = µ1 + 1. dE (�1,�2) denoted the average Euclidean
distance between �1 and �2 in the three-dimensional (3D)
phase space of firing rates (r1, r2, r3), and the spectrum distance
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FIGURE 2 | Network dynamics are controlled by top-down modulation. (A) Top: changing top-down input w23 reshapes network activity to the same stimulus (color

bar indicates values of w23); bottom: firing rates at three representative values of w23 while the stimulus is held constant (µ = 1.5). (B) Trajectories in the phase space

for the same w23 as in (A); left: oscillations occur around w23 = 5.5 for µ = 1.5 (same as A); right: oscillations occur around w23 = 10.5 for a different stimulus

µ = 0.6, revealing that the dynamics are diverse across different combinations of stimuli and top-down input. (C) Modulation of oscillation frequency by top-down

input (for µ = 1.5). (C1) Dependence of frequency on top-down input w23. Inset: time series of r3 (t) for two example values of w23 (squares). (C2) Frequency

modulation by top-down input occurred over a range of feedforward drive w31. (C3) A distribution of oscillation frequencies that can be generated by the network for

all possible combinations of w23 ∈ [0, 30]and µ ∈ [0, 5]. (D) Similar to (C) but for oscillation amplitudes.
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FIGURE 3 | Pattern separation via top-down control. (A) A schematic diagram illustrating the separation maximization between the response patterns to a pair of

stimuli (µ1 and µ2) by changing top-down input w23 (color bar indicates values of w23). (B) Time series of r3 (t) in response to µ1 = 1.0 and µ2 = 1.1 at three

representative values of w23 with the spectrum distance dS indicated. The two responses r3 (t) are close at some top-down inputs (left: w23 = 3; right: w23 = 10), but

pushed apart at other top-down input (middle: w23 = 3.8). (C) Phase trajectories and network representations of two stimuli from which the Euclidean distance dE is

calculated. From left to right the top-down input w23 correspond to those in (B) for the same stimulus pair (µ1 = 1.0 and µ2 = 1.1). (D) Non-monotonic dependence

of both dE and dS on top-down input w23, with maximum achieved at w23 = 3.8. The squares are color coded as in (B,C).

dS
(

r3 |�1 , r3 |�2

)

was a sum of the squared differences between
both direct components (DC) and alternating components (AC)
in the amplitude-frequency domain of the Fourier transforms to
the signals r3 (t) associated with the two stimuli.

The Euclidean distance was defined as follows: supposing that
�1 and �2 are two ω-limit sets composed of N1 and N2 discrete
points in three-dimensional phase space (r1, r2, r3) , respectively,
denoted as

{

α1, α2, . . . ,αN1

}

and
{

β1, β2, . . . ,βN2

}

where αi

and β j are three-dimensional vectors, then

dE =

〈

d
(

αi, β j

)〉

, i = 1, . . . , N1, j = 1, . . . , N2 (4)

Where 〈·〉 denotes the average and d
(

x, y
)

=

√

(

x− y
)T (

x− y
)

which is the standard distance between any two points in the
three-dimensional Euclidean space. Note that in the case of
equilibria, the number of discrete points in the ω-limit set
was one: N = 1, and in the case of a limit cycle, we set
N = T/dt, where T was the period and dt was time bin for
numerical integration.

The Euclidean distance dE worked well in measuring the
distance between two equilibria in the phase space, but when
one ω-limit set was a limit cycle, the averaging operation in

the definition made it only a coarse and lagged estimate of
the separation for equilibrium vs. limit cycle and limit cycle
vs. limit cycle. In particular, the activity of the P population
should be decodable with respect to the stimulus information,
something that was problematic for when using dE. Therefore,
we defined the spectrum distance dS to address the question of
distances between representations that were sensitive to those
representations being oscillations. To calculate the spectrum
distance dS between two ω-limit sets �1 and �2, only the
sequence of their r3 component was decomposed by Fourier
transform which converted the firing rate signal in the temporal
domain into a representation in the frequency domain.

The single-sided amplitude spectrum for the Fourier
transform of the firing rate signal r3 (t), was used to obtain peaks
around frequency values. For an equilibrium corresponding to
constant firing rate r3 = A, there existed only one peak around
zero frequency with its amplitude proportional to A, since the
Fourier transform of a constant function is a delta-function.
We referred this component as the direct component (DC)
of the signal. For the case of a limit cycle, in addition to one
peak around zero frequency, there existed another peak around
frequency 1,000/T where T denoted the period of the limit
cycle. We referred this additional peak of a limit cycle as the
alternating component (AC). Thus, the spectrum distance dS
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A

B

C
D E

FIGURE 4 | Optimal top-down input for pattern separation. (A) Landscapes of the Euclidean distance dE over all stimulus pairs at three representative values of

top-down input. (B) Landscapes of the spectrum distance dS unfolds as in (A). (C) The matrix wmax
23 which maximizes d between network representations in response

to all combinations of stimuli (µ1 and µ2) presented to the network. Inset: the same matrix of wmax
23 organized by one stimulus µ1 vs. stimulus difference 1µ. (D)

Dependence of the stationary firing rate of inhibitory population r2 on feedback w23 at different levels of input strength (indicated by color bar). (E) The correlation

between wmax
23 obtained from (C) for all pairs of stimuli µ1 and µ2 and the wmid

23 corresponding to the mid-point of the two inhibitory firing rate maxima associated with

the same pair of stimuli (upper left inset) reveals that top-down input optimizes pattern separation by gating the G-M inhibition as well as recurrent G inhibition. The

gray line denotes the utility line. Lower right inset shows the correlation coefficient and the slope of the linear regression.

was a sum of the differences between both direct components
(DC) of two limit sets and alternating components (AC) of two
limit sets, which was formalized as follows: supposing that D1

and D2 were the amplitudes of the peaks at zero frequency for
two ω-limit sets �1 and �2, and ai =

(

fi,Ai

)

, i = 1, 2 denoted
the corresponding alternating components of �i, where fi was

the non-zero frequency and Ai was the amplitude of the peak
around fi, then we have

dS = |D1 − D2| + d (a1, a2) (5)
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A1 B1 B2

A2
C

D
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FIGURE 5 | Oscillation synchrony via top-down control. (A) Oscillatory responses to two example stimuli µ1 = 1.15 and µ2 = 0.6 become synchronized promptly

after changing the top-down input w23. (A1) Time series of r3 (t) before and after changing the top-down input. (A2) Limit cycles corresponding to the oscillatory

responses in (A1) are plotted in phase space (transitions not shown). (B) Changing w23 can make both the frequency and amplitude of two oscillations closer to each

other. (B1) Frequency and amplitude components of the two oscillations shown in (A). (B2) Changing top-down input reduces the frequency differences of responses

to two distinct stimuli, effectively using frequency to synchronize the representations in the phase space. (C) The matrix wmin
23 which minimizes the distance d between

oscillatory responses to all combinations of stimuli µ1 and µ2. (D) Schematic diagram illustrating that the same value of w23 which minimizes the distance between

oscillations responding to stimuli µ1 and µ2 can maximize the distance between responses to stimuli µ1 and µ3. (E) Scatter plot in µ1- µ2- µ3 space where each

sphere denotes a top-down input w23 as illustrated in (D) and is coded by color and size. (F) Correlation between the differences of those stimuli of which the

response distances are simultaneously minimized and maximized. Inset: correlation coefficient and the slope of linear regression.

Note that we set ai = (0, 0) if the ω-limit sets �i was an
equilibrium. Thus, when the two limit sets were both equilibria,
dS only contained the first termmeasuring the difference between
the direct components. In this case, dS was only a linear
projection (up to a constant factor) of the Euclidean distance dE.

When both �1 and �2 were equilibria, the spectrum distance
dS was a projection of the Euclidean distance dE onto the
r3 axis. The spectrum distance was however more sensitive
to bifurcations when one of the two ω-limit sets �1 and �2

transitioned into a limit cycle as the frequency of the limit
cycle started from non-zero values at the onset of a bifurcation
(Figure 2C1), causing discontinuous jumps in the spectrum

distance. However, for the purpose of pattern separation, the two
metrics did not give qualitatively different results when assessing
the distances due to changes the feedback weight w23 (Figure 4).
Additionally, we found that the non-monotonic dependence
of distance in both dE and dS on the feedback weight (wmax

23 )
persisted, and that an optimal value for any given pair of stimuli
could be found (Figure 3D).

