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Humans learn motor skills (MSs) through practice and experience and may then retain

them for recruitment, which is effective as a rapid response for novel contexts. For

an MS to be recruited for novel contexts, its recruitment range must be extended. In

addressing this issue, we hypothesized that an MS is dynamically modulated according

to the feedback context to expand its recruitment range into novel contexts, which do

not involve the learning of an MS. The following two sub-issues are considered. We

previously demonstrated that the learnedMS could be recruited in novel contexts through

its modulation, which is driven by dynamically regulating the synergistic redundancy

between muscles according to the feedback context. However, this modulation is trained

in the dynamics under the MS learning context. Learning an MS in a specific condition

naturally causes movement deviation from the desired state when the MS is executed in

a novel context. We hypothesized that this deviation can be reduced with the additional

modulation of an MS, which tunes the MS-produced muscle activities by using the

feedback gain signals driven by the deviation from the desired state. Based on this

hypothesis, we propose a feedback gain signal-driven tuning model of a learned MS for

its robust recruitment. This model is based on the neurophysiological architecture in the

cortico-basal ganglia circuit, in which an MS is plausibly retained as it was learned and is

then recruited by tuning its muscle control signals according to the feedback context. In

this study, through computational simulation, we show that the proposed model may be

used to neurophysiologically describe the recruitment of a learned MS in novel contexts.

Keywords: motor skill recruitment, muscle synergy, corticospinal tract, reinforcement learning, cortico-basal

ganglia circuit, muscle loading, feedback gain control

INTRODUCTION

Innate and learned motor skills (MSs) are recruited in the central nervous system (CNS) for
effective and fast motor control in response to novel external circumstances such as disturbances.
To recruit an MS in response to novel contexts, its contextual information must be afferently
transmitted to the CNS through feedback control processes. Therefore, the recruitment of an MS
should be considered in the feedback control process. However, this mechanism has not been
addressed in previous studies related to feedback control, such as proportional integral derivative
control (Petkos and Vijayakunar, 2007) and optimal feedback control (Todorov and Jordan, 2002;
Liu and Todorov, 2007), because these studies focused only on correcting motor control errors
through feedback gain control. In addressing this issue, we hypothesized that an MS is dynamically
modulated according to the feedback context to expand its recruitment range into novel contexts,
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which do not involve the learning of an MS. The following two
sub-issues are taken into account in this article.

Dynamic modulation of an MS in response to the feedback
context is a mechanism that allows rapid recruitment of an MS
in a novel context. In validating this hypothesis, the Synergy
strategy-based muscle Control (SC) proposed in our previous
study (Min et al., 2018) is a valuable concept because it
contributes to the dynamic modulation of an MS to regulate
the functional redundancy of individual muscle units for the
feedback context. To achieve this SC-driven MS (SC-MS), all
muscle units contributing to an MS need to be classified into
multiple group units according to their innervation by peripheral
nerves derived from the brachial plexus. Consequently, these
group units cause the contracting sets of muscles, termed motor
primitives (MPs) (Giszter et al., 1993), to effectively suppress
the control redundancy of muscle units in feedback control.
In our previous study (Min et al., 2018), this muscle control
policy was defined as the group control policy (GCP) that
outputs the same control signal to all muscle units constituting
a group unit. Although the GCP is an effective control policy
for suppressing the control redundancy of muscle units in
feedback control, it needs assistance to generate novel patterns
of muscle activities that cannot be produced by combining
group units. To assist GCP, the individual control policy (ICP)
was defined as the control policy for outputting identified
individual control signals to individual muscle units. These two
control policies synergistically combine to optimally control
muscle units according to the feedback context. This synergy
may neurophysiologically correspond to the combination of
corticospinal neurons (CSTs) in the primary motor cortex (M1)
and its second type of CSTs, termed cortico-motoneuronal cells
(CMs), through the corticospinal tract, which was addressed in
a previous study (Rathelot and Strick, 2009). In this previous
study, it was suggested that the MPs activated by the CSTs in
M1 through their connection with interneurons in the spinal
cord may be adjusted by the signals that are produced from CMs
through their monosynaptic connection with motor neurons
(MNs) in the spinal cord. This adjusting of MPs may sculpt novel
motor output patterns for highly skilled movements that cannot
be produced by combining MPs. Consequently, the combination
of two ways of controlling muscles in the corticospinal tract
is more plausible in neurophysiologically representing an MS
than CSTs driven one way, which is the route for controlling
MPs termed muscle synergies (Tresch et al., 1999; d’Avella
et al., 2003; Torres-Oviedo et al., 2006; Safavynia and Ting,
2012; Ting and Macpherson, 2012; Barroso et al., 2014; Suzuki
et al., 2017; Amundsen Huffmaster et al., 2018; De Marchis
et al., 2018; Kibushi et al., 2018; Toma and Santello, 2019),
whose individual MP units are composed of spatiotemporally
fixed muscle activities. These studies demonstrate that SC may
be neurophysiologically suitable for characterizing the dynamic
modulation of an MS.

