
REVIEW
published: 15 September 2020

doi: 10.3389/fncom.2020.00082

Frontiers in Computational Neuroscience | www.frontiersin.org 1 September 2020 | Volume 14 | Article 82

Edited by:

Joaquín J. Torres,

University of Granada, Spain

Reviewed by:

Norman Forschack,

Leipzig University, Germany

Carmen Castro Canavier,

Louisiana State University,

United States

*Correspondence:

Idan Tal

idan.tal@nki.rfmh.org

Charles E. Schroeder

cs2388@cumc.columbia.edu

Received: 03 June 2020

Accepted: 31 July 2020

Published: 15 September 2020

Citation:

Tal I, Neymotin S, Bickel S, Lakatos P

and Schroeder CE (2020) Oscillatory

Bursting as a Mechanism for Temporal

Coupling and Information Coding.

Front. Comput. Neurosci. 14:82.

doi: 10.3389/fncom.2020.00082

Oscillatory Bursting as a Mechanism
for Temporal Coupling and
Information Coding

Idan Tal 1,2*, Samuel Neymotin 2, Stephan Bickel 2,3,4, Peter Lakatos 2,5 and

Charles E. Schroeder 1,2*

1Department of Psychiatry, Columbia University Medical Center, New York, NY, United States, 2 Translational Neuroscience

Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, New York, NY,

United States, 3 Feinstein Institutes for Medical Research, Northwell Health, New York, NY, United States, 4Departments of

Neurosurgery and Neurology, Northwell Health, New York, NY, United States, 5Department of Psychiatry, New York University

School of Medicine, New York, NY, United States

Even the simplest cognitive processes involve interactions between cortical regions.

To study these processes, we usually rely on averaging across several repetitions of a

task or across long segments of data to reach a statistically valid conclusion. Neuronal

oscillations reflect synchronized excitability fluctuations in ensembles of neurons and

can be observed in electrophysiological recordings in the presence or absence of an

external stimulus. Oscillatory brain activity has been viewed as sustained increase in

power at specific frequency bands. However, this perspective has been challenged in

recent years by the notion that oscillations may occur as transient burst-like events that

occur in individual trials and may only appear as sustained activity when multiple trials

are averaged together. In this review, we examine the idea that oscillatory activity can

manifest as a transient burst as well as a sustained increase in power. We discuss the

technical challenges involved in the detection and characterization of transient events

at the single trial level, the mechanisms that might generate them and the features

that can be extracted from these events to study single-trial dynamics of neuronal

ensemble activity.

Keywords: oscillations, transients, bursts, timing, single trial, methods

INTRODUCTION

At a most basic level, neuronal oscillations reflect synchronous and rhythmic shifting of neuronal
ensembles between high and low excitability states (Buzsaki, 2006; Schroeder and Lakatos, 2009).
An obvious consequence is that most neurons in an ensemble are more likely to fire action
potentials at a particular (high excitability) oscillatory phase. Neuronal oscillations have been
proposed to underlie many critical brain operations including attentional selection of sensory
input (Schroeder and Lakatos, 2009), parsing/chunking of complex input streams (Poeppel et al.,
2008; Ding and Simon, 2014), generation of motor output (Baker et al., 1999; Parkkonen et al.,
2015), memory encoding and retrieval (Jensen et al., 2007), ordering of information carried by
spike trains through spike-phase coding (Kayser et al., 2009) and temporal coupling of distant
ensembles to enhance information transfer (Varela et al., 2001; Fries, 2015; Singer, 2018). Key
to their mechanistic role in these operations is the idea that neuronal oscillations in a particular
frequency synchronize dynamically to couple a group of neurons into a cell assembly for a specific
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brain task (Buzsáki, 2010), and then just as dynamically
desynchronize so that neurons can regroup for the next
brain task.

While oscillatory activity is often viewed as sustained, this
perspective has been challenged in recent years by the notion
that oscillations may occur as transient bursts of activity that
may only appear as sustained activity when averaging across
multiple trials (Lakatos et al., 2004; Jones, 2016; Sherman
et al., 2016), in contrast to the idea that averaging in the time
domain can diminish or obliterate oscillations when they are
not phase-aligned across trials. Since some brain tasks last a few
milliseconds (e.g., reacting to an alerting stimulus), while others
require many seconds or even longer (solving a mathematical
equation), both scenarios are likely to co-exist.