Bifurcation Analysis
We denoted the dynamical system of Equation (1) as a
parameterized form
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B1 B2

C2C1

A

FIGURE 6 | Pattern separation and oscillation synchrony for sniff-modulated oscillatory stimulus. (A) Schematic diagram illustrating that varying the top-down weight

of the network model (middle) can accomplish both pattern separation and oscillation synchrony (bottom) for a pair of oscillatory stimuli µ1 and µ2 modulated by sniffs

(top). (B) Pattern separation for two oscillatory stimuli with closely related amplitudes: µ1 = 1.4 and µ2 = 1.5. (B1) Firing rate of the piriform population r3 (t) before

and after changing the top-down weight: before, w23 = 26; after, w23 = 21. (B2) The limit cycles in the phase space corresponding to the firing rate in (B1). (C)

Oscillation synchrony for two oscillatory stimuli with distinct amplitudes: µ1 = 1.15 and µ2 = 0.6. (C1) Changing the top-down weight from w23 = 6.1 to w23 = 9.2

synchronizes the intrinsic oscillations of the firing rate of the piriform population r3 (t). (C2) Frequency and amplitude components of the two intrinsic oscillations

shown in (C1).

ṙ = f (r, 2) (6)

where r ∈ R
3 was the vector of firing rates and 2∈ R

p

was the vector of parameters. The vector field f =
(

f1, f2, f3
)T

was a smooth function on some open set of R
3×R

p. The
dimensionality of 2 could be up to eight dimensions maximally
to include all connection weights wij and the external stimulus µ.
However, since we were only interested in the top-down control,
2 was restricted to be two dimensions (p = 2) including the
top-down weight w23 and the external stimulus µ. All the other
parameters were fixed as constants determined based on previous
experimental work (Whittington et al., 2000). As the system
Equation (6) had an equilibrium at (r, 2)= (r0, 20), i.e.,

f (r0, 20) = 0 (7)

the stability of this equilibrium could be determined from the
linearized vector field of Equation (6) given by

ξ̇ = Drf (r0, 20) ξ , ξ ∈ R
3 (8)

where Drf,
∂f
∂r was the Jacobian matrix of the vector field f.

If none of the eigenvalues ofDrf (r0, 20) lied on the imaginary
axis (i.e., the equilibrium was hyperbolic), the local stability of

(r0, 20) in the non-linear system (6) could be determined by the
linear system (8). The equilibrium was stable if all eigenvalues of
Drf (r0, 20) had negative real parts. In the case of a hyperbolic
equilibrium, varying slightly the parameter 2 would not change
the stability as taking Equation (7) and the invertibility of
Drf (r0, 20), there existed a unique smooth function h : R

p→R
3

such that

h (20) = r0 and f (h (2) ,2) = 0 (9)

for 2 sufficiently close to 20. By continuity of the eigenvalues
with respect to parameters, Drf (h (2) ,2) had no eigenvalue on
the imaginary axis for 2 sufficiently close to 20. Therefore, the
hyperbolicity of the equilibrium persisted and its stability type
remained unchanged for in close vicinity of 20. By contrast,
when some of the eigenvalues of Drf (r0, 20) lied on the
imaginary axis, for example, a zero eigenvalue or a pair of purely
imaginary eigenvalues, new topologically different dynamical
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FIGURE 7 | Global phase structure changes with the top-down input. (A–C) Global phase structures showing the nullclines (yellow thick curves), nullplanes

(transparent surfaces with the same color code as M, G, P population) and several representative trajectories (black thin curves) for the same stimulus µ = 1.5 and

three different values of w23. A, w23 = 4; B, w23 = 6; C, w23 = 15. Varying the top-down input tilts the nullplanes, thus changing the position of the equilibrium as well

as its stability. (D) An example phase structure where three equilibria were present simultaneously (two stable and one unstable), corresponding one of the blue

regions of the manifold in Figure 8A.

behaviors occurred by a small change in 2. Equilibria could be
created or annihilated, and periodic dynamics could emerge.

The parameterized system (6) thus underwent a bifurcation
at (r0, 20) if the Jacobian matrix Drf (r0, 20) has an eigenvalue
of zero real part. In our model, a saddle-node bifurcation
(SN) occurred when Drf (r0, 20) had a single zero eigenvalue
(in addition to some non-degenerate conditions), and a Hopf
bifurcation (H) occurred when Drf (r0, 20) had a pair of
purely imaginary eigenvalues. The bifurcation point was found
numerically by XPPAUT or the Matlab toolbox MATCONT.

The number of parameters that must be varied simultaneously
to evoke a bifurcation is defined as the codimension of this
bifurcation (Guckenheimer andHolmes, 2013; Kuznetsov, 2013).

Considering the infinite-dimensional space H of all vector fields
defined on the n-dimensional Euclidean space R

n, a vector field
f0 undergoing a bifurcation, for example, a Hopf bifurcation,
corresponds to a point in the space H. All nearby vector fields
with the same singularity as f0 (i.e., vector fields that are orbitally
topologically equivalent to f0) form a submanifold L of co-
dimension k, which is an equivalence class of the singular
vector field f0. Therefore, within the space H it requires another
submanifold L̃ of at least k dimensions to intersect transversely
with L at point f0, such that the singularity of f0 persists under
small perturbations of the vector field. The submanifold L̃ was
obtained through a parametrized family of vector fields involving
at least k parameters. The least number k is then defined as
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A1

A2

B

FIGURE 8 | Bifurcation mechanism of top-down control to support both pattern separation and oscillation synchrony. (A) Illustration of the bifurcation mechanism and

the transition boundary of dynamics in phase space and parameter space. (A1) Pattern separation. Left: the equilibrium manifold in the firing rate phase space divided

by the separatrix emitting from multiple codimension-2 bifurcation points: BT (Bogdanov–Takens bifurcation) into several regions. Region-LC: each equilibrium was

unstable and had exactly one corresponding stable limit cycle (dot dashed cycle) arising from a Hopf bifurcation. Region-SE: each equilibrium was stable all

trajectories spiraled into it. Region-EE: each equilibrium was stable all trajectories approached it exponentially. Blue regions: regions where multiple equilibria

coexisted. For two example stimuli µ1 = 2.0 and µ2 = 3.0 given in the middle of (A1), two paths of equilibria were induced on the equilibrium manifold and traversed

across different regions as changing top-down input w23. Middle: different regions on the equilibrium manifold corresponded to different regimes in the parameter

space of µ and w23 in the same color scheme [parameters for blue regions in Left were largely beyond the range thus not shown]. The transition boundary ŴH

specified the pair (µ,w23) at which the network underwent a Hopf bifurcation and corresponded to the separatrix enclosing the region-LC in Left. Two given stimuli

were denoted by two vertical lines and three example values of w23 corresponded to three horizontal dashed lines, giving rise to a pair of junctions for each. These

junctions were also plotted as squares in the left of (A1) denoting the corresponding ω-limit sets in the same color (solid square: stable equilibrium; empty square:

unstable equilibrium). Right: the distance between the ω-limit sets to represent the two given stimuli. The maximal distance was achieved when the two junctions were

on opposite sides of ŴH. (A2) Same as (A1) but for oscillation synchrony occurring when the two junctions were both inside ŴH. (B) Comparisons between the

translated transition boundary Ŵ1 (dashed curve) depending on µ (left: 1µ = 0.1, middle: 1µ = 0.5) and the sliced section of the wmax
23 at the same Ŵµ (solid curve).