Even if an MS is dynamically modulated for its recruitment
in novel feedback contexts, this modulation is trained in the
dynamics under theMS learning context. Therefore, this learning
condition of an MS naturally brings about movement control
deviation from the desired state in a novel context. To overcome

this handicap, a learned MS needs to be modified in response
to a novel context. In addressing this issue, we propose a
Tuned Synergy strategy-based muscle Control (T-SC) model, in
which the SC-MS is tuned in response to the feedback context.
Through this tuning, the aforementioned deviation is supposedly
reduced. In designing this model, we assumed that the tuning
signals of the SC-MS are cumulatively modified to tune SC-
MS-produced muscle activities according to the deviation from
the desired movement, which is recognized through feedback
control. This hypothesis is based on experimental evidence
demonstrating that the response through sensorimotor control
is coupled with ongoing decision processes, which are reflected
by the accumulated feedback information (Selen et al., 2012).
In a previous related study (d’Avella and Pai, 2010), this issue
was also addressed with regard to the limited recruitment range
of existing modules such as muscle synergies in novel contexts.
However, an alternative solution, apart from learning a new MS,
has not been suggested so far. The proposed T-SC may be an
alternativemotion control strategy for novel contexts because it is
more efficient for the rapid adaptation of motion control in novel
contexts than learning a new MS.

The neurophysiological architecture and mathematical
description of the T-SC model are presented in sections
Neurophysiological Architecture and Mathematical Model,
respectively. To validate this model, we simulated the
recruitment of the SC-MS in novel contexts that were not
present when the MS was learned (section Results).

MATERIALS AND METHODS

Neurophysiological Architecture
The neurophysiological architecture of T-SC is based on
experimental evidence (Spraker et al., 2007) showing that the
cortico-basal ganglia (cortico-BG) circuit is involved in scaling
the force generation according to the external environment.
Accordingly, this evidence is applicable to validating the
recruitment of a learned SC-MS through tuning its muscle
force control signals according to the feedback context. In this
architecture, the operation of T-SC in the CNS may be achieved
as follows.

Based on the experimental evidence (Pruszynski et al.,
2011) for involvement of the M1 region in modulating the
proprioceptive response related to the knowledge of limb
mechanics, we surmised that the sensory feedback signals,
sfb, including the contextual information for the dynamic
states of the skeletal joint, are transferred to M1 through
its somatosensory pathway (London and Miller, 2013). These
feedback signals, sfb, are inputted to the basal ganglia (BG)
through M1. In the cortico-BG loop (Barto, 1995; Doya, 2000,
2007, 2008; Ito and Doya, 2011), the BG selectively disinhibits
the activities of both M1 and the brainstem to select the
optimal tactic for motion control (Hikosaka et al., 2000). The
extent of this disinhibition is controlled via dopamine release
(Shinnamon, 1993) during reinforcement learning (Houk et al.,
1995). Therefore, the BG is assumed to dynamically produce
a trade-off between inhibition and disinhibition of the activity
in M1 during sequential motion control (Nambu et al., 2002).
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Further, section Recruiting a Learned MS via the Cortico-
Basal Ganglia Loop discusses the neurophysiological evidence
for the involvement of the BG in kinematic control through
the recruitment of a learned MS. Based on this experimental
evidence, in the BG, we assumed that an SC-MS is dynamically
modulated by inhibiting or disinhibiting the GCP and ICP, which
regulate the functional redundancy of individual muscle units
for sfb, as discussed in section Introduction. This modulation is
mathematically described in section Dynamic Modulation of an
SC-MS. Through this modulation, the SC-MS produces a muscle

control signal, uPt
SC
, that is efferently copied, as uSC, to the spinal

cord through the corticospinal neurons (CSTs) in M1. Through
this process, a learned SC-MS retained in the BG is dynamically
modulated to produce uSC according to the feedback context
sfb. A discussion of this modulation is introduced in sections
Recruiting a learned MS via the Cortico-Basal Ganglia Loop and
Muscle Control Scheme of the Corticospinal Tract in Recruiting
an SC-MS.

The signals uSC are assumed to be tuned in M1 because
experimental evidence (Herter et al., 2009) has shown that
neural activity in M1 is broadly tuned to novel contexts, such
as mechanical perturbations applied to the shoulder and elbow,
and reflects knowledge of joint–limb dynamics (Pruszynski et al.,
2011). Based on this supposition, the uSC may be tuned with the
following dynamic modulation process for the feedback context.
Concurrent with the aforementioned input of sfb to M1, the
goal states so of sfb are also input to M1 from the association
cortex. Both sfb and so are inputs to the muscle loading tuner
and the difference between the two signals is transferred to the
tuning gain (TG), Gtuning, of uSC. The Gtuning consists of agonist
and antagonist loading signals, which disinhibit the activities of
loaded muscles and inhibit the activities of unloaded muscles by
properly scaling them (Nashed et al., 2015). This tuning process
generates the optimal muscle control signals u∗, which descend
to MNs in the spinal cord to control the muscles. This tuning is
mathematically described in section Tuning of a Learned SC-MS.