In this review, we will first contrast the ideas of oscillations
as transient bursts vs. sustained events, and outline the technical
challenges involved in the detection and characterization of
transient events at the single trial level. After that we will discuss
the circumstances andmechanisms that likely determine whether
an oscillation will emerge as a transient or a more sustained
brain event.

OSCILLATORY EVENTS

Methods to Identify Transient Oscillatory
Bursts
One of the main challenges in single trial analysis is dealing
with low signal-to-noise ratio (SNR). The idea behind averaging
across trials is that the signals related to some event are enhanced
compared to neural activity unrelated to the event, and other
non-neural sources of noise, thus providing a representative
signal for a “clean” neural response to the stimulus. Obviously,
however, the brain has to operate on a single trial basis when
performing a cognitive task. If indeed transient oscillatory bursts
are involved in information processing, the first step would
be to reliably detect such transients at the single trial level.
However, as evident from the methods described below, reliable
detection of power increases at the single trial level is not
trivial. Due to the typically low SNR of single trial responses,
frequency decomposition can yield a “bursty” time-frequency
profile even in the simple case of constant-amplitude sustained
oscillations (see Figure 1). This effect is particularly likely to
occur when there is cross-frequency phase amplitude coupling
(Lakatos et al., 2005; Schroeder and Lakatos, 2009) and an
oscillation is obscured by noise in the non-ideal phase of the
lower-frequency oscillation.

Due to the technical challenge presented by the low single-
trial SNR, several methods for transient detection have been
proposed. Most detection algorithms rely on filtering the data
into frequency bands (with a wavelet convolution or a Hilbert
transform) and detecting whether a power fluctuation exceeds
an amplitude threshold on a trial-by-trial basis. This is known
as the p-episode method and may also be combined with a
duration threshold (Caplan et al., 2001). Variations of this
method have been used to study single trial oscillations in
recent years. Sherman et al. (2016) detected beta transients by

finding the maxima in the single trial wavelet transformed data.
The authors chose the highest beta event in each trial, sorted
the events from low to high power and analyzed the top 50
highest power events. This procedure revealed a stereotypical
time domain waveform that spans <150ms of a beta burst
(roughly three cycles). Lundqvist et al. (2016) used a similar
approach to detect an increase in gamma power of two standard
deviations above the mean spectral power in that band, but
also added a duration constraint of an increase lasting at least
three cycles. Neymotin et al. (2020a) demonstrates that below
three cycles, any “length measure” becomes unreliable, in that
it overestimates the number of cycles. Hughes et al. (2012)
used an oscillation detection method to extract both sustained
and transient rhythms from rat hippocampal recordings termed
Better Oscillation Detection Method [BOSC; first described by
Caplan et al. (2001)]. The BOSCmethod is applied to continuous
signals to detect the incidence of oscillatory components that
exceed amplitude and duration thresholds while ignoring the
transient voltage fluctuations that may accompany artifacts or
evoked potentials. The power threshold is set as the 95th
percentile of the theoretical χ

2 distribution of wavelet power
values and the duration threshold was set to three cycles
(again, similar to previous methods). An extension to the BOSC
method was recently suggested (eBOSC; Kosciessa et al., 2019)
in which rhythmic and non-rhythmic episodes are automatically
separated. An additional measure of “rhythmicity” termed
lagged-coherence uses the present phase of a signal to predict
future phases (Fransen et al., 2015). They show rhythmicity peaks
detected in ongoing sensorimotor signals that are not visible
using conventional power analysis, suggesting that rhythmicity
measures are more suitable for identifying neuronal oscillations.
Another approach to the detection and characterization of
neuronal rhythms uses Hidden Markov Models (HMMs) to
overcome some of the limitations of the amplitude-threshold
approaches by avoiding a direct amplitude envelope threshold
(Quinn et al., 2019). The HMM represents the signals as a
system that moves through a set of discrete states, with each
state having a probability of being “on” at each time point.
Thus, the thresholding procedure is applied to the probabilities
rather than the signals themselves. In addition, using temporal
regularization, HMM can avoid state transitions due to small
changes in the envelope close to the threshold [see Figure 2 in
Quinn et al. (2019)]. One of the downsides of this method is that
a fixed number of states must be defined in advance. In cases
where the distribution of power values (or probabilities) is bi-
modal, it is easy to define two states, but in many cases it is harder
to define and interpret several states, specifically when studying
wide-band phenomenon.