Right: a series of translated Ŵ1 for three representative values of Ŵµ.

the codimension of f0. The parametrized vector field f (r, 2)

in Equation (6) can be thought of as one realization of the
submanifold L̃ which passes through the vector field f0 ,

f (r0, 20) undergoing a bifurcation with the two parameters
corresponding to the top-down weight w23 and the external
stimulus µ.
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Simulating Sniffing With a Periodically
Driven Non-autonomous System
Olfactory sensation is an active process, with sensory stimuli
being sampled by sniffing on the time scale of 215Hz in animal
models (Carey and Wachowiak, 2011; Wachowiak, 2011). To
simulate sniffing, a vector field for the dynamical system that
depended explicitly on time and was also periodic with fixed
period T = 2π/ω > 0, i.e.,

ṙ = f (r, t) and f (r, t + T)=f (r, t) (10)

could be rewritten in the form of an autonomous system by
defining the function

ϕ (t) = ωt, mod 2π (11)

such that using Equation (11), Equation (10) became

ṙ = f (r, ϕ)

ϕ̇ = ω
(r, ϕ) ∈ R

3 × S1 (12)

where S1 denoted a circle. To construct the Poincaré map, we
defined a cross-section of Equation (12) by

6
ϕ
0 =

{

(r, ϕ) ∈ R
3 × S1 |ϕ = ϕ0 ∈ (0, 2π]

}

(13)

such that a fixed point of the Poincaré map Pϕ0
: 6ϕ0 → 6ϕ0

corresponded to a limit cycle of the extended system Equation
(12), and a limit cycle of Pϕ0

corresponded to a two-dimensional
(2D) torus of Equation (12).

Topological changes in the ω-limit sets of the extended
system Equation (12) could thus be understood via bifurcations
of the discrete map Pϕ0

. Specifically, the bifurcation analysis
we performed for autonomous system (6) also applied to the
Poincaré map Pϕ0

. Hopf bifurcations undergone in autonomous
system (6) which gave rise to limit cycles in 3D phase space
corresponded to Neimark-Sacker bifurcations of Pϕ0

which gave
birth to a 2D torus in the extended space. The torus oscillation
thus had two periodic components: one (the toroidal direction)
driven extrinsically by the frequency of sniffs and the other
(the poloidal direction) governed by the intrinsic network
dynamics. Therefore, the Neimark-Sacker bifurcations provided
an analogous bifurcation mechanism for non-autonomous
system (10) as the Hopf bifurcations did for autonomous
system (6).

RESULTS

Reduced Network Model Generates
Complex Dynamics
To understand the functional role of top-down projections
onto inhibitory neurons, we built a three-node network model
(Figure 1A, see Methods) that recapitulated a circuit architecture
identified both structurally (Padmanabhan et al., 2019) and
functionally (Boyd et al., 2012; Markopoulos et al., 2012) across
a number of brain areas. For different stimuli µ, the network
exhibited a variety of dynamics (Figure 1B). For instance, when

the stimulus was small, the firing rates ri, i = 1, 2, 3 had a
fast-transient increase followed by damping oscillations that
converged to a stationary state (Figure 1B, left). A sufficiently
large stimulus µ elevated the firing rates to near saturation,
where they then remained at the upper bound of the non-
linear sigmoid function throughout the duration of the stimulus
(Figure 1B, right). For small or large stimuli, the network
responses converged to a constant firing rate after transient
dynamics. By contrast, for medium values of µ, more complex
firing rate dynamics emerged, including oscillations (Figure 1B,
middle). To visualize the collective behaviors of M, G, and P
populations to these different stimuli, we turned to a three
dimensional dynamical system representation of the model
where the time evolution of the firing rates (i.e., state variables)
was a trajectory (or an orbit) in the phase space (r1, r2, r3) and
the tangent vector defining the velocity of each point along

a trajectory was given by the vector field f=
(

f1, f2, f3
)T

(see
Methods) of Equation (1). The firing rates over time in Figure 1B
thus corresponded to trajectories in Figure 1D starting from the
origin O (where all three populations were silent). For small
stimuli, the trajectory made an excursion before spiraling into
an equilibrium indicated by the solid dot (Figure 1D, orange).
Similarly, when the stimulus µ was large, the trajectory again
settled into an equilibrium, but one that was translated within
the phase space to the top-right corner (Figure 1D, black).
Finally, for medium stimuli, the time-varying oscillation of
firing rates manifested as a periodic orbit (or a limit cycle)
in the 3D phase space (Figure 1D, brown). By convention,
we defined the steady-state dynamics as the ω-limit set of
the system.

Top-Down Weight Reshapes Network
Dynamics and Modulates Neural
Oscillations
Next, to explore how top-down down projections onto the
inhibitory granule cell population (G) shaped the dynamics of
the network, we studied the effects of changes in the connection
weight w23 on firing rate dynamics. First, we varied the top-
down weight w23 (Figure 2A, top) from the piriform population
(P) to the inhibitory granule cell population (G) and studied
the effect of these changes on the firing rate dynamics of the
network. For a fixed stimulus (µ = 1.5) the dynamics of
the firing rates ri (t) , i = 1, 2, 3 were sensitive to different
values of w23 (Figure 2A, bottom). When the top down weight
was small (w23 = 4), firing rates approached the equilibrium
exponentially (Figure 2A, bottom and Figure 2B, left, black
traces). Conversely, when the top-down weight was large (w23 =

10.5), the firing rate of excitatory cells (r1) increased initially,
but was suppressed as inhibition reduced the activity, until the
firing rates ultimately settled to an equilibrium (Figure 2A, top
and Figure 2B, left, light magenta traces). When the magnitude
of top-down weight was changed to an intermediate value
(w23 = 5.5), the same stimulus generated oscillatory activity
in the network, with the steady-state dynamics transitioning to
a periodic orbit (a limit cycle). Changing the weight of top-
down projections onto the local inhibitory population for a single
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stimulus produced the same diversity of firing rate dynamics
that occurred from changes in the stimulus. Furthermore, for
a given top-down weight (w23), the effects on the network
dynamics stimulus was unique to that stimulus (Figure 2B, right
vs. left).

In regimes where specific weights of top-down weight
generated sustained oscillatory activity for a given stimulus µ, we
characterized the frequency and amplitude of these oscillations
(Figure 2B, left w23 = 5.5, right w23 = 10.5) as changes in
both have been tied to circuit function and behavior (Buzsaki
and Draguhn, 2004; Kay et al., 2009). For a given stimulus,
oscillations emerged between two values of w23, with the
frequency of the oscillation varying monotonically (Figure 2C1).
By contrast, while the amplitudes of the oscillations started
from zero at the two critical values of w23, they reached a
maximum in between (Figure 2D1). The control of both the
frequency and amplitude via changes in w23 occurred across
an array of weights (w31) associated with the feedforward drive
from the mitral/tufted population (M) to the piriform population
(P) (Figures 2C2,D2). Furthermore, the magnitude of synaptic
weights from mitral/tufted cells to piriform cortical neurons
established the dynamic range within which changes in top-
down weights (w23) influenced the frequencies (Figure 2C3,
0 − 45Hz) and amplitudes (Figure 2D3, 0 − 1 A.U.) of
network oscillations, spanning frequencies in the alpha, beta and
gamma bands.

Top-Down Weight Contributes to Pattern
Separation
As changing the top-down weight onto inhibitory neurons
could generate complex activity patterns we next asked what
computations could be performed by this control. For example,
both behavioral and neurophysiological measures show that as
the representations of two stimuli by neuronal circuits become
different, distinguishing between them becomes easier (Friedrich
and Laurent, 2001; Leutgeb et al., 2007; Yassa and Stark, 2011)
Control of inhibition, via top-down centrifugal projections, may
be one way that such stimulus discrimination is implemented by
the circuit.

To test this hypothesis, we presented our network with
a pair of stimuli, denoted by µ1 and µ2 (corresponding to
stimuli arranged along a one-dimensional axis) and studied
how control of inhibition altered the representations of the two
stimuli (Figure 3A). Conceptually, these two stimuli could be two
different concentrations of an odor or two odors that share a
similar physiochemical feature (two odors with different carbon
chain lengths). For a set of stimuli µi, i = 1, 2, we defined
the steady-state representation of network activity as the ω-limit
set �i, i = 1, 2. The distance between the two stimuli µ1 and
µ2 in the stimulus space was defined as 1µ, and the resultant
distance in the firing rate phase space between the two ω-limit
sets (�1 and �2) we defined as a metric d (see Methods). The
smaller the 1µ, the more similar the two stimuli were. We
hypothesized that changes in the weight of feedback onto the
inhibitory neuron population (w23) could increase the value of

d, making the representations of those stimuli more distinct
(Figure 3A).