Mathematical Model
Dynamic Modulation of an SC-MS
Asmentioned in section Introduction, we have defined the group
units as muscle control units, which produce the contracting sets
of muscles, termed MPs. These group units and their belongings
are determined according to the peripheral nerves innervating
them (Table 1). Based on this neurophysiological definition, the
GCP is defined as the control policy considering individual
muscle units as a component of the group unit, in which all
components respond to the feedback context with one common
signal. In contrast to the GCP, the ICP is defined as the control
policy considering individual muscle units as independent units
of the group units, thereby controlling individual muscle units
with their identified signals. Therefore, by optimizing the synergy
between these two control policies for a feedback context, an
SC-MS is dynamically modulated for the feedback context. This
modulation is mathematically defined by the following model
based on our previous study (Min et al., 2018):

P SC
t = (νG, νI), νG = σ (st) = exp(−0.5V(st)), ν

I = 1− ν
G (1)

where Pt
SC is the synergy coordinate of the GCP weight vG and

ICP weight vI. This is determined by the critic value (CV) V(st),
which evaluates the potential of the feedback contextual vector st

at time t for reaching the goal state. As the st is produced through
the performance of the SC-MS, the V(st) presents an evaluation
of the performance of the SC-MS for the goal state. Therefore,
the Pt

SC is dynamically optimized according to the performance
of the SC-MS at time t for the goal state. The synergy between vG

and vI is simulated in Figures 4, 5A, 6A, 7A (see section Results).
By applying the Pt

SC to Equation (2b), the SC-MS, using the
actor model in Equation (2a), is dynamically modulated. This
achievement is rewarded by functionally improving the V(st)
(Min et al., 2018). Consequently, this improvement reinforces the
SC-MS to achieve its goal state. This CV-driven reinforcement
learning is based on the actor–critic model (Barto, 1995; Sutton
and Barto, 1998), which is designed to simulate reinforcement
learning (Houk et al., 1995) in the BG. The simulation condition
of this learning is precisely described in section Learning and
Recruitment Condition of an SC-MS.

Using Pt
SC optimized through the aforementioned learning,

the SC-MS is dynamically modulated to generate the muscle
control signals uSC as follows:

Ui
SC(st) ∼= ui(s

t;W)

= ui
maxsig(

K
∑

k=1

Wk
ibk(s

t)+ σ (st)ni(t)− B),

ui
max = 1.0, σ (st) = σ0 exp(−0.5V(st)),

bk(s
t) =

Ak(s
t)

K
∑

l=1

Al(s t)

, Ak(s
t) = exp



−

n
∑

i=1

(

si
t − ci

k

σi
k

)2




(2a)

Wi
k = ν

Iwi
k + ν

Gw
g

k
(2b)

where the Ui
SC(st) functions as the actor generating the control

signal of the ith muscle of uSC and sig(x) is the sigmoid function.
The function ni(t) produces the white noise in determining
the activities of individual muscles. The magnitude of ni(t)
is determined according to σ(st) by considering V(st). σ0 is
a constant parameter. This noise is designed to enhance the
learning dynamic of an MS, thereby being suppressed by setting
σ0 to zero in simulating its recruitment. B is the parameter
controlling the baseline of sig(x), i.e., the value of sig(x = 0.0).
The base function bk(s

t) is the kth element of a normalized
Gaussian network (NGSN). K is the total number of base
functions. The node of b k(s

t) is defined as the parameter c k
i ,

which is the ith element of the center of bk(s
t) and σ

k
i is its

range. This c k
i is determined before the learning takes place.

As the state vector st comprises the joint angle and its velocity,
the predetermined format of the NGSN is designed based on
the grid distribution of the two-dimensional state by setting the
total number of state elements n to 2. The symbol s ti is the ith
element of the contextual vector st . W i

k
is the network weight

of bk(s
t) in producing the ith muscle activity. As described in
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TABLE 1 | Elements of the neuromuscular system controlling the elbow joint.

Flexors

Group 1 (radial nerve) Brachioradialis

Group 2 (musculocutaneous

nerve)

Biceps brachii (long head), Biceps brachii (short

head), and brachialis

Group 3 (median nerve) Pronator teres

Extensors

Group 4 (radial nerve) Triceps brachii (lateral head), Triceps brachii (long

head), Triceps brachii (medial head), and

anconeus

Equation (2b), the W i
k
is the summation of w i

k
and wk

g, which

are, respectively, weighted by vI and vG of Pt
SC. The parameter

wk
g is the kth NGSN weight of the gth group unit, which is

governed by the GCP, whereas wk
i is the kth NGSN weight of

the ith muscle affiliated to the gth group unit, which is governed
by the ICP. The weights wk

i and wk
g are optimized through

the aforementioned SC-MS learning. For further information,
including the optimizing process of wk

i and wk
g regarding

Equation (2b), refer to our previous study (Min et al., 2018).

Tuning of a Learned SC-MS
As shown in Figure 1, the learned SC-MS-produced uSC is
additionally tuned to u∗ with the TG signal Gtuning from the
muscle loading tuner, which is cumulatively modified as the
feedback gain parameters of uSC according to the deviation
from the desired state recognized through feedback control. This
tuning is mathematically modeled as follows:

u∗ = GtuninguSC, Gtuning = diag
(

G
tuning
0 , . . . ,G

tuning
n−1

)

,

uSC = [u0, . . . , un−1]
T, If ui is a flexor, G

tuning
i = GF.

If ui is an extensor, G
tuning
i = GE., i = 0, . . . , n− 1. (3)

where Gtuning functions as a feedback gain parameter that is the
diagonal matrix composed of Gi

tuning. The symbol n represents
the total number of muscles involved in the motion control.
The flexor gain GF or the extensor gain GE is determined by
Gi

tuning according to the function of the individual muscles ui in
controlling the joint.