Single trial analysis and power-change detection can be
computationally costly and might not be feasible for real-time
closed-loop brain stimulation experiments or brain-machine
interfaces. Karvat et al. (2019) suggested a method for the
detection of transient oscillatory activity specifically designed
for real-time data analysis and demonstrated its usefulness for
analyzing volitional increase of beta-band burst-rate in the motor
cortex of rats. The authors suggest defining a burst as a power
peak in time and frequency, exceeding a threshold defined as a
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FIGURE 1 | Noise influence on time-frequency profiles. The top panel shows a

trace of a pure sinusoid at 110Hz with a constant amplitude lasting for a

duration of ∼400ms. The bottom panels show the time-frequency

representation of the signal (top insets) and the time-domain trace (bottom

insets) after adding different levels of white Gaussian noise. As the noise level

(Continued)

FIGURE 1 | increases (lower SNR), the time-frequency profile contains more

gaps and becomes more “bursty” in appearance. In cases of low SNR, such

as the ones that might be observed in single trial or ongoing data, sustained

oscillations might be broken down into isolated peaks and thus might be

considered as transient bursts that might even slightly vary in frequency as a

result of the noise structure.

percentile to assure a statistically sound significance definition
under non-normal distributions. The method is based on 32 real-
time narrow bandpass FIR filters followed by peak and trough
detection in the filtered signals that exceed the threshold set as
the 98th percentile of power.

In addition to the spectrotemporal properties of oscillations,
waveform shapes appear to matter as well. Robust differences
in the waveform shapes of the oscillations mentioned above can
be assumed to represent differences in the properties of their
underlying generators (for review see Cole and Voytek, 2017).
Due to the rich and possibly variant waveform across different
cortical locations and cognitive tasks, detection techniques
should combine power threshold, duration threshold and
waveform specificity for each frequency band and recording
location. An example of such an approach is to detect
increases in the single trial time-domain or time-frequency data,
then calculate the principal components of the time-domain
waveforms and use the first principal component as a template
for the detection of additional events in the time domain using
a template matching scheme (see Abeles, 2014; Tal and Abeles,
2016, 2018). In brief, a segment of data is projected onto the
template. The length of the projection is treated as the signal and
the residual is treated as the noise. The threshold is then based on
the signal-to-noise ratio. Such methods may lead to the creation
of a “dictionary” of waveforms (similar to EEG atlases; Stern,
2005) that exhibit different oscillatory properties. Generating
such a dictionary of oscillatory signatures may allow us to
further test interactions between different neuronal populations
under the assumption that a specific signature is generated by a
specific cell population or a specific process (Siegel et al., 2012;
Womelsdorf et al., 2014).

Some of themethodsmentioned abovemight reduce concerns

regarding low SNR. Occasionally, we may observe oscillatory

bursts of sufficient amplitude that the SNR is less of a concern

(see e.g., below). There is no trivial way to define a duration

value that can serve as a boundary between transient and
sustained oscillations. Thus, we can only say that with most
commonly used analysis approaches, particularly due to the
practice of averaging multiple trials prior to quantification,
oscillatory activity might appear longer than they actually
are. Clearly, both the nature of the task performed by the
subject and the recording technique (e.g., invasiveness, electrode
location) would influence the amplitude, duration and frequency
of the recorded oscillations and thus also the SNR. Thus,
there might be substantial variability in the characteristics
of these oscillations across different studies, when they are
studied at the single-trial level. Typically, invasive recording
techniques provide higher SNR than non-invasive techniques.
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Three independent examples of such invasive recordings in
humans (sEEG) and non-human primates (laminar probe) are
shown in Figure 2where oscillations are visible by eye in ongoing
recordings. Some of these oscillations tend to be more sustained,
specifically at lower frequency (e.g., 8–12Hz; Figure 2A, middle
panel) while higher frequencies reveal a “bursty” profile in this
example (13–30Hz; Figure 2A, bottom panel). We estimated
the duration and number of cycles at a descriptive level for a
few minutes of recording from these example (Figure 2B; see
figure caption for more details). Even though these are merely
selected examples and should not be considered as evidence
for the specific durations of oscillatory activity, such recordings
give us confidence that the basic phenomenon of a bursty
oscillation exists. Recently, Neymotin et al. (2020a) quantified
oscillation event features in resting-state invasive recordings
from auditory cortex of humans and non-human primates. To
our knowledge, this was the first attempt to characterize ongoing
(single trial) oscillatory activity across different frequencies and
species. They found that oscillations at all commonly studied
frequency bands (i.e., delta—high gamma) exhibit multiple cycles
(average of four cycles across all frequency bands; range: 1–
44 cycles) with fluctuating frequency and amplitude. They also
found that ∼90% of the time, oscillation events of at least
one frequency band are occurring, suggesting that multicycle
neuronal oscillations across a wide range of frequencies dominate
auditory cortex dynamics. Interestingly, temporal predictability
across bursts differed significantly from Poisson distribution
assumption which indicates inter-burst quasi-rhythmicity.

