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Perspective taking is the ability to take into account what the other agent knows. This

skill is not unique to humans as it is also displayed by other animals like chimpanzees. It

is an essential ability for social interactions, including efficient cooperation, competition,

and communication. Here we present our progress toward building artificial agents with

such abilities. We implemented a perspective taking task inspired by experiments done

with chimpanzees. We show that agents controlled by artificial neural networks can learn

via reinforcement learning to pass simple tests that require some aspects of perspective

taking capabilities. We studied whether this ability is more readily learned by agents with

information encoded in allocentric or egocentric form for both their visual perception and

motor actions. We believe that, in the long run, building artificial agents with perspective

taking ability can help us develop artificial intelligence that is more human-like and easier

to communicate with.
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1. INTRODUCTION

Many decisions we take depend on others, what they think, what they believe, and what we
know about what they know. This ability to understand and infer the mental states of others is
called Theory of Mind (Premack and Woodruff, 1978) or mindreading (Apperly, 2011). Not only
humans have the ability to take into consideration what others think and believe. In controlled
experiments it has been shown that chimpanzees can know what other conspecifics see and know
(Hare et al., 2000). Here we ask whether artificial intelligence (AI) agents controlled by neural
networks (Goodfellow et al., 2016) could also learn to infer what other agents perceive and know.

Theory of Mind is an important topic to study in AI mainly because successful human-
machine interaction might critically depend on it. In particular, according to prominent
theories, understanding the intentions of others is necessary for the emergence of meaningful
communication and language (Tomasello, 2010, 2019; Scott-Phillips, 2014; Mercier and Sperber,
2017). According to these views, the basis of communication is not the ability to decode themessage
from the other, but rather the ability to understand that the other is trying to communicate in the
first place. Humans excel at language and communication because we have a bias to assume that
others are trying to “get something across” to us (Tomasello, 2010, 2019; Scott-Phillips, 2014).
Unfortunately, we do not know how this bias is implemented in the human brain and hence we
do not know how to implement it in AI. Furthermore, developing agents that are at the level of
humans in Theory of Mind will be much more complicated than in computer or board games, as
there are no established tasks or benchmarks to train the agents on.

Under these circumstances one way to proceed is to study how much of the Theory of Mind
abilities could be learned through reinforcement learning (RL) in simple tasks. This approach
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would demonstrate the limits of simple model-free algorithms
for understanding Theory of Mind and thus build the basis
for more comprehensive approaches. RL is a branch of AI that
allows an agent to learn by trial and error while interacting
with the environment. In particular, the agent must learn to
select the best action in each specific state to maximize its
cumulative future reward (Sutton and Barto, 2018). The agent
could be for example an autonomous robot (Levine et al., 2016)
or a character in a video game (Mnih et al., 2015). The idea
behind learning by interacting with an environment is inspired
from how human and animal infants learn from the rich cause-
effect or action-consequence structure of the world (Thorndike,
1911; Schultz et al., 1997; Sutton and Barto, 2018). Therefore,
RL is a biologically plausible mechanism for learning certain
associations and behaviors and it can be used to study Theory
of Mind.

Theory of Mind was studied by Rabinowitz and colleagues
who modeled agents’ behavior in a grid world (Rabinowitz et al.,
2018). The proposed neural network was trained using meta-
learning; in a first stage the network was trained to learn some
priors for the behavior of different types of agents to subsequently
speed up the learning of a model of a specific agent from a
small number of behavioral observations. Their approach was
a first step to induce theory of mind faculties in AI agents
that were indeed able to pass some relevant tests for Theory
of Mind skills. However, as the authors themselves note, their
approach was limited in several important aspects that require
future work. To name a few, the observer agent learning to model
the behavior of others was trained in a supervised manner, it had
full observability of the environment and of the other agents, and
it was not itself a behaving agent.

In the current work we are interested in the emergence of
certain aspects of Theory of Mind in behaving agents trained
via RL with partial observability. We believe that these are more
plausible conditions to model how humans and other animals
might develop these abilities. In particular, we test here the ability
of agents trained via RL to acquire one essential part of Theory of
Mind: perspective taking (Apperly, 2011).

1.1. Perspective Taking
Perspective taking is the ability to consider the circumstances
from a perspective that differs from our own. It is a very
general ability that is relevant in many different tasks involving
communication, memory, language and perception (Ryskin
et al., 2015). It could be defined as “the cognitive capacity to
consider the world from another individual’s viewpoint” (Davis,
1983). It is one of the social competencies that underlies social
understanding in many contexts (Galinsky et al., 2008; Apperly,
2011). While perspective taking is a very general ability, in the
basic form it boils down to knowing what the other agent does
or does not know (Cole and Millett, 2019). The existence of such
simple forms of perspective taking is supported by the fact that
this ability is not unique to humans and has been observed in
other animals like chimpanzees (Hare et al., 2000; Tomasello
et al., 2003).