The Gtuning is modified by its incremental signal 1Gtuning

as follows:

1Gtuning(t) =
[

1GF(t), 1GE(t)
]

T = k(t) · 1s(t),

k(t) =

[

kF(t)
kE(t)

]

=

[

kp(t) kd(t) ka(t)
−kp(t) −kd(t) ka(t)

]

,

1s(t) = sG − s(t) =
[

12t
G, 12̇

G
t , 12̈

G
t

]

T,

12t
G = 2

G − 2t ,12̇
G
t = 2̇

G − 2̇t ,12̈
G
t = 2̈

G − 2̈t

(4)

where 1Gtuning(t) is composed of the flexor and extensor
components, 1GF(t), 1GE(t). These two components are
estimated by1s(t) and its gain matrix k(t).1s(t) is the difference
between the feedback state s(t) = (2t , 2̇t , 2̈t) and its desired
state sG = (2G, 2̇G, 2̈G), in which both 2̇

G and 2̈
G are zero.

The matrix k(t) is composed of the following three
components: the angle term kp(t), the angular velocity term kd(t),
and the angular acceleration term ka(t). These terms contribute to
the flexor part kF(t) = (kp(t), kd(t), ka(t)) and the extensor part
kE(t) = (−kp(t),−kd(t), ka(t)). The components kp(t) and kd(t)
of kE are designed as minus terms of kF to simulate the activities
of extensors. However, the acceleration term ka(t) is set to the
same value for both the agonist and the antagonist because the
direction of the angular acceleration frequently changes, thus it
needs to be suppressed to maintain stable motion control during
the co-contraction of both the agonist and the antagonist. These
three k components are optimally modulated to make the joint
angular state approach the goal state by using Equation (5). To
achieve this modulation, the three k terms of 1Gtuning(t) are
modeled to be proportional to

∥

∥12t
G
∥

∥ using the function sig(x)
as follows:

kp(t) = Ckp · sig( 1.5 · (12̇
G
t + (A · exp(−

∥

∥

∥
12̇

G
t

∥

∥

∥
))·
∥

∥

∥
12t

G
∥

∥

∥

−B) )

kd(t) = Ckd · sig(D
∥

∥

∥
12t

G
∥

∥

∥
− B),

ka(t) = Cka · sig(D
∥

∥

∥
12t

G
∥

∥

∥
− B) (5)

where B (B = 0.4) is the parameter controlling the baseline of
sig(x), that is, the value for sig(x = 0.0), whereas the parameters
Ckp (Ckp = 0.2), Ckd (Ckd = 0.2), and Cka (Cka = 0.002) are
the constant values of sig(x). The parameter A (A = 10.0) is the
constant gain of the Gaussian function for modulating kp(t), and
the parameter D (D = 20.0) is the constant value for modulating
kd(t) and ka(t). These k components are dynamically modulated
considering 1s(t), which was described in Equation (4). As
shown in Figure 2A, to model the gain term of 12̇

G
t , kp(t) is

modeled to mainly function as Ckp · sig(1.5 · (A
∥

∥12t
G
∥

∥− B)),

which is the sigmoid function of 12̇
G
t in the first term of sig().

In low-speed undershooting or overshooting, kp(t) functions as

Ckp · sig(1.5 · (A
∥

∥12t
G
∥

∥ − B)), which is the sigmoid function

of
∥

∥12t
G
∥

∥ in the second term of sig(). Using the hybridization
of these two terms, kp(t) is modeled as shown in Figure 2A. Due

to this modeling, kp(t) responds to 12̇
G
t under consideration

of
∥

∥12t
G
∥

∥. To optimally modulate kd(t) and ka(t) as the

gain terms of 12̇
G
t and 12̈

G
t , their corresponding

∥

∥12t
G
∥

∥

needs to be considered as the feedback context responding to
undershooting and overshooting, as shown in Figure 2B. Owing
to this consideration, the response of these k terms to the
feedback context is slower than kp(t) considering 12̇

G
t in high-

speed undershooting.
The TG increments generated according to the

aforementioned calculations in Equations (4) and (5)
are accumulated to modify the corresponding TG signals
as follows:

Gtuning(t) = Gtuning(t − 1t)+ 1Gtuning(t),

Gtuning(t) =
(

GF(t), GE(t)
)

, Gtuning(0) =
(

1.0, 1.0
)

.

While GF(t) > 0.0, 1GF(t) is available.

While GE(t) > 0.0, 1GE(t) is available. (6)
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FIGURE 1 | The proposed architecture of the tuned synergy strategy-based muscle control (T-SC). The feedback state sfb is transferred to the primary cortex M1

through the transcortical pathway, and the goal state so is transferred to M1 from the association cortex. The basal ganglia estimate the SC signal P SC
t that regulates

the functional redundancy of individual muscles within the SC for the feedback context sfb and outputs P SC
t into the corticospinal neurons (CSTs) in M1. The CSTs

encode P SC
t to uSC, which are then tuned to u* by the tuning gain signal Gtuning from the muscle loading tuner. The tuned signals u* are transferred to the skeletal

muscles via the spinal cord and the motor neurons (MNs).

FIGURE 2 | The functions of three k-terms involving the tuning of a motor skill for its recruitment according to the feedback context (12
G, 12̇

G). (A) The function of

the angle term kp. (B) The functions of the angular velocity term kd and angular acceleration term ka.

where the initial TG, Gtuning(0), is set to 1.0 to simulate non-
interference by the TG. To achieve this modification, GF(t) and
GE(t), termed the flexor and extensor components of Gtuning(t),

respectively, must be above zero. Therefore, if GF(t) or GE(t) is
modified to be below zero, the corresponding signal is set to zero
by suppressing its increment.
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Simulation Architecture
The simulation architecture has been described in detail in
our previous study (Min et al., 2018). This architecture is
composed of the musculoskeletal finite-element (FE) model
(Figure 3), its motion control agent model, and the interface
model, which integrates both of the aforementioned models.
Precise descriptions are as follows.