In a representative example where µ1 = 1.0 and µ2 =

1.1, when the top-down weight was low (w23 = 3), the
representations of the two stimuli were close (Figures 3B,C,
left). As w23 was increased, the representations of the two
stimuli were pushed apart making them more separable
(w23 = 3.8, Figures 3B,C). Interestingly, as w23 was increased
further (w23 = 10), the representations of the two stimuli
became close to one another again (Figures 3B,C, right).
As representations could be either oscillations in the state
space, or equilibria, we compared how the distances of
these representations changed across different measures (see
methods). Interestingly, although the absolute values given
by the Euclidean distance dE (Figure 3C) and the spectrum
distance dS (Figure 3B) were different, they both occurred
at the same feedback weight (Figure 3D). We visualized the
distance landscapes defined by dE and dS over all combinations
of µ1 and 1µ as a function of a change in the weight
of the top-down weight (Figures 4A,B). Irrespective of which
distance definition was exploited for measurement, we found
an optimal value of wmax

23 that maximized the distance
between the two resultant representations for any given pair
of stimuli.

A landscape of the optimal wmax
23 across all pairs of stimuli

(µ1,µ2) was shown in Figure 4C. Thus, changing the weight
of top-down projections onto the inhibitory neuron population
could be used to facilitate stimulus separation dynamically.
To understand why, we examined the effect that varying the
top-down weight had on the firing rate responses of both
local excitatory mitral/tufted cell and inhibitory granule cell
populations (r1 and r2). For a given stimulus, an increase in
w23 led to a monotonic decrease in r1, suggesting persistent
suppression onto the local M population. By contrast, the
response of the local G population r2 was elevated first with
increasing w23 until reaching the maximum rmax

2 , after which
r2 dropped significantly (Figure 4D). Across different stimuli µ,
the shape of the firing rate r2 as a function of w23 remained
the same but shifted vertically. To determine if these differences
in the firing rate of inhibitory neurons (r2) were related to
the values of top-down weights that maximally separated the
distance between two stimulus representations, we plotted the
wmax
23 (abscissa) obtained from the landscape in Figure 4C vs. the

midpoint wmid
23 (ordinate) between the rmax

2 of the same stimulus
pair (inset of Figure 4E). The response r2 to one stimulus on
the left of the midpoint dropped significantly, while the response
to a similar stimulus on the right still had a high inhibitory
firing rate. The optimal wmax

23 was correlated to wmid
23 (R2 = 0.98),

the value at which inhibitory neuron activity from one stimulus
was suppressed while activity from the other similar stimulus
remained persistently high. Consequently, stimulus separation
arose from the differential sensitivity of inhibitory neurons to
the balance between top-down feedback and recurrent inhibition;
an imbalance occurred between the top-down feedback and the
recurrent inhibition for one stimulus while that balance was
preserved for the second stimulus.
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Top-Down Weight Contributes to
Oscillation Synchrony
Stimulus-evoked oscillations also appeared in our model, and
were modulated by the top-down weights (Figure 2) covering
a wide range of frequency and amplitude. This suggested that
oscillatory responses to different stimuli could be synchronized
by tuning w23. To explore this, we first examined the oscillations
in the firing rate generated by two different stimuli µ1 and
µ2. At a given value of top-down weight (w23 = 12.0), one
stimulus (µ1 = 1.15) generated oscillations (f1 = 33.5 Hz,
Figure 5A1, before) in the piriform population’s firing rate
that were different in both frequency and amplitude from the
oscillations (f2 = 37.Hz, Figure 5A1, before) in response to a
second stimulus (µ2 = 0.6). However, a change in the top-
down weight (w23 = 8), resulted in firing rate oscillations
becoming more similar for the same two stimuli (Figure 5A1,
after, f1 = 30.4 Hz, f2 = 30.8 Hz). This increase in the
firing rate synchrony was also apparent when visualized in
the 3D phase space (Figure 5A2). To quantify the synchrony
between the oscillations responses to µ1 and µ2, we calculated
the spectrum distance dS (see Methods) between the network
representations for the two stimuli before and after changes
in top-down weight (Figure 5B1). Changes in the feedback to
inhibitory neurons w23 synchronized activity in the network
stimuli (Figure 5B2), and while the effect was greatest when
stimuli were similar, we found examples for stimuli that were
initially as far apart as 20Hz. As with stimulus discrimination,
a systematic relationship emerged corresponding to the optimal
top-down weight wmin

23 across combinations of stimuli (µ1

vs. µ2) that was most effective at generating synchronous
oscillations (Figure 5C).

Although we have thus far treated stimulus discrimination
and synchrony separately, neural circuits perform both
operations simultaneously, bringing the network representation
of one stimulus closer to another, while simultaneously pushing
the representation of that stimulus farther from a third. We
therefore tested if a single change in the top-down weight w23

accomplish both of these operations; minimize the distance
between the responses to one pair of stimuli (µ1 vs. µ2) while
also maximize the response distance to another other pair
of stimuli (µ1 vs. µ3, Figure 5D). To do this, we generated
a 3D scatter plot of values of w23 that were optimal for
synchrony between oscillations generated by stimulus µ1 and µ2

(Figure 5C) and also produced a maximum separation between
the representations of stimulus µ1 and µ3 (Figure 5E). The
values of top-down weight w23 for each point that fulfilled these
diametrically distinct functions were coded by color and size
(Figure 5E). We found that the top-down weight corresponding
to both operations scaled with the stimuli, such that when µ1,µ2

and µ3 were small, the top-down weight was also small, but as
the three stimuli increased in magnitude, the top-down weight
needed to synchronize one pair and separate the other pair
also increased. Finally, we found a strong correlation between
the values of stimulus differences: |µ1 − µ2| and |µ1 − µ3|

(Figure 5F) at which an w23 weight was optimal for stimulus
separation and oscillatory synchrony.

Generalization to Oscillatory Stimulus
Driven by Sniffs
Although we used a constant stimulus µ to represent the average
input tomitral/tufted cells, inmammals sniffing brings odors into
the nasal epithelium in a periodic fashion (Wachowiak, 2011).
Sniff cycles carry different amounts of information about odor
identity and concentration (Miura et al., 2012) and a single sniff
cycle is sufficient for animals to discriminate accurately between
two odors (Uchida and Mainen, 2003; Wesson et al., 2008). To
explore how changing top-down weights can reshape network
responses to oscillatory stimuli, we modeled our stimulus µ

as a sinusoidal function µ̃ (t) = µ cos (ωst + ϕ0), where the
different odors had different amplitudes µ, the sniffing frequency
ωs was set to ∼4Hz and ϕ0 characterized the initial phase of
sniffing (Carey and Wachowiak, 2011; Shusterman et al., 2011)
(Figure 6A).

For a pair of oscillatory stimuli µ̃ (t) with two similar
amplitudes µ1 and µ2, the firing rate responses were also similar
for the piriform population (P) (Figure 6B1, before top-down
change) and the entire network in the phase space (Figure 6B2,
left). If we changed the top-down weight w23, as we had done for
a fixed stimulus, both the piriform population firing (Figure 6B1,
after top-down change) and the network representations became
more distinct (Figure 6B2, right). The conch-shaped limit cycle
in Figure 6B2 (right) arose from oscillations occurring at two
different time scales (see methods): a slower oscillation on
the time scale of sniff cycles and a faster oscillation governed
by the intrinsic dynamics of the network. As a consequence,
the same pattern separation achieved by changing top-down
weight for constant stimuli could also be accomplished for
oscillatory stimuli.