Chimpanzee social status is organized hierarchically
(dominant, subordinate) (Goldberg and Wrangham, 1997),

which is at full display during food gathering: when there is food
available that both can reach, the dominant animal almost always
obtains it. But what happens if the dominant could potentially
reach the food placed behind an obstacle, but does not know
that food is there? Can the subordinate take advantage of this?
In a series of experiments (Hare et al., 2000) two chimpanzees
were set into two separate cages facing each other with food
positioned between them. The researchers manipulated what
the dominant and the subordinate apes could see. For example
in one condition, one piece of food could not be seen by the
dominant chimpanzee. The results demonstrated that the
subordinate animal exploited this favorable situation and indeed
obtained more food in this condition. Hence, it was able to
consider what the dominant chimpanzee could and could not
see, i.e., take the perspective of the dominant chimpanzee into
account (Hare et al., 2000; Tomasello et al., 2003). This work
done with chimpanzees was the inspiration for our study.

The aim of the present work is to study whether an AI agent
controlled by a neural network can learn to solve a similar
perspective taking task using RL. We chose this task because
it is relatively simple, while allowing us to study perspective
taking with RL. We do not claim that RL captures all aspects of
perspective taking or is the exact model of how perspective taking
is learned in biological organisms (Aru and Vicente, 2018). We
even do not claim that RL allows us to understand or model how
chimpanzees solve this particular task. We simply use this task
as to probe whether some simple aspects of perspective taking
can be learned by RL agents. Understanding the capabilities and
limitations of RL in acquiring perspective taking skills will lead
to a better algorithmic understanding of the computational steps
required for perspective taking in biological organisms.

In this study we are not so much interested in whether the
perspective taking task is learnable per se. Rather, we seek to
compare the speed with which different representations allow
the learning of this simple perspective taking task. We are
interested in a specific question about perspective taking: is it
simpler to learn perspective taking with allocentric or egocentric
representations of the environment? With allocentric input the
position of other objects and agents is presented in relation to
each other independently of the position of the perceiving agent.
With egocentric input the position of all objects and other agents
is given with respect to the position of the perceiving agent. This
means that for example when the agent changes its orientation
the whole world will rotate. See Figure 1 for an illustration of the
two encodings of visual input. From neuroscience and behavioral
experiments it is known that although animals perceive the world
from the egocentric viewpoint, this information is transformed
to allocentric code in structures like the hippocampus (Burgess
et al., 2001; Wilber et al., 2014; Chersi and Burgess, 2015; Wang
et al., 2020). Presumably the fact that this transformation is
computed in the brain hints that the allocentric view enables
some functions that cannot be achieved through egocentric
representation alone (Burgess et al., 2001; Chersi and Burgess,
2015). It is possible that perspective taking is one of these
functions. Intuitively it seems that taking the perspective of the
other agent demands ignoring own sensory input and taking into
account the relations between the other agent and the objects
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FIGURE 1 | (A) Overview of the simulation environment and visual encodings. The artificial monkey with green circle is the Subordinate agent and the one with red

circle is the Dominant agent. The hands of both agents point to their orientation. Below in the same diagram it is illustrated how egocentric and allocentric visual

representations differ. In the egocentric mode objects are perceived relative to the perceiving agent’s position and orientation. In the allocentric mode the agent

perceives the objects in terms of their location with respect to a fixed reference. (B) Two examples of a Subordinate agent goal-oriented behavior as driven by our

neural network controller. In the top panel the agent should avoid the food as it is observed by the Dominant where the shadowed areas represents dominant’s

observed area. In the bottom panel the agent should acquire the food as it is not observed by the Dominant. The path the agent followed is marked with the

red triangles.

in the environment, which could be supported by allocentric
representation. Hence, another goal of our study is to test the
generality of these assumptions and intuitions using minimal
models of computational learning agents.

2. METHODS

2.1. Task and Environment
For the perspective taking task, we generated a grid world
environment where each element can spawn randomly within
specific regions. The elements considered included two agents (a
Dominant and a Subordinate), and a single food item (reward). In
the present experiments only the Subordinate agent is controlled
by a RL algorithm and can execute actions in the environment
by moving around and changing its orientation. The Dominant
agent is not controlled by any learning algorithm but its role
is critical. The value of the reward obtained by the Subordinate
at reaching the food depends on whether the food is visible

TABLE 1 | List of the events rewarded in the experiments and their

respective values.