However, none of the methods described above (including
the ones that do not require a pre-defined threshold) can negate
the possibility that a transient time-frequency profile results
simply from low SNR (see Figure 1). Thus, the most convincing
evidence suggesting that transient oscillatory activity exists and
is meaningful come from studies relating features of single-trial
oscillatory activity with behavioral or perceptual phenomenon
and show that such signals add information on top of the
traditional (e.g., averaged; sustained) view of neural oscillations.

Oscillatory Activity as Transient Bursts
Classic evidence for sustained oscillatory activity were based
on averaging neural signals across many trials to form a
representation of the neural activity with higher SNR. However,
moment to moment perceptual representations in the real-world
do not operate in such a way. To understand the neural basis of
perception and action, and the involvement of oscillatory activity
in these processes, one must explore trial-by-trial changes in
oscillatory dynamics. In the following section, we will review
evidence for transient or “bursty” oscillatory activity in both
resting state (ongoing) and task-related activity, as well as their
relationship with behavior.

Transient EEG events were first described by Berger (1930)
during sleep and were later termed sleep spindles (Loomis et al.,
1935). These 12–14Hz bursts of oscillatory activity have been
found in all mammals and the thalamocortical mechanisms
generating them have been well-established (Dijk et al., 1993;
Steriade et al., 1993). Yet, their function remains unclear (see De
Gennaro and Ferrara, 2003 for a review). The first observations

of oscillatory activity as transient bursts in awake subjects dates
to 1966 when Jaffe and Weiss reported unilateral alpha bursts
that are different from the alpha rhythm in several aspects
(Jaffe and Weiss, 1966). These “alpha-range bursts” appear
mainly in temporal EEG electrodes and correlate with clinical
evidence of brain disease. They last for 3–4 s and increase during
hyperventilation or drowsiness. The authors report that activity
of this type has been occasionally observed in their lab and listed
as an unusual finding of unknown significance. Alpha bursts of
∼3 s in duration were also found during periods of REM sleep
(Cantero and Atienza, 2000). These bursts are different from
sustained alpha in that they are not accompanied by an increase
in EMG activity and thus might be indexing different functional
role from REM background alpha. The authors hypothesize that
such alpha bursts may work as a micro-arousal in human REM
sleep to facilitate a connection between the dreaming brain
and the external world. Transient oscillatory activity was also
observed at lower frequency bands in humans. For example,
Hebert and Lehmann (1977) found the emergence of theta bursts
in healthy subjects practicing transcendental meditation. These
bursts appeared every 2min on average, had a duration of about
1.8 s and were preceded and followed by alpha rhythm. Since
the subjects reported pleasant states during the theta bursts, the
authors hypothesize that theta bursts may be the manifestation
of a state adjustment mechanism that comes into play during
prolonged low arousal states and related to relaxation. While
these findings were reported for ongoing activity at different
mental states, transient oscillatory activity at low frequencies
was also observed in intracranial recordings in human epilepsy
patients during a virtual reality environment navigation task
(Bush et al., 2017). They reported that human theta oscillations
appear in transient bursts that typically last several cycles around
movement onset and throughout the movement, in contrast to
the continuous rhythm in the rodent hippocampus (Watrous
et al., 2013). Although it is not clear whether these sporadic
oscillations could encode continuous self-motion information,
it is possible that location estimates are updated intermittently
during theta bursts, in accordance with the outcome of planned
movements, rather than tracked continually throughout the
movement by an ongoing theta oscillation.