To explore if network representations of oscillatory stimuli
could be made synchronous by changing top-down weights,
we presented two stimuli with distinct amplitudes (µ1,µ2) to
the network (Figure 6A). Following a change in the top-down
weight w23, the network representations became synchronous
(Figure 6C1), with the oscillations of firing rates occurring
at the same frequency (Figure 6C2, right). Importantly, these
high frequency oscillations occurred at the gamma band,
and rode on top of the slower oscillations corresponding to
sniff cycles, further revealing the computational decoupling of
sniffing and inhibitory dynamics across two different time scales.
Taken together, the mechanisms giving rise to both pattern
separation and oscillatory synchrony were general to constant
and oscillatory inputs.

Bifurcation Mechanism for Top-Down
Control of Inhibition
Finally, to understand mathematically how such operations
emerged from changes in the top-down weight to inhibition,
we studied the structure of the transitions in network firing
rates dynamics (Figure 2A). These transitions were associated
with qualitative or topological changes in the ω-limit sets of the
system, indicative of the occurrence of bifurcations in the system.

To explore this further, we first examined the how the ω-
limit sets of the system receiving constant stimuli changed with
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different top-down weights. An equilibrium corresponding to
constant firing rates in the network arose from the intersection of
three nullclines (Figure 7, yellow thick lines), each resulting from
pairwise intersections of three “nullplanes” that characterized
the geometric surface on which the firing rate derivatives of
one node equaled to zero (Figure 7, transparent surfaces).
Global phase structures for two representative values of top-
down weights (Figure 7A: ω23 = 4, Figure 7C: ω23 = 15)
illustrated how these equilibria varied within the firing rate phase
space. In these two examples, both equilibria were stable and
attractive, with all nearby trajectories (Figures 7A,C, black thin
lines) moving toward them. This was, however, not true for all
values of w23. At some critical values of w23, the equilibrium
lost stability, and a small-amplitude limit cycle branched from
that unstable equilibrium, resulting in the oscillations observed
in the dynamics (Figure 7B). This transition signified a Hopf
bifurcation of the system (see Methods), which arose when the
top-down weight w23 was within a specific regime. Therefore,
across all combinations of external stimuli µ and top-down
weight w23, we obtained a smooth manifold in the phase
space (Figure 8A, left), corresponding to a family of ω-limit
sets on which the network dynamics settled from any set of
initial conditions. Sustained oscillations corresponded to the red
region-LC (LC: limit cycle) where each equilibrium (unstable)
was paired with exactly one limit cycle born simultaneously via
a Hopf bifurcation (the purple empty square vs. the dot-dashed
curve). Constant firing rates corresponded to the gray region-EE
(EE: exponential equilibrium) and green region-SE (SE: spiraling
equilibrium), where the equilibria were stable, approached either
exponentially (region-EE) or via damping-oscillations (region-
SE). Finally, the two blue regions on the manifold were bounded
by saddle-node bifurcations near Bogdanov–Takens (BT), an
example global phase structure of which was shown in Figure 7D.
The equilibrium manifold thus defined the entire family of
network representations for all possible combinations of stimuli
µ and top-down weigh tw23.

Within the manifold of the stimulus µ and top-down weight
w23, we identified a transition boundary ŴH (black solid curves,
Figure 8A, middle) corresponding to the separatrix enclosing the
region-LC. ŴH specified the parameter pairs (µ,w23) at which
a Hopf bifurcation occurred, thereby dividing the parameter
space into regimes with different dynamics (same color coded
as Figure 8A1, left). For a given pair of stimuli (for example,
µ1 = 2.0, µ2 = 3.0), changing w23 corresponded to shifting
the horizontal dashed line vertically (three representatives were
shown in Figure 8A1, middle), thereby shifting the junctions
with the two stimuli (vertical solid lines, Figure 8A1, middle)
across different regimes in the parameter space. In the firing
rate phase space (Figure 8A, left), these changes in w23 for one
stimulus moved the equilibrium through different regions of the
manifold: EE-LC-SE, while for another stimulus, a parallel curve
on the manifold could also be traced. When the two junctions
in Figure 8A1 (middle) were on different sides of the transition
boundary, with one equilibrium in region-LC and the other in
region-SE (Figure 8A1, left), the two network representations
became topologically different from each other; the former a limit
cycle, and the latter an equilibrium point. Thus for a combination

of stimulus pairs, the optimal w23
max for pattern separation was

then achieved when the ω-limit sets were on different sides of
transition boundary (Figure 8A1, right).

Furthermore, when the junction of feedback weight and
stimulus pair were both inside the transition boundary
(Figure 8A2, middle) two limit cycles emerged (one for each
stimulus, for example, µ1 = 3.45, µ2 = 3.95, Figure 8A2)
synchronize the network representations. Changes in top-down
weight moved the junctions for pairs of stimuli within the
parameter space, revealing a shared mechanism supported both
stimulus separation and oscillation synchrony, depending on
the relative positions of the junctions with respect to the
transition boundary.

Finally we determined if the transition boundary identified
via analysis of the dynamical system corresponded to the wmax

23
matrix found in Figure 4Ci. To do this, we considered a set
of initial stimuli µ1, and a set of distances to a second set of
stimuli 1µ, wherein each value was an array that defined a
set of stimulus pairs {(µ1,µ1 + 1µ) | µ1 ∈ [0, 4]}. For a given
1µ > 0, distinguishing the pair (µ1,µ1 + 1µ) was the same as
distinguishing (µ1 + µ,1µ1) in terms of pattern separation. In
this framework two different distances, for instance, 1µ = 0.1
or µ = 0.5 (Figure 8B, left and middle), the set of stimulus
pairs had a unique transition boundary Ŵ1 (Figure 8B, right).
The section of the wmax

23 matrix in Figure 4 Ci for the set of
stimulus pairs

{

(µ1,µ1 + 1µ) | µ1 ∈ [0, 4] , 1µ is given
}

was
correlated with the transition boundary Ŵ1 of the same value
µ (Figure 8B). For small 1µ = 0.1, the slice of the wmax

23
followed closely with the transition boundary Ŵ1 (Figure 8B,
left). As the stimulus difference increased (Figure 8B, middle),
wmax
23 deviated from the boundary Ŵ1. Larger 1µ’s increased

the bifurcation lag between two stimuli such that the stimulus
that caused a bifurcation first had more parameter space to
develop before the bifurcation of the other stimulus. Conversely,
stimulus discrimination was harder as µ decreased because
the range of top-down weights w23 that separate two stimuli
shrank significantly around a close vicinity of the transition
boundary. Thus, subtle adjustments of top-down weight around
the transition boundary were required to separate similar stimuli
from each other. The same analysis could also be performed for
the non-autonomous system receiving oscillatory stimuli µ̃ (t)
by investigating bifurcations of fixed points of the constructed
Poincaré map on a given cross section (see Methods) with
the same computational mechanism arising via the discrete
version of Hopf bifurcation, i.e., a Neimark-Sacker bifurcation
(Kuznetsov, 2013). Taken together, these results provide a bridge
linking the mechanisms that give rise to the dynamics of the
neural circuit with the computations performed by the circuit.

DISCUSSION

Using a three-node model, which included top-down projections
from piriform cortical cells onto inhibitory granule cells in
the main olfactory bulb, we identified a network capable of
complex dynamic behaviors, ranging from an attractor to stable
oscillations across a range of frequencies and amplitudes. By
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changing the weight of these top-down projections, the network
could either facilitate pattern separation between two similar
stimuli, or synchronize the oscillatory activity produced by
two different stimuli. A bifurcation analysis of the dynamical
system revealed that both mechanisms emerged from the
transition boundary of Hopf bifurcations which branched from
co-dimensional two bifurcation points (i.e., the Bogdanov-
Takens bifurcation). Furthermore, these computations could be
accomplished even when the stimuli were periodic, fluctuating
at the frequency of sniffing (Neimark-Sacker bifurcation),
suggesting that these findings are a general feature of this
network. Our results provide both a mathematical framework
for how top-down control of inhibition shapes the dynamics
of a network, and a link between such dynamics and the
computations that neural circuits can perform.