Event Reward value

Eating food observed by Dominant −1000

Eating food not observed by Dominant +1000

Every time step −0.1

from the Dominant’s point of view. If food is retrieved by
the Subordinate when observed by Dominant the value of the
food item becomes negative (to mimic the likely punishment
received from the dominant in the nature). If the food is obtained
while not observed by the Dominant the value of the reward
is positive. See Table 1 for the list the events rewarded and its
correspondent values.

Experiments were conducted using environments created
with Python toolbox Artificial Primate Environment Simulator
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(APES) (Labash et al., 2018). The toolbox allows to simulate
a 2D grid world in which multiple agents can move and
interact with different items. Agents obtain information
from their environment according to a visual perception
model. Importantly, APES includes different visual perception
algorithms that allows to calculate visual input based on agents’
location, orientation, visual range, visual field angle, and
obstacles. In particular, for this work, we simulate two modes
for the agents’ vision: egocentric and allocentric (for detailed
descriptions see the subsection on visual encoding). For further
specifics on the toolbox the reader can access the associated
GitHub repository1.

In all the experiments we considered that both agents have
a long range of vision but a limited visual field angle of 180
degrees. In our main scenario for our perspective taking task, the
coverage of the food and Dominant’s location is distributed as
shown in Figure 2. Both the Dominant and food item can spawn
anywhere inside a 5× 5 area (see Figure 2). To successfully solve
the task the Subordinate agent must learn to navigate to reach the
food’s location only when the food item is not within the field of
vision of the Dominant agent. This implies that the Subordinate
needs to simultaneously integrate three pieces of information
to successfully determine whether the food item is observed by
the Dominant or not: (1) the orientation of Dominant, (2) the
position of the Dominant, and (3) the position of the food. Note
that since the subordinate agent moves and rotates around the
environment a direct perception of the Dominant agent and
food is not always present. However, as explained below the
agent is equipped with a short-term memory in the form of
a LSTM layer that allows it to integrate temporal information
(Hochreiter and Schmidhuber, 1997).

The dimensions of the grid world amounts to 13 × 13 when
using allocentric encoding of visual information, and 11 ×

11 when using the egocentric encoding. This compensation is
needed to balance the fact that egocentric encoding needs a
larger input space (since positions are relative to the agent’s
location and orientation, a n × n grid world actually needs a
n× (2n− 1) input layer for an egocentric agent with 180 degrees
vision). The dimensions of the grid worlds were chosen so that
the neural network controllers for egocentric and allocentric
encodings match in their number of parameters (weights). We
also matched the average distance between the initial location of
the Subordinate agent and the food item.

The number of possible combinations for initial
configurations of the environment and agents exceeds 20, 000.
Upon movement of the Subordinate agent along the grid the
number of possible states becomes > 1, 000, 000.

2.2. Model
2.2.1. Input
The input to the network controlling the Subordinate actions is
a set of binary maps. They encode the different agents and other
elements properties in the environment. The list of inputs to the
network include:

1https://github.com/aqeel13932/APES

FIGURE 2 | Possible starting positions for each element in the environment.

The Subordinate agent (green) is always spawn in the leftmost column and

facing East (looking right) at the start of the episode. The Dominant and the

food can both spawn anywhere in a 5× 5 area. Note that overlap between

elements is not allowed (food and Dominant cannot occupy the exact

same cell).

• Spatial location of elements: 13×13 or 11×21 binary one-hot
map for each element represented by a 1 at the corresponding
element position. In egocentric vision, the agent own location
is not required. This is because the focal agent location does
not change (in an egocentric framework the agent is always at
the center of its own visual field).

• Observability mask: 13 × 13 or 11 × 21 binary mask which
indicates the field of vision of the Subordinate. It helps to
distinguish whether a cell in the grid world is empty or out
of the field of vision.

• Orientations: 1× 4 binary one-hot vector for each agent with
1 at the corresponding agent orientation. In egocentric vision,
only the orientation for Dominant agent is required since
in egocentric the Subordinate is always looking forward. An
important difference between allocentric and egocentric vision
is orientation encoding. In allocentric vision the orientation
is encoded as (North, South, East, West) in comparison to
egocentric vision where orientation is in relation to the focal
agent (toward the agent, same direction as the agent, to its left,
to its right).

2.2.2. Visual Encoding: Allocentric vs. Egocentric
In this work we compare two types of visual perception. With
allocentric input the locations and orientations of items in the
environment are encoded in reference to a fixed system of
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coordinates (as if the vision is provided by a fixed camera
with a top-down view). With egocentric input, the items are
perceived from the eyes of the Subordinate agent, and hence they
change in relation to the agent movements and rotations. In both
allocentric and egocentric there is an observability binary array
which represents the observed and non-observed areas.