Musculoskeletal Finite-Element Model
The musculoskeletal model proposed in our previous study
(Min et al., 2018) was used for simulating the motion
control of a musculoskeletal system. This model was designed
using LS-DYNA (Livermore Software Technology Corporation,
Livermore, CA, USA), which is an explicit FE code developed for
dynamic analyses through simulation. To consider the trade-offs
between analytical precision and calculation costs in simulating
the motion control of the musculoskeletal FE model, the muscles
are designed with FE modeling using multiple bar elements of
the muscles that formulate muscle paths between the origin and
the insertion points in LS-DYNA. The characteristic features
of the muscle forces, which change according to the length of
the muscle and its contraction velocity, were modeled using a
Hill-type model (Hill and Sec, 1938; Zajac et al., 1985; Thelen,
2003). Anatomical references (Neumann, 2002) were used to
align the origin and insertion points and the via points, and
to represent the appropriate muscle moment arms using the
wrapping contacts (Hada et al., 2007). The predicted muscle
moment arms were well-validated against data from several
experimental studies (Amis et al., 1979; Murray et al., 1995).
As shown in Figure 3A, the proposed FE model consists of two
rigid body parts: one representing the upper arm and shoulder,
and the other representing the lower arm and hand. The two
body parts are linked using a joint constraint that represents
the ulnar–humeral joint. The mass of the lower arm was 1.7 kg.
The principal moments of inertia of the lower arm body were
I11 = 7.66 × 10−3 kg m2, I22 = 7.36 × 10−3 kg m2, and
I33 = 0.34× 10−3 kg m2.

Integration of the Musculoskeletal Finite-Element

Model and Its Motion Control Agent Model
The entire architecture was implemented through software
programming, in which the agent model of the SC-MS
was programed with C++ code to perform the learning
and recruitment of the LS-DYNA-coded musculoskeletal
FE model. This performance was achieved through a
C++ code interface model, which was programmed to
allow the coding difference between the aforementioned
two models.

Learning and Recruitment Condition of an SC-MS
To validate the recruitment of the SC-MS under novel conditions
involving transient and sustained disturbances, the learning
condition of the SC-MS was not affected by any external
interference as follows.

In the simulation architecture, the agent model reinforced
an MS to be dynamically modulated by the SC, described in
Equation (1), for controlling the forearm to reach a goal without

any disturbances. Through this reinforcement learning, the agent
model learned an SC-MS. During this learning process, the
control range of the elbow joint was limited to 30–140◦. The aim
of this task was to move the hand to its goal position, where the
elbow joint angle was at 70◦, and to maintain this position. The
degree of freedom of the joint was 1. The nine muscles listed in
Table 1 were activated to control the elbow in the simulation,
as shown in Figure 3A. The time step t was 0.01 s. If the total
learning time in a trial exceeded 2.0 s or if the angle of the elbow
joint was out of the defined control range, a new trial was started
after randomly changing the initial position. This process was
repeated 780 times.

The SC-MS learned through the above process was recruited
in the same time steps as the aforementioned learning time steps.
Further information has been provided in detail in our previous
study (Min et al., 2018).

Experimental Setup
To evaluate the proposed simulation model by comparison with
the actions of four human subjects (four men, 40–44 years old)
under the same conditions as those used in the simulation, we
measured the loading responses of the study subjects, which
is the same task as that in the simulation. All subjects were
healthy and did not have any motor disorders. We assumed
that these subjects have learned the MS recruited to achieve the
aforementioned novel task throughout their whole life because
the goal task of the MS described in section Learning and
Recruitment Condition of an SC-MS can be achieved naturally
by healthy subjects.

As shown in Figure 3B, in this experiment, the elbow joint
angle was measured while the subject held a 1 kg load in his hand.
To measure the responses to the loading condition through pure
feedback control, the subjects were blindfolded with their eyes
closed and were not informed about the timing of the loading.
In addition, the distance between the initial falling point of the
weight and the initial position of the hand was set close to zero.
Furthermore, to approximate the novel condition as closely as
possible, only data that were recorded during the first trial for
each of the four subjects were used. The subject was instructed
to try to recover as soon as possible the preloading posture set
at 70◦. All subjects were instructed to recover and maintain their
preloading posture under this loading condition for 2.0 s. The
shoulder and wrist joints were fixed during the measurement of
the motion of the elbow joint. In this setting, we measured the
positions of the shoulder, elbow, and wrist using OPTOTRAK
3020 (Northern Digital, Waterloo, Ontario, Canada), which is a
three-dimensional position measurement device. We then used
the measured positions of these three joints to calculate the
angular movement of the elbow joint. The experimental setup
has been described in detail in our previous study (Min et al.,
2018).

All subjects provided written informed consent prior to
their participation. The protocol was approved by the Tokyo
Metropolitan Institute of Medical Science’s ethics committees
and was conducted in accordance with the ethical standards of
the Declaration of Helsinki.
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FIGURE 3 | (A) A musculoskeletal finite-element (FE) model of the human arm. Each muscle consists of multiple nodes that are used to precisely model its path along

with the wrapping. The wrapping is used to keep the path of the muscles within the precise moment arm. (B) Experimental setup of human subjects for evaluating the

simulation result.