In recent years, there has been a renewed interest in the
bursty qualities of oscillatory activity, particularly in higher
frequency bands. By analyzing the amplitude and frequency
of gamma bursts above the auditory cortical regions of cats,
Lakatos et al. (2004) found that while attention mostly affects
amplitude, arousal affects the frequency of gamma oscillatory
bursts. Sherman et al. (2016) found that spontaneous neocortical
beta (15–29Hz) from somatosensory and frontal cortex emerged
as non-continuous beta events typically lasting <150ms with a
stereotypical waveform. These “beta events” occur with varying
levels of alpha activity (that seemed more sustained) and their
waveform seemed to be consistent across species (mice, monkeys,
and humans). The authors determined that beta events do not
necessarily depend on rhythmic inputs but on the relative timing
and strength of synchronous proximal (i.e., proximal to the soma
and basal dendrites) and distal (i.e., to apical dendrites in L2/3)
drives. Beta bursts were also observed in local field potential
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FIGURE 2 | Examples of ongoing oscillatory activity. (A) Top and middle panels show a trace of invasive recordings from sEEG electrodes showing low-frequency

oscillations (0.5–4Hz, top; 8–12Hz, middle). (Bottom) Laminar probe recording from a non-human primate showing bursts of oscillatory activity at a frequency of

13–30Hz. Gray rectangles indicate the detection of transient oscillatory bursts. (B) Descriptive analysis of the duration of oscillatory activity at each frequency band.

The duration of oscillations (top) was estimated as the period of time in which the power at that frequency band exceeded the 95th percentile of the theoretical

χ
2 distribution of wavelet power values. The number of cycles (bottom) were calculated by multiplying the duration (in seconds) by the peak frequency of the

oscillation (in Hz). Lower frequency oscillations (i.e., 0.5–4 and 8–12Hz) tend to show longer durations compared with the higher frequency oscillations (13–30Hz) in

which most oscillatory bursts consisted of ∼3.5 cycles. The inset shows a zoomed version to visualize the differences between 0.5–4 and 13–30Hz. Error bars

indicate standard error of the mean.

(LFP) signals recorded from the striatum and motor–premotor
cortex ofmacaquemonkeys performing a reaching task (Feingold
et al., 2015). Using single trial analysis, they showed that beta
bursts typically lasted 90–115ms, and that extended periods of
beta band synchronization reflected a modulation in the density
of these short bursts. Burst probabilities were region and task-
time specific such that in motor cortex they peak following
the movement, while in striatum they peaked after reward and
continued through the post-performance period. Lundqvist et al.
(2016) used a trial-by-trial analysis and found that brief bursts
of gamma-band activity (45–100Hz) accompanied encoding and
re-activation of sensory information in recording sites associated
with spiking that reflected “to be remembered” items. Neuronal
activity reflecting encoding or decoding correlated with changes
in gamma burst rate. Additionally, they showed that gamma—
alpha (8–10Hz) coupling was not related to the periodicity of the
gamma bursts but rather to the consistency in the duration of the
gamma bursts, indicating that lower frequencies might modulate
gamma-burst duration. Beta band oscillations (20–35Hz) also
appeared as transients in the Lundqvist et al. findings and
were interpreted as reflecting a default (holding) state because
it was interrupted by encoding and decoding. The authors
concluded that working memory is not associated with sustained
activity but rather discrete oscillatory dynamics and spiking. Beta

range oscillations were also suggested to serve to clear memory
states by resonantly driving transient bouts of spike synchrony
which destabilize the network activity (Schmidt et al., 2018).
Interestingly, the most effective oscillatory activity for allowing
flexible switching between network states was burst-like with a
sharp onset rather than a pure sinusoid. In addition, the authors
demonstrate that such oscillatory bursts arise spontaneously in
networks of excitatory and inhibitory neurons.

Transient oscillatory events may also provide an additional
coding space for neuronal processes by utilizing the rate or
timing of the transient events with regard to the stimulus or even
with regard to other transient events. Shin et al. (2017) showed
that differences in the rate of beta events predicted detection
of stimuli at perceptual threshold and that non-detectable trials
were more likely to have a beta event within ∼200ms prior
to the stimulus. Using MEG, Little et al. (2018) found that
motor cortical beta in individual trials appears as high amplitude,
transient infrequent bursts. Beta burst timing was a stronger
predictor of single trial behavior than beta burst rate or single
trial beta amplitude, with later bursts corresponding to delayed
response times. The relative timing of transient events was
studied in the context of sensorimotor synchronization using
MEG to show that decoding of behavioral conditions using
time-differences between transient events across brain regions is
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significantlymore accurate than other characteristics of the signal
(Tal and Abeles, 2016, 2018; Felsenstein et al., 2019). Moreover,
such transient events (treated as a point-process) might form
more complex repeating sequences of activation with millisecond
precision (Tal and Abeles, 2016, 2018; Felsenstein et al., 2019).
These results suggest that relevant information might be encoded
by subtle time differences or cascades of transient events across
the brain. Although the study of oscillatory activity as transient
events is still at an early stage, several features of these bursts
(e.g., rate, duration, timing) have been linked back to behavior
suggesting that the dynamics of such transient activity may be
involved in cognitive processes.