In allocentric encoding, we feed to the network 13× 13 arrays
that represent positional information of items in the environment
in addition to 1 × 4 array for each agent in order to encode
their orientation. In this mode, when the Subordinate changes
its orientation and moves, four bits will change corresponding
to its previous location, current location, previous orientation,
and current orientation. We note that the observability and the
Dominant agent orientation array might also change in case the
subordinate movement leads to some item switch from observed
to not observed (or viceversa).

In egocentric encoding, Subordinate’s position and orientation
remain fixed despite the agent’s movements or rotations. We
humans, similarly to other animals, when we turn left or
right we still look forward and in the same position from
our perspective. Hence, in egocentric encoding the network is
not fed Subordinate’s orientation, but still it is fed the relative
Dominant’s orientation. Thus, Dominant’s orientation input is
based on where it looks in relation to the Subordinate’s (toward
the Subordinate, same direction as the Subordinate, looking to its
left or right). In the egocentric condition the input arrays that
represent the environment have dimension 11 × 21. Although
the base environment is 11 × 11, the input layer is augmented
in the egocentric encoding to accommodate that the agent (with
180 degrees of vision) should always perceive the environment
from in reference to its own centered view and of the same
size regardless of its position. For example, when the agent is
located at bottom right corner of the environment and looking
North (forward from its perspective) it should have the left of
its visual field encoding the 11 × 11 environment. However,
when sitting on the bottom left corner and facing the same
orientation, now the environment should be displayed as its right
visual field. Hence, the input layer is augmented to 11 × 21 to
accommodate a common range of centered vision regardless of
the agent’s location.

2.2.3. Action Encoding: Allocentric vs. Egocentric
The action space of the network controller (which architecture
we explain next) depends on the framework for motor output
simulated for the agent. In the allocentric encoding of motor
output the action space is composed by (moving North, moving
South, moving East, moving West, and no move). In the
egocentric encoding of motor output the action space is (move
forward, move backward, move right, move left, and no move).
Note that each moving action is accompanied by a rotation so
that the agent is always looking at the direction is heading. For
example, if the agent moves North, it will also rotate to face
North. This conforms to the fact that humans and most animals
advance in the same direction they are facing.We also note that in
most classical video games the combination of allocentric actions
and allocentric vision is used.

2.2.4. Architecture
In our model we used a neural network to control the actions of
the Subordinate agent. The architecture and hyperparameters are
the same as in Jaques et al. (2019) with two important exceptions.
First, additional inputs are fed to the network. Orientation of
both agents are fed after the convolutional layer as shown in
Figure 3. Note that in egocentric encoding only the Dominant’s
orientation was fed. Second, we used a dueling Q-network (Wang
et al., 2016) instead of the advantage actor-critic model.

In a dueling Q-network the state-action value (Q-value)
calculation is based on two separate estimates: the state value
(how good the current state is) and advantages (which benefit is
obtained from each action) as described by

Q(s, a; θ) = V(s; θV )+

[

A(s, a; θA)−max
a′

A(s, a′; θA)

]

, (1)

where s is a state, a is an action, V is the state value, A is the
advantage, and a′ is the next action. θ represents the network
parameters, while θV is the subset of parameters used in the
value network and θA is the subset of parameters used in the
advantage network.

Using a dueling network architecture involves updating two
network models: a training model (parameterized by θ) which
weights are updated using gradient descent, and a target model
(parameterized by θ

−) which weights are periodically τ -averaged
with training model’s weights as described by

θ
−
= θτ + θ

−(1− τ ). (2)

The ǫ-greedy policy π(s; θ) chooses a random action with
probability ǫ and an action with maximum Q-value otherwise as
in Equation (3):

π(s; θ) =

{

random action u < ǫ, u ∼ U(0, 1)

argmaxaQ(s, a; θ) otherwise
(3)

To summarize, Figure 3 illustrates the network architecture,
its input layers and the output to control the actions of the
Subordinate agent.

2.3. Training
2.3.1. Reinforcement Models
All RL models were trained for 20 million steps. An episode is
terminated when the food is eaten by the Subordinate agent or
the food is not eaten after 100 time steps.

We used replaymemory to remove sequential correlations and
smooth distribution changes during training as it is usually done
in other studies (Hausknecht and Stone, 2015). The replay buffer
size used is 103 trajectories. Maximum length of each trajectory is
100 time steps. Shorter trajectories were padded with zeros.