An important point to consider is how changes in top-down
weights may be instantiated biologically? This point depends
on the timescale of weight changes. On short time scales,
changes in inhibitory drive to granule cells can facilitate olfactory
discrimination (Abraham et al., 2010; Nunes and Kuner, 2015)
and generate synchronous oscillatory activity among mitral cells
in the bulb (Galan et al., 2006). Neuromodulators such as
serotonin (Petzold et al., 2009; Kapoor et al., 2016) can act on fast
sub second time scales to support both oscillatory synchrony and
stimulus discrimination, providing one biological mechanism by
which weights can be changed dynamically. By contrast, long-
term changes in the bulb may be instantiated by classis synaptic
plasticity mechanisms such as LTP (Cauthron and Stripling,
2014), or via the remodeling of synaptic connectivity (Arenkiel
et al., 2011; Deshpande et al., 2013), for instance due to adult
neurogenesis (Lledo et al., 2006). In these examples, the changes
in feedback weight likely reflect slow alterations in network
structure that result in stable changes in neural representations,
possibly corresponding to learning.

While the biological mechanisms by which the top-down
synaptic weights change onto inhibitory neurons may be diverse
depending on timescale, we find that such alterations give
rise to functionally equivalent changes supporting an array of
computations. For instance, changes in the top-down weight
would render two stimuli more distinct at the level of firing rates
in the population, a process referred to as pattern separation
(Cayco-Gajic and Silver, 2019) or decorrelation (Friedrich and
Laurent, 2001). Our model predicts that pattern separation arises
from the non-monotonic change in firing in granule cells (at the
balance between op-down excitation and recurrent inhibition).
The top-down weight onto inhibitory neurons sets a gate,
allowing some stimuli to cross a threshold of recurrent inhibition,
while others do not.

In parallel, changing top-down weights onto inhibitory
neurons can increase the synchrony between two stimuli
that were initially asynchronous. A number of experimental
and theoretical studies have explored the privileged role that
inhibitory interneurons play in generating gamma oscillations
(Whittington et al., 1995; Hasenstaub et al., 2005; Cardin
et al., 2009; Sohal et al., 2009; Tiesinga and Sejnowski, 2009).
Among these, the two most common models are when gamma
arises from reciprocal coupling between pyramidal cells and

inhibitory interneurons (PING), and recurrent connections
among inhibitory interneurons (ING) (Whittington et al., 2000;
Tiesinga and Sejnowski, 2009). In both, oscillatory activity
arises from the structure of local connectivity. In our work, we
identified another motif by which gamma oscillations can arise—
Top-down control of Inhibitory Neuron Gamma (TING). Local
excitatory mitral and tufted cells broadcast activity patterns to a
pyramidal/semilunar cell population in piriform cortex, that then
synapses back onto inhibitory granule cells.

Studies on dynamics of local excitatory and inhibitory neurons
in the olfactory system both experimentally and mathematically
are extensive (Wilson and Cowan, 1972; Ermentrout and Kopell,
1990; Kay et al., 2009; Li and Cleland, 2017). To these models
we add a description of how an external (in this case, top-down
input from piriform cortex) source controlling the inhibitory
neuron population can influence dynamics. In studying the
dynamical system defined by this network, we found that
the bifurcations largely result from the singularity (linearized
Jacobian matrix is non-hyperbolic) inherently embedded in the
system itself. Thus, although the exact parameter values (defined
by the weights of connections) influence when the dynamics of
the network undergoes a bifurcation, the types of bifurcations
that arise are determined by the normal form of the system
(Guckenheimer and Holmes, 2013; Kuznetsov, 2013); revealing
that the behaviors observed in this three node population are
a fundamental feature of the network architecture. For Wilson-
Cowan equations we used, the Bogdanov–Takens bifurcation is
the inherent codimension-2 singularity (Cowan et al., 2016),
meaning that the diversity of dynamics exists for a broad range of
parameter settings, and that the unfolding of these dynamics can
be implemented bymodulating the top-down connection weight.
Our model address this in the context of olfaction (Oswald and
Urban, 2012a), but it may be applicable to a number of other
sensory systems that share a similar architecture. For instance,
the axonal projections from the cingulate of frontal cortex to
GABAergic inhibitory neurons in V1 of the mouse visual system
are organized (Zhang et al., 2014), and may therefore serve
an analogous function as piriform projections to granule cells.
Consequently, we identified a generalized principle by which
control of inhibition via top-down weights can support a number
of computations essential for neural circuit function.

Finally, we found that the firing rate representations of
mitral/tufted cells, granule cells, and piriform neurons resided
within distinct domains on a manifold defined by the stimulus
and the weight of feedback. These domains corresponded to
transitions in the dynamics of the system. Changes in the top-
down weights moved a transition boundary that delineating
these domains across different stimuli. When two stimuli were
on opposites sides of this transition boundary, their dynamics
operated under two different regimes, and their representations
were pushed further apart. By contrast, when the stimuli were
both on the same side of the transition boundary, within regimes
corresponding to similar dynamics, their activity became more
synchronous; effectively binding those stimuli together. Changes
in top-down weight were therefore changes in the location of the
transition boundary that could eithermarshal the representations
of two stimuli together or push them apart. In conclusion, we
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identified a model that links the dynamics of neural systems with
the computations they are hypothesized to perform and may be
used as a generalized framework to study the diverse effects of
feedback onto inhibitory populations.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

KP conceived and supervised the project. ZC
performed all the experiments and analysis. ZC and

KP made the figures and wrote the manuscript. All
authors contributed to the article and approved the
submitted version.

FUNDING

This study was supported by funding from the National Institutes
of Health (NIH) and the National Science Foundation (NSF). KP
was funded by NIH R01 MH113924, NSF CAREER 1749772, the
Cystinosis Research Foundation, and the Kilian J. and Caroline
F. Schmitt Foundation. This manuscript has been released as
a pre-print at https://www.biorxiv.org/content/10.1101/2020.02.
25.964965v1 (Chen and Padmanabhan, 2020).

REFERENCES

Abraham, N. M., Egger, V., Shimshek, D. R., Renden, R., Fukunaga, I., Sprengel,

R., et al. (2010). Synaptic inhibition in the olfactory bulb accelerates odor

discrimination in mice. Neuron 65, 399–411. doi: 10.1016/j.neuron.2010.

01.009

Arenkiel, B. R., Hasegawa, H., Yi, J. J., Larsen, R. S., Wallace, M. L.,

Philpot, B. D., et al. (2011). Activity-induced remodeling of olfactory

bulb microcircuits revealed by monosynaptic tracing. PLoS ONE 6:e29423.

doi: 10.1371/journal.pone.0029423

Boyd, A. M., Sturgill, J. F., Poo, C., and Isaacson, J. S. (2012). Cortical

feedback control of olfactory bulb circuits. Neuron 76, 1161–1174.

doi: 10.1016/j.neuron.2012.10.020

Brea, J. N., Kay, L. M., and Kopell, N. J. (2009). Biophysical model

for gamma rhythms in the olfactory bulb via subthreshold oscillations.

Proc. Natl. Acad. Sci. U.S.A. 106, 21954–21959. doi: 10.1073/pnas.0910

964106

Buzsaki, G., and Draguhn, A. (2004). Neuronal oscillations in cortical networks.

Science 304, 1926–1929. doi: 10.1126/science.1099745

Cardin, J. A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., et al.

(2009). Driving fast-spiking cells induces gamma rhythm and controls sensory

responses. Nature 459, 663–667. doi: 10.1038/nature08002

Carey, R. M., and Wachowiak, M. (2011). Effect of sniffing on the temporal

structure of mitral/tufted cell output from the olfactory bulb. J. Neurosci. 31,

10615–10626. doi: 10.1523/JNEUROSCI.1805-11.2011

Cauthron, J. L., and Stripling, J. S. (2014). Long-term plasticity in the

regulation of olfactory bulb activity by centrifugal fibers from piriform

cortex. J. Neurosci. 34, 9677–9687. doi: 10.1523/JNEUROSCI.1314-1

4.2014

Cayco-Gajic, N. A., and Silver, R. A. (2019). Re-evaluating circuit

mechanisms underlying pattern separation. Neuron 101, 584–602.

doi: 10.1016/j.neuron.2019.01.044

Chen, Z., and Padmanabhan, K. (2020). Top-down control of inhibition reshapes

neural dynamics giving rise to a diversity of computations. bioRxiv [Preprint].

doi: 10.1101/2020.02.25.964965

Cleland, T. A., and Linster, C. (2005). Computation in the olfactory system. Chem.