RESULTS

As mentioned in section Introduction, because of the dynamic
modulation of an MS driven by the SC for novel feedback
contexts, an SC-MS may be recruited in the CNS as a valuable
learned MS. To validate this supposition, we tested the concept
of T-SC in a model that tunes the SC-MS by gaining its signals to
robustly recruit it in novel feedback contexts.

As shown in Figure 1, the T-SC is neurophysiologically
achieved by tuning the SC-MS according to sensory feedback
signals, which are generated in response to the context.
Therefore, the T-SC may contribute to recruiting the SC-MS
in the feedback control process. To validate this recruitment
process, the simulation results of the SC-MS recruitment
procedure in response to three novel sustained disturbances that
did not involve the learning process of the SC are discussed in
this section.

T-SC in a Novel Sustained Disturbance
Novel dynamic contexts in recruiting a learned MS are classified
into transient and sustained disturbances. In our previous work
(Min et al., 2018), we tested the motion control robustness of
the SC-MS in these two types of dynamic contexts that did not
involve SC-MS learning. In this test, the SC-MS demonstrated
good recruitment against a transient disturbance, such as an
impacting force, by recovering the pre-impacted context well.
However, the SC-MS revealed the limitations of its recruitment
in response to sustained disturbances; it only recovered to the
point below the pre-disturbed point, as shown in Figure 4. As this
difference in recruiting an SC-MS is attributed to the difference
between their loading durations for an SC-MS, we hypothesized
that the SC-MS needs to be tuned with accumulative gain signals

that consider the duration of the disturbance. To address this
issue, we validated the T-SC for novel sustained disturbances
as follows.

To validate the T-SC, we compared the performance of
the SC-MS and the tuned SC-MS (T-SC-MS) in recovering
the preloading posture against a sustained 1 kg loading. This
sustained loading did not involve SC-MS learning. The results
are shown in the top row of Figure 4. The left column in
the top row of Figure 4 demonstrates that the SC-MS found a
new posture at 60◦, which is below the preloading posture at
70◦. By contrast, the T-SC-MS could successfully recover the
preloading posture. This simulated recovering joint angular trace
was within the real motion trace corridor range derived from
the four experimental subjects using the same conditions as the
simulation. This achievement of T-SC-MSwas simulated through
the following T-SC process.

As shown in Figure 1, the joint angular context may be
afferently copied to the CNS as the contextual feedback signal
and transferred to the BG via M1. According to this feedback
signal, striosomal molecules functioning as adaptive critics in the
BG (Houk et al., 1995) may estimate the CV as the evaluation
of the recruitment of the SC-MS in recovering the preloading
state. This is shown in the second row of Figure 4. After sustained
1 kg loading, the CV of the SC-MS decreases accordingly,
and remained below, the CV of the preloading state according
to maintaining the new posture below the preloading posture
after 0.6 s. In comparison with SC-MS recruitment, the CV
of the T-SC-MS also decreased during the undershooting, but
it recovered to the level of the preloading state. Consequently,
the T-SC-MS was more highly valued than the SC-MS in
recruiting the learned MS to recover the preloading state
after 0.4 s.
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FIGURE 4 | Comparison of a synergy strategy-based muscle control motor skill (SC-MS) and a tuned SC-MS (T-SC-MS) in recruiting the retained motor skill after a

1 kg loading. Top row: Comparison of the SC-MS and T-SC-MS simulations in recruiting the same retained motor skill, and evaluation of the T-SC to reproduce the

joint traces experimentally determined in human subjects. Second row: Critic value (CV) according to the joint angular state. Third row: Two control policies according

to the CV. GCP, group control policy; ICP, individual control policy.

According to this CV-based evaluation of the SC-MS
recruitment, the BG may optimally regulate the synergistic role
redundancy between the GCP and ICP of individual muscles
by using the rule based on Equation (1). As mentioned above,
the CVs decreased from the preloading value because of their
corresponding undershooting, shown in the top row of Figure 4.
According to these CVs, as shown in both columns of the third
row of Figure 4, the GCP increased whereas the ICP decreased
because the GCP-driven group unit control is more effective than
the ICP-driven individual muscle unit control in recovering the
preloading context during undershooting. This synergy between
the GCP and the ICP is differently regulated by SC-MS and
T-SC-MS according to their CVs as follows.

After 0.4 s, SC-MS and T-SC-MS differently regulated the
synergistic redundancy between the GCP and the ICP compared
with before 0.4 s as follows. T-SC-MS started to recover the
pre-disturbed CV from its lowest value after 0.4 s. According
to this CV recovery, the GCP and ICP started to recover from

their highest and lowest values, respectively. After 0.9 s, the
two control policies successfully recovered to their pre-disturbed
values and were then kept stable at that state. In comparison with
the T-SC-MS, the SC-MS maintained the new CV below the pre-
disturbed CV after 0.7 s, thereby insufficiently recovering its two
pre-disturbed control policies. This comparison is demonstrated
in the third row of Figure 4. This superior achievement of T-
SC-MS compared with SC-MS for the same novel disturbance is
attributed to the following tuning process of an SC-MS.

As shown in Figure 5A, the SC-MS-produced signals were
loaded with GF and GE, the agonistic and antagonistic signals of
the TG, respectively, according to the recruitment process of a
learned MS in Figure 1. These two TG signals were dynamically
generated through the following feedback gain process of a
learned MS in Figure 5B.