For the neural network implementation we used the Keras
library (Chollet, 2015). We used Adam optimizer (batch size
set to 16) with a fixed learning rate at 0.001 and annealed the
exploration probability with a schedule from an initial value
of 1 until reaching 0.1 at the 75% of the total number of
steps. We clipped the gradient at 2 to prevent the gradient
explosion problem.
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FIGURE 3 | The architecture used in the model has 1 convolutional layer with 6 filters and kernel of size 3 followed by 2 fully connected layers with 32 hidden nodes

each, and 1 LSTM layer with 128 cells. Output of the LSTM layer is used to learn the advantages for each possible action A and the state value V. Together the state

value and advantage heads are used to compute the Q values using Equation (1), which determines the policy π of the agent. Input to the network includes 4 binary

matrices that represent: Dominant agent, Subordinate agent, food item, observable (which is a map that contain 1 at positions of the grid within the field of vision of

the Subordinate agent and 0 otherwise, on all other maps only observable positions are populated). Each binary matrix indicates the position of an observed element

by 1 and zeros otherwise. The orientation of the Dominant and Subordinate agents is represented by a one hot vector of size four for each agent. These vectors are

concatenated with the flattened output of the convolutional layer.
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FIGURE 4 | Validation accuracy when using allocentric vs. egocentric visual inputs to predict whether the food item is observed by the Dominant agent or not. In this

case the navigational aspects of the task are eliminated, and simple supervised learning was used to train the model. Solid lines and shading indicate the average

validation accuracy and standard error of the mean (SEM) over 20 different initializations of the network weights.

2.3.2. Supervised Models
For the supervisedmodels we used the same network as described
in Figure 3 with the exception that we removed the LSTM layer
since we trained the model to predict from the initial time step
and hence no memory effects were necessary.

The learning signal was the ground truth label of whether
the Dominant agent observes the food item within its field of
vision for each environment initialization. Thus, the datasets
consisted of all possible variations for the initial configurations of
the environments (amounting to 26,400 samples for egocentric
vision and 32,100 for allocentric vision). We used a 80/20
split for training and validation data. The training proceeded
by minimizing the cross-entropy loss function using Adam
optimizer (batch size was set to 64 while the learning rate was
set to 0.001). To ensure the representativity of the models, all
accuracies were averaged over 20 random initializations of the
model weights.

3. RESULTS

Here we present the main experiments to test the ability of the
agent to solve the present perspective taking task. In particular,
we are interested in comparing how the visual and action
encoding affects the readiness to learn the task by trial and error.

As described in section 2, both the Dominant agent and food
item can spawn anywhere inside a 5×5 area (see Figure 2), giving
rise to a large number of possible combinations for their relative
position and orientation. To solve the task the Subordinate agent
must learn to navigate to reach the food’s location only when
the food item is not within the field of vision of the Dominant
agent. This implies that the Subordinate needs to integrate three
pieces of information to successfully determine whether the food
item is observed by the Dominant or not: (1) the orientation of
Dominant, (2) the position of the Dominant, and (3) the position

of the food. In addition, it needs tomaintain inmemory the result
of that integration of information, and navigate successfully
toward the food item.

Thus, solving the perspective taking task presumably involves
both an estimation of whether the food item is being observed
by the Dominant as well as memory and navigational aspects to
reach the food item (or avoid it).

To compare both types of visual processing (egocentric vs.
allocentric encoding) independently of memory and navigational
aspects, first we trained the model to output a binary decision
about whether the food item is visible to the Dominant in the
first time step (initial configuration of each episode). The model
architecture is the same as depicted in Figure 3 (used also for
the RL models) with the exception of the removal of the LSTM
layer which is not needed since we aim to decode from the
initial configuration of each episode. The model was trained by
supervised learning with a cross-entropy loss function to predict
whether food is visible from the Dominant agent’s point of view.

Figure 4 shows the accuracy at validation samples as a
function of the number of training epochs. As observed in
Figure 4 when visual input is fed in allocentric coordinates the
model exhibits a quicker learning of the decision of whether the
food item is observed by the Dominant agent. In particular, with
the allocentric mode of visual processing the decision is learn
with high accuracy (> 90%) from 4 epochs of training. Similar
level cannot be achieved by egocentric viewpoint in 20 epochs
of training (reaching ∼ 83%), an amount of training by which
allocentric view already provides close to perfect decoding.