Sens. 30, 801–813. doi: 10.1093/chemse/bji072

Cowan, J. D., Neuman, J., and van Drongelen, W. (2016). Wilson–

cowan equations for neocortical dynamics. J. Math. Neurosci. 6, 1–24.

doi: 10.1186/s13408-015-0034-5

Davison, I. G., and Ehlers, M. D. (2011). Neural circuit mechanisms for pattern

detection and feature combination in olfactory cortex. Neuron 70, 82–94.

doi: 10.1016/j.neuron.2011.02.047

Deshpande, A., Bergami, M., Ghanem, A., Conzelmann, K.-K., Lepier, A., Götz,

M., et al. (2013). Retrograde monosynaptic tracing reveals the temporal

evolution of inputs onto new neurons in the adult dentate gyrus and olfactory

bulb. Proc. Natl. Acad. Sci. U.S.A. 110, E1152–E1161. doi: 10.1073/pnas.12189

91110

Egger, V., Svoboda, K., and Mainen, Z. F. (2005). Dendrodendritic synaptic signals

in olfactory bulb granule cells: local spine boost and global low-threshold spike.

J. Neurosci. 25, 3521–3530. doi: 10.1523/JNEUROSCI.4746-04.2005

Ermentrout, G. B., and Kopell, N. (1990). Oscillator death in systems of coupled

neural oscillators. SIAM J. Appl. Math. 50, 125–146. doi: 10.1137/0150009

Franci, A., Herrera-Valdez, M. A., Lara-Aparicio, M., and Padilla-Longoria, P.

(2018). Synchronization, oscillator death, and frequency modulation in a

class of biologically inspired coupled oscillators. Front. Appl. Math. Stat. 4:51.

doi: 10.3389/fams.2018.00051

Franks, K. M., and Isaacson, J. S. (2006). Strong single-fiber sensory inputs

to olfactory cortex: implications for olfactory coding. Neuron 49, 357–363.

doi: 10.1016/j.neuron.2005.12.026

Friedrich, R. W., and Laurent, G. (2001). Dynamic optimization of odor

representations by slow temporal patterning of mitral cell activity. Science 291,

889–894. doi: 10.1126/science.291.5505.889

Galan, R. F., Fourcaud-Trocme, N., Ermentrout, G. B., and Urban, N. N. (2006).

Correlation-induced synchronization of oscillations in olfactory bulb neurons.

J. Neurosci. 26, 3646–3655. doi: 10.1523/JNEUROSCI.4605-05.2006

Guckenheimer, J., and Holmes, P. (2013). Nonlinear Oscillations, Dynamical

Systems, and Bifurcations of Vector Fields. New York, NY: Springer Science &

Business Media.

Hasenstaub, A., Shu, Y., Haider, B., Kraushaar, U., Duque, A., and McCormick,

D. A. (2005). Inhibitory postsynaptic potentials carry synchronized

frequency information in active cortical networks. Neuron 47, 423–435.

doi: 10.1016/j.neuron.2005.06.016

Kapoor, V., Provost, A. C., Agarwal, P., and Murthy, V. N. (2016). Activation of

raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output

channels. Nat. Neurosci. 19, 271–282. doi: 10.1038/nn.4219

Kapoor, V., and Urban, N. N. (2006). Glomerulus-specific, long-latency activity

in the olfactory bulb granule cell network. J. Neurosci. 26, 11709–11719.

doi: 10.1523/JNEUROSCI.3371-06.2006

Kay, L. M., Beshel, J., Brea, J., Martin, C., Rojas-Libano, D., and Kopell, N.

(2009). Olfactory oscillations: the what, how and what for. Trends Neurosci. 32,

207–214. doi: 10.1016/j.tins.2008.11.008

Kuznetsov, Y. A. (2013). Elements of Applied Bifurcation Theory. New York, NY:

Springer Science & Business Media.

Ledoux, E., and Brunel, N. (2011). Dynamics of networks of excitatory and

inhibitory neurons in response to time-dependent inputs. Front. Comput.

Neurosci. 5:25. doi: 10.3389/fncom.2011.00025

Leutgeb, J. K., Leutgeb, S., Moser, M.-B., andMoser, E. I. (2007). Pattern separation

in the dentate gyrus and CA3 of the hippocampus. Science 315, 961–966.

doi: 10.1126/science.1135801

Li, G., and Cleland, T. A. (2017). A coupled-oscillator model of

olfactory bulb gamma oscillations. PLoS Comput. Biol. 13:e1005760.

doi: 10.1371/journal.pcbi.1005760

Lledo, P.-M., Alonso, M., and Grubb, M. S. (2006). Adult neurogenesis and

functional plasticity in neuronal circuits. Nat. Rev. Neurosci. 7, 179–193.

doi: 10.1038/nrn1867

Frontiers in Computational Neuroscience | www.frontiersin.org 16 July 2020 | Volume 14 | Article 59

https://www.biorxiv.org/content/10.1101/2020.02.25.964965v1
https://www.biorxiv.org/content/10.1101/2020.02.25.964965v1
https://doi.org/10.1016/j.neuron.2010.01.009
https://doi.org/10.1371/journal.pone.0029423
https://doi.org/10.1016/j.neuron.2012.10.020
https://doi.org/10.1073/pnas.0910964106
https://doi.org/10.1126/science.1099745
https://doi.org/10.1038/nature08002
https://doi.org/10.1523/JNEUROSCI.1805-11.2011
https://doi.org/10.1523/JNEUROSCI.1314-14.2014
https://doi.org/10.1016/j.neuron.2019.01.044
https://doi.org/10.1101/2020.02.25.964965
https://doi.org/10.1093/chemse/bji072
https://doi.org/10.1186/s13408-015-0034-5
https://doi.org/10.1016/j.neuron.2011.02.047
https://doi.org/10.1073/pnas.1218991110
https://doi.org/10.1523/JNEUROSCI.4746-04.2005
https://doi.org/10.1137/0150009
https://doi.org/10.3389/fams.2018.00051
https://doi.org/10.1016/j.neuron.2005.12.026
https://doi.org/10.1126/science.291.5505.889
https://doi.org/10.1523/JNEUROSCI.4605-05.2006
https://doi.org/10.1016/j.neuron.2005.06.016
https://doi.org/10.1038/nn.4219
https://doi.org/10.1523/JNEUROSCI.3371-06.2006
https://doi.org/10.1016/j.tins.2008.11.008
https://doi.org/10.3389/fncom.2011.00025
https://doi.org/10.1126/science.1135801
https://doi.org/10.1371/journal.pcbi.1005760
https://doi.org/10.1038/nrn1867
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Chen and Padmanabhan Top-Down Control Reshapes Dynamics

Markopoulos, F., Rokni, D., Gire, D. H., and Murthy, V. N. (2012). Functional

properties of cortical feedback projections to the olfactory bulb. Neuron 76,

1175–1188. doi: 10.1016/j.neuron.2012.10.028

Miura, K., Mainen, Z. F., and Uchida, N. (2012). Odor representations in olfactory

cortex: distributed rate coding and decorrelated population activity.Neuron 74,

1087–1098. doi: 10.1016/j.neuron.2012.04.021

Miyamichi, K., Amat, F., Moussavi, F., Wang, C., Wickersham, I., Wall, N. R., et al.

(2011). Cortical representations of olfactory input by trans-synaptic tracing.

Nature 472, 191–196. doi: 10.1038/nature09714

Nunes, D., and Kuner, T. (2015). Disinhibition of olfactory bulb granule

cells accelerates odour discrimination in mice. Nat. Commun. 6:8950.

doi: 10.1038/ncomms9950

Nusser, Z., Kay, L. M., Laurent, G., Homanics, G. E., and Mody, I. (2001).