The current review focuses on oscillatory events, however,
there are also transient events that are not oscillatory in nature.
A clear example of such event is an evoked potential generated
in response to a stimulus. The nature of harmonic analyses
techniques, such as wavelets and Fourier transform identifies
these signals as oscillations. The BOSC method (Caplan et al.,
2001; Hughes et al., 2012) attempts to avoid the detection
of transient, non-oscillatory events by identifying oscillatory
episodes at each frequency using both power and duration
thresholds. Another approach to avoid bias due to externally-
driven events removed the average evoked-responses waveforms
from each cortical layer (Neymotin et al., 2020a), though if this
removal uses simple subtraction of the trial-averaged response
from each single trial, it runs the risk of creating artifacts (Knuth
et al., 2006). Tal and Abeles (2016) used an algorithm that
may detect both oscillatory and non-oscillatory transient events
using a template matching scheme. They show that most of
their detected events were not associated with clear periodic
oscillations. They demonstrate that both oscillatory and non-
oscillatory events showed similar increases in population activity
around the times of these events (Tal and Abeles, 2018) and
suggested them as markers of sudden increase in population
activity that might indicate the recruitment of a new cell assembly
within the cortical patch. It is not yet clear whether event-
related-potentials trigger the same mechanisms in terms of the
canonical circuits activated by internally generated oscillations.
Sherman et al. (2016) argued that such brief sharp events are
due to brief, strong excitation of the superficial cortical layers
riding on the broader but weaker excitation of deep cortical
layers. Laminar biophysical models of the thalamocortical system
that accurately simulate recorded signals, such as local field
potentials, can be used to predict the types of waveforms that are
recorded in vivo after sensory stimulation, and offer mechanistic
explanations for their features. For example, providing brief,
strong thalamocortical activation to a hypothetical neocortical
model would trigger production of a transient ERP-like event
in the circuit, with a characteristic waveform (Neymotin et al.,
2020b). Although running a wavelet filter on such a waveform
will produce high power at a frequency inverse to the duration
of the ERP, since it was produced by a punctate event, this type
of waveform should not be considered an oscillation (Neymotin
et al., 2020a). In contrast, specific synaptic connectivity and
input patterns provided to a circuit model lead to production
of sustained multi-cycle oscillations. Some of these circuit
mechanisms and their implications in detecting oscillatory

bursts from electrophysiology data in vivo are described in the
next section.

Mechanisms of Transient Oscillatory
Activity
The studies discussed above suggest that neocortical oscillations
tend to be short-lived and bursty, however, some neurological
disorders, such as Parkinson’s disease, are clearly associated
with prolonged rhythms (Tinkhauser et al., 2017a,b). In general,
stronger activation of a particular circuit component that
generates a specific oscillation (such as gamma), would produce
a more sustained form of that oscillation. Weaker activation,
either through reduction of the frequency and strength of
AMPA/NMDA synaptic inputs to that component or from
stronger suppressive inhibition, can result in gaps between
oscillatory bursts (Lee and Jones, 2013; Neymotin et al.,
2020b). Figure 3 demonstrates the results of a neocortical
column simulation of bursty Pyramidal-interneuron network
gamma (PING) oscillations using the Human Neocortical
Neurosolver (HNN) software (https://hnn.brown.edu). As shown
in Figure 3, in PING, gamma is generated through a sequence
of activations: (1) stochastic synaptic inputs drive spiking of
pyramidal neurons, causing collateral activation of fast spiking
(basket type) interneurons, (2) activation of the fast-spiking
interneurons then causes feedback inhibition lasting a gamma
cycle (∼20ms for 50Hz gamma), determined by the duration
of the rise and fall of the GABAa synaptic conductance, and
(3) after GABAa inhibition runs its course, pyramidal neurons
are again able to spike and the cycle repeats. Synchronization
of inhibitory interneurons, which is responsible for generation
of gamma rhythms, is seen in the raster plot of Figure 3A,
with the nearly vertical lines that recur at a gamma period
(white and blue). In general, sustained gamma is produced
when there is continued strong activation of pyramidal neurons,
which causes continuing periodic activation of the interneurons,
resulting in large amplitude/persistent gamma. Lowering the
frequency or strength of excitatory synaptic inputs driving the
pyramidal neurons, causes weaker, intermittent activation of the
interneurons, and temporal gaps between interneuron-generated
gamma bursts, as shown in Figure 3A. Note that in the raster
plot, not all interneurons are activated at each gamma bout.
Additionally, different subsets of the interneurons are activated.
This firing pattern is a hallmark of weak PING, considered weak
because the gamma amplitude occasionally waxes and wanes
depending on the level of interneuron activation. In this example,
pyramidal neurons (green, red dots) fire even less frequently, but
are still synchronized by the interneurons (note the periodic gaps
between the sparse pyramidal neuron firing). Figure 3B shows
a single trial of the current dipole signal generated by HNN’s
biophysical cortical circuit model (top) and its associated time-
frequency representation, using the Morlet wavelet spectrogram
(bottom). As shown, the current dipole signal’s gamma oscillation
has a peak between 40 and 60Hz, and has power waxing and
waning. A close look at the spectrogram reveals that the gamma
oscillation is only present at discrete times. However, when
taking the average wavelet spectrogram from multiple trials of
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FIGURE 3 | Neocortical circuit model used to simulate bursty gamma oscillation events through a weak PING mechanism. (A) Raster spiking plot of neuronal firing