We then proceed to compare how an egocentric and
allocentric encoding of visual input affects the performance of an
agent in solving the perspective taking task when learning from
trial and error. That is we trained our agent anew using only RL.
During our RL experiments the Subordinate receives a reward of
−0.1 per time step regardless of the status of the food (seen or
not seen by the dominant). The other reward is received only at
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FIGURE 5 | Average reward obtained by the Subordinate agent (blue) over 100 episodes per data point. The red line shows the maximal reward that would be

possible to obtain over the same episodes. Results were averaged over 7 different seeds. Upper (A,B) and bottom (C,D) rows illustrate the reward during egocentric

and allocentric vision, respectively. Left (A,C) and right (B,D) columns illustrate the reward during using egocentric and allocentric encoding of actions, respectively.

Fluctuations in the maximal reward (red line) are due to the different fraction of episodes (within each set of 100) in which an optimal agent should go or avoid the food

and the very different reward for the correct decision in each case.

the end of the episode when the agent either reaches the food
or the episode terminates after a given amount of time. We note
that the full task now involves the need of not only integrating
the necessary information to determine whether to approach the
food, but also to maintain and convert this information into a
motor plan. For this study we also considered the egocentric and
allocentric representations for moving actions in addition to the
egocentric and allocentric encodings for visual perception. Thus,
we explore 4 combinations of visual and action representations
(egovis-egoact, allovis-egoact, egovis-alloact, and allovis-alloact).

In this case agents who had egocentric visual input and
action encoding quickly learned the task, whereas agents with
allocentric input were not able to efficiently learn the perspective
taking task irrespective of the action encoding (see Figure 5).

Indeed, we can see from Figure 5 that out of the four
combinations, only the “egovis-egoact” condition performed
well in the task. This is at first surprising, given that: (i)
the previous result that without navigation (in the supervised
learning setting) the allocentric agents are better in deciding
whether the Dominant can see the food, and (ii) the agents with
allocentric vision underperform the agents with egocentric vision
even when using the same action encoding. Also, agents with
egocentric vision cannot learn the task when using allocentric
actions compared to the efficient and almost perfect score when
using also egocentric actions.

Hence, part of the difficulty seems to come from the coupling
of visual to navigational aspects, i.e., not only extracting the
relevant information from the visual input but also its conversion
into the appropriate actions. No single factor (visual encoding
or action encoding) seems to individually explain the success at
efficiently learning the task, rather what matters is their specific

combination. Therefore, we analyzed in more detail the required
computations for the different cases to succeed in solving
the task.

In the case of agents with allocentric actions (right column in
Figure 5) the movements are in reference to fixed directions in
the space, namely North, South, West, East, and standstill. This
implies that when the Subordinate agent with egocentric vision
but allocentric actions (egovis-alloact) sees food in front of it, it
will not automatically know which action it needs to take to get
closer to the food. In comparison to that, with egocentric actions
(egovis-egoact) it is enough tomove forward to approach the food.
Similarly, simple heuristics also exist whenever the food item is
within the field of vision of the agent. Thus, when working with
egocentric actions, for agents with egocentric vision the selection
of the optimal action is solely a function its location relative to the
goal, an information which is directly accessible from its visual
encoding. However, when working with allocentric actions, the
same agent would need to know their own orientation which is
not directly accessible with an egocentric visual encoding. Hence,
the difference of performance between the panels Figures 5A,B
when learning by trial and error.

With allocentric vision (for which the learning of whether
the food is visible by the Dominant was best in the supervised
setting), the performance and speed of learning by reinforcement
are significantly inferior to the case with egocentric vision. In
this case, agents with allocentric visual input also need to take
into account their orientation in order to choose the appropriate
action toward the goal. For example, if the agent uses an
allocentric viewpoint but an egocentric action space, some of the
simple heuristics available for egocentric representations such as
“move forward when food is in front of you” seem harder to
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discover. This might be due to the fact that additional processing
is required to extract the relevant variables (e.g., is the food item
in front of the agent?) to implement certain heuristics using
allocentric visual encoding.

So far, we have quantified the success of the different types of
Subordinate agents by the amount of reward obtained. Next, we
refine the analysis of the success by evaluating which behavior
and types of errors the agents committed. In particular, we tested
all 4 models by initializing the agents and environment in all
possible allowed combinations. Then we counted in how many
episodes the agent performed a correct or incorrect behavior
keeping track on whether in the given trial the food item should
have been eaten or not (food item is within the visual field of the
Dominant agent).

Figure 6A shows the results of the analysis. The agent
equipped with egocentric viewpoint and action space (egovis-
egoact), obtained the food item in more than 93.38% of the cases
when it should eat the food (non-observed by the dominant) and
avoided it 99.3% of the cases when it should avoid it (observed
by the dominant). Compared to the 78.49 and 95.89% for the
allovis-alloact case, we see that this type of agent had a main
issue in obtaining the food when this was edible (not seen by the
dominant). Similar performance in both types of trials is realized
by the agent endowed with egocentric actions (allovis-egoact).
Most dramatically, agents with egocentric visual processing and
allocentric action space obtain the food item in only 32.59% of
the cases when the food is rewarded. Figures 6B,C panels show
an example of incorrect behavior while Figures 6D,E panels show
an example of correct behavior.