Under the rule based on Equation (5), the three k-term
components of the TG in the third graph in the top row of
Figure 5B were determined according to the joint angle and
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FIGURE 5 | Tuning the learned synergy strategy-based muscle control motor skill (SC-MS) to recruit it after a 1 kg loading. (A) Loading the SC-MS-produced signals

with tuning gain (TG) signals. (B) The process of producing TG signals. The SC-MS produced the activities of eight muscles, which are pronator teres(PT),

brachialis(BRA), biceps brachii (long head)(BILH), biceps brachii(short head)(BISH), brachioradialis(BRAD),anconeus(ANCN), triceps brachii(long head)(TRIO), triceps

brachii(medial head)(TRIM), and triceps brachii (lateral head)(TRIA).
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velocity deviations from the desired states, 12t
Gand 12̇

G
t ,

respectively, in the second graph in the top row of Figure 5B.
As described in Figure 2A, the component kp is designed to

be sensitive to the increase in 12̇
G
t , which is attributed to

the high undershooting. Therefore its increase was faster and
higher than both kd and ka that are designed to respond to the
increase of

∥

∥12t
G
∥

∥, which was attributed to the undershooting
or overshooting angle deviation (Figure 2B).

According to Equation (4), these three k-term components
combined with their corresponding deviations from the desired
states to produce three incremental components of GF and
GE, as shown in the second and third graphs in the top row
of Figure 5B. This combination produced the 1GF and 1GE,
as shown in the first graph in the bottom row of Figure 5B.
According to the rule of Equation (6), GF and GE must be above
zero. Therefore, if either GF(t) or GE(t) is modified to be below
zero, the corresponding signal is set to zero by suppressing its
increment. Under this rule, 1GF and 1GE were regulated to
modify GF and GE, respectively, as shown in the second graph
in the bottom row of Figure 5B. The bottom part of this graph
shows1GF and1GE, which actually contribute to modifying the
GF and GE, respectively. The tracks of GF or GE were as follows.

After a sustained 1 kg loading, GF increased from 1.0 to its
peak value of 3.3 in response to the drop in the joint position,
followed by a decrease in responding to the recovery of the
preloading context, and finally remained at a stable value of 2.7
to maintain the preloading context. By contrast, GE decreased
under the same conditions from 1.0 to the lower value 0.0 in
response to the decrease in the joint position before increasing,
reflecting the preloading context recovery, and finally reached a
stable value of 0.25 to retain the preloading posture. Hence, GF

increased and GE decreased from 1.0 during the recovery of the
preloading posture in response to a sustained disturbance. These
TG signals, as shown in Figure 5A, contributed to additionally
modulating the SC-MS through tuning its signals as follows.

The parameter GF is reflected in the increased activities
of agonists that were kept at higher values in the recovered
preloading context compared with their preloading activities.
Conversely, the parameter GE decreased the antagonist activities
and then maintained them at lower values in the recovered
preloading context in comparisonwith their preloading activities.

The aforementioned results demonstrate that the SC-MS can
be robustly recruited for a novel feedback context with additional
modulation, which was achieved through tuning its signals.

T-SC in Further Novel Contexts
As shown in section T-SC in a Novel Sustained Disturbance, we
verified that an SC-MS can be robustly recruited by tuning it for
a novel sustained 1 kg loading, which did not involve learning of
the SC-MS. In this section, we demonstrate the versatility of this
recruitment process in further novel contexts.

Recruitment in Undershooting Attributed to a Novel

Sustained 2 kg Loading
To examine the recruitment of a learned SC-MS by tuning it
in an additional severe undershooting context, we simulated the
recruitment of a T-SC-MS for sustained 2 kg loading, which is

two times the weight of the 1 kg loading used in section T-SC in a
Novel Sustained Disturbance. The simulation of this recruitment
process is shown in Figures 6A,B. The top graph of the first
column in Figure 6A shows the joint angular trace during the
recruitment process of the SC-MS for this disturbance as follows.

After loading with 2 kg, the joint angular trace dropped below
the preloading position to about 62◦ and then increased to be
maintained at about 65◦ for a short time. However, the joint
angle declined again to about 55◦, but finally recovered to about
75◦ near the goal state and then was kept stable at that state.
Two decreases in angle value and some overshoot during the
recruitment of the SC-MS showed an incomplete recovery for
2 kg loading in comparison with the process for 1 kg. This
difference is attributed to further severe disturbances over a 1 kg
loading. This movement could be achieved through the following
recruitment processes of the T-SC-MS.

As mentioned in section T-SC in a Novel Sustained
Disturbance, the parameter CV evaluates the recruitment of
an SC-MS to achieve the goal state. The second graph of the
first column in Figure 6A shows the CV as the evaluation of
the recruitment of T-SC-MS for a 2 kg loading. Owing to the
aforementioned severe decrease, the CV for a 2 kg loading
decreased further than the CV for a 1 kg loading during
undershooting. As shown in the third graph of the first column
of Figure 6A, this decrease in the CV increased the GCP more
than the decrease in the CV under the 1 kg loading. Accordingly,
the ICP was suppressed further than that under the 1 kg loading.
This CV-driven synergy between two control policies regulates
the control redundancy of individual muscle units. Through this
regulation, the muscle activities are produced, as shown in the
second column of Figure 6A. These signals were loaded with GF

and GE according to the recruitment process of a learned MS
in Figure 1. These two TG signals were dynamically produced
through the following feedback gain process of a learned MS in
Figure 6B.