times from single trial of weak PING simulation. Top panel shows histogram of low-frequency, noisy Poisson inputs used to drive pyramidal neurons and interneurons

in the model. Bottom panel shows population color-coded firing times of individual neurons. (B) Single trial current dipole signal (top) and Morlet wavelet spectrogram

from dipole signal (bottom) from weak PING model. (C) Simulation of one hundred trials of weak PING model produces one hundred current dipole signals (top).

Although gamma oscillation events occur at different times in each trial, averaging the wavelet spectrogram across trials (bottom) produces an appearance of a

sustained gamma oscillation [adapted with permission from Figure 10 of Neymotin et al. (2020b) under the license: https://creativecommons.org/licenses/by/4.0/].

this simulation (Figure 3C), the gamma oscillation appears to
be more continuous. This is because the wavelet spectrogram
always has positive values, and adding the gamma events which
occur at different times across trials, produces the appearance
of continuity. This is one mechanism for the bursty gamma
observed in experimental data and highlights the importance of
careful analysis of single trial data.

A related theme in cortical dynamics is the presence of
multiple interacting oscillations caused by different time scales
of inhibition provided by different classes of interneurons (for
reviews see Whittington et al., 2000; Skinner, 2012; Kopell
et al., 2014). For example, Neymotin et al. (2011) used a
model with intermediate complexity to replicate normal and
pathological hippocampal dynamics. In their model, oriens-
lacunosum moleculare (OLM) interneurons produce theta
through relatively long-lasting inhibition. OLM inhibition of
fast-spiking basket and pyramidal neurons then modulated
the faster gamma rhythm, which was produced through the
standard PING mechanism. This interaction between OLM
and basket interneurons caused gamma rhythms to increase
and decrease based on the phase of the slower theta rhythm.
This cross-frequency coupling mechanism could be used to
model gamma bursts too, since a few strong cycles of gamma
appear in between strong periods of OLM inhibition at the
theta rhythm. As evidenced by a multitude of non-human
(Lakatos et al., 2005; Buzsaki, 2006; Schroeder and Lakatos,
2009) and human (Canolty et al., 2006; Canolty and Knight,
2010) studies demonstrating phase-amplitude coupling, similar
mechanisms should operate in the neocortex in vivo, which
has an intricate circuitry with a multitude of interneuron types
(Dienel and Lewis, 2019).

Another circuit model of neocortex aimed at determining
the origin of beta oscillation events (Sherman et al., 2016). This
biophysical model simulated current dipole signals produced
by the circuit, allowing explicit comparison to source-localized
current dipole signals from MEG/EEG studies. The neocortical
model consisted of simplifiedmodels of pyramidal and inhibitory