Finally, we also analyzed the information that each layer of the
architecture contains about whether the food is observed by the
Dominant agent or not. This is the essential bit of information
that needs to be extracted from the visual input to guide the
decision of the agent of whether to approach the food or not. To
this end we added a linear decoder in each layer of the neural
architecture for each of the 4 RL models. That is, we trained
a linear decoder (linear discriminant analysis) from different
layers of the architecture to predict whether the food is visible
by the Dominant agent. Figure 7 shows that indeed it is possible
to reliably decode this information from 3 out of the 4 types
of trained agents. Also we observed that the information about
whether the food is visible from the Dominant agent increases
with further layers of processing until peaking around the last
convolutional layer and the LSTM layer to slightly decrease near
the output layer.

4. DISCUSSION

In this work we aimed to develop RL agents that could solve a
basic perspective taking task. For that we devised a perspective
taking task inspired by work done with chimpanzees. Our goal
was not to design a comprehensive model of perspective taking
behavior in humans or other animals. Rather, we explored
whether relatively simple deep reinforcement learning algorithms
can capture basic computational aspects of perspective taking.
The behavior of the agents showed evidence for basic perspective

taking skills, which shows that at least a part of perspective taking
skills might indeed be learned through RL.

The real advantage of AI algorithms is that they allow us to
deconstruct the studied process. In this case we deconstructed
the perspective taking task by (a) separating the decision
and navigational aspects of the task and (b) using different
combinations of visual input (ego-vision vs. allo-vision) and
action (ego-action vs. allo-action).

4.1. Allocentric vs. Egocentric Perspective
Taking
The condition with egocentric vision corresponds to the natural
way how animals interact with the world: they perceive objects
and other agents from their viewpoint. However, for some
reason the brains of animals have also developed specific systems
where objects are represented in allocentric fashion - they are
represented in relation to each other as in a map (Burgess
et al., 2001; Chersi and Burgess, 2015; Wang et al., 2020). This
allocentric representation allows animals to compute certain
aspects of the world more easily. One of such functions might
be perspective taking. Indeed, in our work we found that in
the supervised setting without navigation agents can much more
readily learn perspective taking skills from allocentric input
representations. Had we stopped there we would have concluded
that the allocentric input representation is the optimal one for
solving tasks involving perspective taking.

However, we then studied agents in the RL setting, where
the agents needed to demonstrate their perspective taking skills
by navigating toward the food item. Under these settings we
found that in the simple environment studied egovis-egoact
agents clearly outperformed all other visual-action combinations,
including the allovis-alloact case. This seems to show that when
navigation is involved the egocentric representation is actually
much more efficient for learning. That said, it has to be kept
in mind that we studied a very simple setting. In all of our
experiments, the goal was in the field of the vision of the
Subordinate. Hence, this is like navigating toward a building
you see in front of you. Using a map probably will make things
more complicated.

One could assert that our agents had learned a coordinate
transformation, not true perspective taking. However, we believe
that coordinate transformations that occur in the parietal cortex
and hippocampus in the mammalian brain also support the
computations supporting basic levels of perspective taking in
biological systems. An important question in neuroscience is how
this transformation from egocentric to allocentric coordinates
is computed in the brain (Chersi and Burgess, 2015; Bicanski
and Burgess, 2018). Also, it is clear that in the animals these
two systems interact (Wilber et al., 2014; Bicanski and Burgess,
2018; Wang et al., 2020). In the present work, we did not study
the interactions of these two systems. In the future work we
seek to study how the allocentric representation is computed
from the egocentric input and how these two systems interact
during online decisionmaking. Moreover, we aim to designmore
complex experiments to distinguish between simple coordinate
transformation and other aspects of perspective taking. In future
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FIGURE 6 | Quantification of the Subordinate behavior and examples of model trajectories. (A) Bar plot with the percentage of correct behavior depending on the

type of trial (eating food is rewarded vs. penalized). (B) Example of the Subordinate agent (green circle) avoiding the food although it should approach it. (C) Example

of the model reaching the food when it should not reach it. (D) Example of the model performing the correct behavior of navigating and obtaining the food.