Disruption of GABAA receptors on GABAergic interneurons leads to increased

oscillatory power in the olfactory bulb network. J. Neurophysiol. 86, 2823–2833.

doi: 10.1152/jn.2001.86.6.2823

Oswald, A. M., and Urban, N. N. (2012a). There and back again: the corticobulbar

loop. Neuron 76, 1045–1047. doi: 10.1016/j.neuron.2012.12.006

Oswald, A. M. M., and Urban, N. N. (2012b). Interactions between behaviorally

relevant rhythms and synaptic plasticity alter coding in the piriform cortex. J.

Neurosci. 32, 6092–6104. doi: 10.1523/JNEUROSCI.6285-11.2012

Padmanabhan, K., Osakada, F., Tarabrina, A., Kizer, E., Callaway, E.

M., Gage, F. H., et al. (2016). Diverse representations of olfactory

information in centrifugal feedback projections. J. Neurosci. 36, 7535–7545.

doi: 10.1523/JNEUROSCI.3358-15.2016

Padmanabhan, K., Osakada, F., Tarabrina, A., Kizer, E., Callaway, E. M.,

Gage, F. H., et al. (2019). Centrifugal inputs to the main olfactory bulb

revealed through whole brain circuit-mapping. Front. Neuroanat. 12:115.

doi: 10.3389/fnana.2018.00115

Petzold, G. C., Hagiwara, A., and Murthy, V. N. (2009). Serotonergic modulation

of odor input to the mammalian olfactory bulb. Nat. Neurosci. 12, 784–791.

doi: 10.1038/nn.2335

Shipley, M. T., and Adamek, G. D. (1984). The connections of the mouse

olfactory bulb: a study using orthograde and retrograde transport of wheat

germ agglutinin conjugated to horseradish peroxidase. Brain Res. Bull. 12,

669–688. doi: 10.1016/0361-9230(84)90148-5

Shusterman, R., Smear, M. C., Koulakov, A. A., and Rinberg, D. (2011).

Precise olfactory responses tile the sniff cycle. Nat. Neurosci. 14:1039.

doi: 10.1038/nn.2877

Sohal, V. S., Zhang, F., Yizhar, O., and Deisseroth, K. (2009). Parvalbumin

neurons and gamma rhythms enhance cortical circuit performance.Nature 459,

698–702. doi: 10.1038/nature07991

Stettler, D. D., and Axel, R. (2009). Representations of odor in the piriform cortex.

Neuron 63, 854–864. doi: 10.1016/j.neuron.2009.09.005

Suzuki, N., and Bekkers, J. M. (2011). Two layers of synaptic processing

by principal neurons in piriform cortex. J. Neurosci. 31, 2156–2166.

doi: 10.1523/JNEUROSCI.5430-10.2011

Tiesinga, P., and Sejnowski, T. J. (2009). Cortical enlightenment: are attentional

gamma oscillations driven by ING or PING? Neuron 63, 727–732.

doi: 10.1016/j.neuron.2009.09.009

Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J., and McNaughton, B. L. (1997).

Paradoxical effects of external modulation of inhibitory interneurons. J.

Neurosci. 17, 4382–4388. doi: 10.1523/JNEUROSCI.17-11-04382.1997

Uchida, N., and Mainen, Z. F. (2003). Speed and accuracy of olfactory

discrimination in the rat. Nat. Neurosci. 6, 1224–1229. doi: 10.1038/nn1142

Urban, N. N., and Sakmann, B. (2002). Reciprocal intraglomerular excitation

and intra- and interglomerular lateral inhibition between mouse olfactory

bulb mitral cells. J. Physiol. 542, 355–367. doi: 10.1113/jphysiol.2001.

013491

Veltz, R., and Sejnowski, T. J. (2015). Periodic forcing of inhibition-stabilized

networks: nonlinear resonances and phase-amplitude coupling. Neural.

Comput. 27, 2477–2509. doi: 10.1162/NECO_a_00786

Wachowiak, M. (2011). All in a sniff: olfaction as a model for

active sensing. Neuron 71, 962–973. doi: 10.1016/j.neuron.2011.

08.030

Wesson, D. W., Carey, R. M., Verhagen, J. V., and Wachowiak, M. (2008).

Rapid encoding and perception of novel odors in the rat. PLoS Biol. 6:82.

doi: 10.1371/journal.pbio.0060082

Whittington, M. A., Traub, R., Kopell, N., Ermentrout, B., and Buhl,

E. (2000). Inhibition-based rhythms: experimental and mathematical

observations on network dynamics. Int. J. Psychophysiol. 38, 315–336.

doi: 10.1016/S0167-8760(00)00173-2

Whittington, M. A., Traub, R. D., and Jefferys, J. G. (1995). Synchronized

oscillations in interneuron networks driven by metabotropic glutamate

receptor activation. Nature 373, 612–615. doi: 10.1038/373612a0

Willhite, D. C., Nguyen, K. T., Masurkar, A. V., Greer, C. A., Shepherd, G. M., and

Chen, W. R. (2006). Viral tracing identifies distributed columnar organization

in the olfactory bulb. Proc. Natl Acad. Sci. U.S.A. 103, 12592–12597.

doi: 10.1073/pnas.0602032103

Wilson, H. R., and Cowan, J. D. (1972). Excitatory and inhibitory interactions

in localized populations of model neurons. Biophys. J. 12, 1–24.

doi: 10.1016/S0006-3495(72)86068-5

Yassa, M. A., and Stark, C. E. (2011). Pattern separation in the

hippocampus. Trends Neurosci. 34, 515–525. doi: 10.1016/j.tins.2011.

06.006

Zhang, S., Xu, M., Kamigaki, T., Do, J. P. H., Chang, W.-C., Jenvay, S.,

et al. (2014). Long-range and local circuits for top-down modulation

of visual cortex processing. Science 345, 660–665. doi: 10.1126/science.12

54126

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Chen and Padmanabhan. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 17 July 2020 | Volume 14 | Article 59

https://doi.org/10.1016/j.neuron.2012.10.028
https://doi.org/10.1016/j.neuron.2012.04.021
https://doi.org/10.1038/nature09714
https://doi.org/10.1038/ncomms9950
https://doi.org/10.1152/jn.2001.86.6.2823
https://doi.org/10.1016/j.neuron.2012.12.006
https://doi.org/10.1523/JNEUROSCI.6285-11.2012
https://doi.org/10.1523/JNEUROSCI.3358-15.2016
https://doi.org/10.3389/fnana.2018.00115
https://doi.org/10.1038/nn.2335
https://doi.org/10.1016/0361-9230(84)90148-5
https://doi.org/10.1038/nn.2877
https://doi.org/10.1038/nature07991
https://doi.org/10.1016/j.neuron.2009.09.005
https://doi.org/10.1523/JNEUROSCI.5430-10.2011
https://doi.org/10.1016/j.neuron.2009.09.009
https://doi.org/10.1523/JNEUROSCI.17-11-04382.1997
https://doi.org/10.1038/nn1142
https://doi.org/10.1113/jphysiol.2001.013491
https://doi.org/10.1162/NECO_a_00786
https://doi.org/10.1016/j.neuron.2011.08.030
https://doi.org/10.1371/journal.pbio.0060082
https://doi.org/10.1016/S0167-8760(00)00173-2
https://doi.org/10.1038/373612a0
https://doi.org/10.1073/pnas.0602032103
https://doi.org/10.1016/S0006-3495(72)86068-5
https://doi.org/10.1016/j.tins.2011.06.006
https://doi.org/10.1126/science.1254126
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Top-Down Control of Inhibitory Granule Cells in the Main Olfactory Bulb Reshapes Neural Dynamics Giving Rise to a Diversity of Computations
	Introduction
	Materials and Methods
	Network Model
	Definition of Period of a Limit Cycle
	Metric Definition
	Bifurcation Analysis
	Simulating Sniffing With a Periodically Driven Non-autonomous System

	Results
	Reduced Network Model Generates Complex Dynamics
	Top-Down Weight Reshapes Network Dynamics and Modulates Neural Oscillations
	Top-Down Weight Contributes to Pattern Separation
	Top-Down Weight Contributes to Oscillation Synchrony
	Generalization to Oscillatory Stimulus Driven by Sniffs
	Bifurcation Mechanism for Top-Down Control of Inhibition

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References