interneurons arranged in superficial and deep cortical layers and
interconnected using AMPA and GABA synapses. Pyramidal
neuron dendrites spanned the cortical layers. Synaptic inputs
were provided to the pyramidal neurons to initiate network
activity. These synaptic inputs were applied at proximal and distal
locations on pyramidal neuron dendrites to model inputs from
thalamic core (proximal) and thalamic matrix and corticocortical
feedback (distal). Each of these types of synaptic input pushed
current flow within the pyramidal neuron apical dendrites
in opposite directions. The model was able to produce beta
oscillation events through a series of ∼10Hz stochastic synaptic
inputs provided to proximal and distal pyramidal neuron
dendrites. Beta oscillation events were produced when ∼100ms
duration proximal synaptic inputs (pushed current flow toward
superficial layers) were truncated by a more synchronous 50ms
distal inputs (sharply pushed current flow toward deep layers),
which produced a 50ms current dipole waveform, matching the
waveforms seen from source-localized humanMEG experiments.
Since the synaptic inputs were stochastic, the production of beta
events was also stochastic, producing bursty oscillation events.
Additionally, when the proximal and distal synaptic inputs
arrived out of phase, instead of beta, alpha events were produced.
This occurred because each set of synaptic inputs was provided
to the model at the alpha period (100ms interval). Invasive
laminar electrophysiology recordings from non-human primate
somatosensory cortex were used to confirm the model’s accuracy.

CONCLUDING REMARKS

We reviewed several studies suggesting that brain rhythms
tend to appear as short-lived bursts of oscillatory activity. The
importance of these observations lies in our interpretation
of the functional role of neural oscillations, the mechanisms
generating them, the potential information they may carry, and
the way we must analyze them. One of the major points raised
here is that sustained oscillations can appear “bursty” in the
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presence of noise and conversely, “bursty” oscillations can appear
sustained when averaged across trials. Many cognitive studies
report an increase in oscillatory activity that only lasts for a
brief duration (e.g., a few tens of milliseconds). This might
represent the main response to the stimulus but at the same
time, might fail to explain the trial by trial variance in burst
timing, frequency, and amplitude. In addition, the averaging
approach might also miss other important responses that are
either “smeared” in the averaged response or appear at different
times across trials and are obscured by averaging. While the
averaging approach has its advantages, specifically in increasing
the SNR of the phase-locked response to a stimulus, single-
trial analysis of oscillatory events should be performed to better
understand the mechanisms of oscillatory activity by exploring
the variability in different features of oscillatory activity across
trials and, whenever possible, their relationship with behavioral
and perceptual phenomenon. Estimating the characteristics of
single-trial (or ongoing) oscillations is not trivial, and thus
several methods for detecting transient events were suggested.
Most of these methods depend on amplitude and duration
thresholds or a probabilistic threshold. Due to the differences
in the goals of each study, the design of the experiments,
the recording techniques, and the frequency and time-windows
studied, variability in the estimation of the characteristics of
single-trial oscillations is to be expected and it is difficult to
provide a single recommendation on the algorithm that should
be used to study neuronal rhythms at the single trial. The
simplest approaches (such as p-episodes) can be useful in cases
where lower computational time is essential (such as in closed-
loop experiments), while more computationally demanding
approaches can achieve more fine-tuned results offline. When
possible, we recommend applyingmore sophisticated algorithms,
such as HMM or amplitude and duration thresholds combined
with template-matching that carry less risk of false detection
due to artifacts or noise. We identify five features of short-lived
oscillations that may provide information-coding space for the
brain: (1) Amplitude—indicates the size and synchronicity of the
underlying neuronal population. (2) Temporal span (duration)—
how long the synchrony within a population is maintained. (3)
Frequency span—might index the participant neuron circuits

and critically, the inherent conductances of their specific
neuronal constituents. When studied at the single-trial level,
these features may explain variability in behavioral performance
across trials that cannot be observed in the averaged waveforms.
(4) Inter-burst and stimulus-burst interaction–measures, such
as the burst-rate, burst-timing, inter-burst interval, coefficient
of variation, fano-factor and more complex spatio-temporal
sequences comprised by transient bursts might be used to
explore the single trial dynamics of oscillatory activity and non-
oscillatory transient events. The general idea is to treat the
timing of these transient events as a parallel point-process to
study their temporal relationship with other events and with the
stimulus. For example, determine the rhythmicity across events
from a given oscillation frequency band (e.g., whether oscillatory
events are rhythmic and predictable, or Poisson distributed).
(5) Time-domain waveforms—might index different biophysical
generators. We note that this feature is more abstract and
challenging to measure but should be further studied to extract
the meaningful features within the waveforms and test for
repeating waveforms in the data. Time-domain waveforms may
also reveal differences between oscillatory and non-oscillatory
events that might differ in both their mechanisms and their role
in information processing. Such features are necessary to study
brain rhythms at the single trial level and take advantage of the
temporal dynamics of neural oscillations to better understand
their role in information transmission, processing, and coding.
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