(E) Example of model behavior of avoiding the food when this is observed by the Dominant agent (red circle).
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FIGURE 7 | Accuracy of a linear probe in predicting if Dominant sees the food or not from different layers of the architecture. The layers studied are Input (raw input),

flatten (after convolution without orientations), merge (with orientations), FC_1 (First fully connected layer), FC_2, LSTM, FC_3 (fully connected layer), and output (the

actions Q-values).

work we seek to develop tasks such that the agents would have to
integrate not only the poses and orientations of objects but rather
the contents of the field of view of the other agent, the attention
of the other agent, and whether the goal object has been observed
by the other agent in the past.

4.2. Different Levels of Perspective Taking
in Humans and AI
Although some agents in this study could solve the visual
perspective taking tasks presented here, we do not claim that the
agents learned to reconstruct the perspective of another agent.
They used more simple cues to solve the task at hand. The
subordinate agent does not have any pressure to reconstruct the
view from the dominant, other than the existence of the food
item in its view (which is the event associated with punishment
or reward). Hence, while the agent likely did not reconstruct the
view from another agent point of view, it is able to infer the
event of interest which is the existence of a certain item in the
dominants point of view. In particular, our agent learned to infer
the relationship between reward, the food item and its relation to
the position and angle of the dominant agent.While this seems to
be a very low level mechanism of perspective taking, it is at least
one concrete mechanism: We have shown that deep RL agents
can learn this type of knowledge necessary for simple perspective
taking tasks.

We acknowledge that the complexity of the task is nowhere
near what humans encounter in their everyday perspective
taking tasks (Apperly, 2011). Also, although the current task
was inspired by work done with chimpanzees, the chimpanzees
were not trained on the task, they were just tested at it;
they had acquired perspective taking from various encounters

with different chimpanzees under natural conditions (Hare
et al., 2000). Furthermore, our RL agents could compute
their decision to approach or avoid the food based on the
orientation of the Dominant and the food position, whereas in
the original experiments with chimpanzees (Hare et al., 2000)
the different conditions also involved obstacles (to hide the
food). Hence, our current setup is a very simplified version of
perspective taking, but hopefully it lies the groundwork for more
elaborate experiments. In future work, it would be desirable
to make direct comparisons between primate behavior and the
performance of RL agents under exactly the same task and
learning conditions.

Based on human studies, perspective taking has been divided
into two levels (Apperly, 2011), namely level 1 and 2 perspective
taking. Level 1 perspective taking is about the question whether
the other agent knows about a particular object or not. This
system is thought to be more basic and automatic and is
functional also in small children and chimpanzees (Hare et al.,
2000; Tomasello et al., 2003; Apperly, 2011). Level 2 perspective
taking is more complicated: here it is not only about whether
the other agent knows about the object but also about how
the other agent sees it (Apperly, 2011). Our agents mastered
tasks that have been used to probe level 1 perspective taking in
chimpanzees, but even here the caveat is that our RL agents were
trained for thousands of episodes in the very same task. When
children and chimpanzees are given level 1 perspective taking
tasks, they solve it without training (Apperly, 2011). In this sense
we claim that the current RL agents solve level 0 perspective
taking tasks that we define as “achieving perspective taking level
1 behavior after extensive training.” From this viewpoint it is also
clear which tasks should our RL agents try to solve next-level
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1 and 2 perspective taking without extensive training on the
same task.

Rabinowitz and colleagues used a meta-learning strategy to
close the gap between level 0 and level 2 perspective taking
(Rabinowitz et al., 2018), however their study had several
assumptions (training by supervision, full observability and
non-behaving agents) that were addressed in our study. In
general, a future avenue of work should address more complex
environments and perspective taking tasks involvingmore agents
and stringent generalization tests.

Another avenue for future work is that of opening
the networks that successfully implement perspective-taking
capabilities during RL. In particular, it will be interesting to search
and study the receptive fields of specific neurons in the network
whose activity correlates with a decision requiring perspective-
taking skills.

5. CONCLUSION

Perspective taking, like any other cognitive ability, has multiple
facets and for the scientific understanding of such abilities it
is necessary to study all of these facets (Apperly, 2011). Here
we studied the simplest possible case where agents controlled
by artificial neural networks learned with the help of RL in a
simple task.

Theory of Mind involves many other processes and
assumptions lacking in current AI agents. Here we studied
the efficiency of different visuomotor representations in solving
a task that requires to take into account the perspective of
another agent. Investigating the capabilities and limitations
of RL agents in acquiring perspective taking is a first step
toward dissecting the algorithmic and representational options
underlying perspective taking and more generally, Theory of

Mind. As human communication heavily relies on Theory of

Mind (Tomasello, 2010, 2019; Scott-Phillips, 2014), a better
understanding of Theory of Mind is a prerequisite for developing
AI algorithms that can take the perspective and comprehend the
intentions of humans.
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