Under the rule based on Equation (5), the three k-term
components of the TG shown in the third graph in the
top row of Figure 6B were determined by the joint angle
and velocity deviations from the desired states, 12t

G and
12̇

G
t , respectively, in the second graph in the top row of

Figure 6B. After loading with 2 kg, as mentioned above, the
joint movement developed in two downward steps. In the first
step, the component kp drastically increased to respond to

the increase of 12̇
G
t , which was attributed to the high-speed

downward motion. Concurrently, both kd and ka increased by
less than kp because they responded to ‖12t

G‖, the increase

in which was less than the increase in 12̇
G
t . During this step,

the response traces of the three k-term components were similar
to those observed with a 1 kg loading. In the second step, all
three k-term components increased substantially in response
to the large increases in both ‖12t

G‖ and 12̇
G
t . This is

attributed to the feedback context, in which the joint angle
state was far from its preloading state with a high downward
speed. After this second drop, the joint angular state mostly
recovered by 0.8 s to its preloading goal state before slowly
reaching the preloading state. In response to this recovery, the
kp drastically decreased in response to the decrease in 12̇

G
t in
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FIGURE 6 | Tuning the learned synergy strategy-based muscle control motor skill (SC-MS) to recruit it after a 2 kg loading. (A) Loading the SC-MS-produced signals

with tuning gain (TG) signals. (B) The process of producing TG signals. The SC-MS produced the activities of eight muscles, which are pronator teres(PT),

brachialis(BRA), biceps brachii (long head)(BILH), biceps brachii(short head)(BISH), brachioradialis(BRAD),anconeus(ANCN), triceps brachii(long head)(TRIO), triceps

brachii(medial head)(TRIM), and triceps brachii (lateral head)(TRIA).
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downward speed, and both kd and ka concurrently decreased
in response to the decrease in

∥

∥12t
G
∥

∥. After 0.8 s, kd and
ka increased slightly by about 1.0 s in response to the slight
overshooting of

∥

∥12t
G
∥

∥ and then decreased quite slowly in

response to the quite slow decrease of
∥

∥12t
G
∥

∥ to zero. Under the
rule of Equation (4), these three k-term components combined
with the corresponding deviations from the desired state, which
are shown in the second graph in the top row of Figure 6B. These
combinations produced the 1GF and 1GE, as shown in the first
graph in the bottom row of Figure 6B. According to the rule of
Equation (6), 1GF and 1GE were regulated to modify GF and
GE, respectively, as shown in the second graph in the bottom
row of Figure 6B. The bottom part of this graph shows 1GF

and 1GE, which actually contribute to modifying the GF and
GE, respectively. The tracks of the TGs and their contribution to
tuning the SC-MS were as follows.

GF increased in response to the two drops in joint angle value
and then slowly decreased to a stable level. To assist GF, the
parameter GE was suppressed during the first drop, but increased
substantially during the second drop before slowly dropping to a
stable level. These two agonist and antagonist TG signals were
loaded onto the SC-MS-produced muscle activities, as shown
in the second and third columns of Figure 6A. Through this
loading, they were tuned to the optimal muscle activities for
recruiting the SC-MS under a 2 kg loading.

Recruitment in Overshooting Attributed to a Novel

Sustained−1 kg Loading
The overshooting during the SC-MS learning process is
transiently driven by incorrectly controlling the joint and is
eventually suppressed by gravity. Therefore, the SC-MS learned
to control the overshooting with very little extensor activation,
which functions as the agonist for overshooting. Because of
this learning condition of the SC-MS, the overshooting driven
by the sustained negative disturbance on the hand is further
severe novel disturbance in recruiting the SC-MS than the
undershooting driven by the sustained positive disturbances such
as 1 kg or 2 kg loading. Therefore, to recruit the SC-MS during the
sustained negative disturbance-driven overshooting, the SC-MS
needs to be tuned more than the sustained positive disturbance-
driven undershooting. By simulating the recruitment of the T-
SC-MS during the overshooting driven by a sustained negative
disturbance, we tested the tuning process to robustly recruit the
SC-MS in an entirely novel context as follows.

After loading a −1 kg weight on the simulated hand, the
joint angular trace was raised to about 98◦ and then decreased
to about 66◦ (top graph, first column of Figure 7A). Finally,
the joint angular trace overshot by about 76◦ and then stably
recovered to the preloading state. According to this contextual
joint angular trace, the CV was determined as shown in
the second graph of the first column of Figure 7A. Further,
gravity, which reflects the movement, needs to be considered
in determining the CV. As mentioned in the first paragraph of
this section, it is comparatively easy for an SC-MS to suppress
the incorrect control-driven transient overshooting because of
gravity during its learning process. Therefore, even if the
overshooting attributed to the sustained negative disturbance
on the hand is a further severe context for the SC-MS, the CV

for recruiting the SC-MS during the overshooting is less than
that during the undershooting [second graph, second column of
Figure 4 (first column of 5A), and first column of 6A]. Because
of this evaluation of the CV, as shown in the third graph in
the first column of Figure 7A, the change in the GCP and ICP
weights in response to this negative sustained disturbance was
suppressed to a small range in comparison with its response to
positive sustained disturbances such as a 1 or 2 kg loading. This
process was regulated using Equation (1). As mentioned above,
this response is attributed to the learning condition of SC-MS, in
which the transient overshooting driven by incorrect control is
controlled by a small amount of activity of the extensors because
gravity contributes to the recovery of the preloading state from
its overshooting state. Because of this learning condition of SC-
MS, the extensors functioning as agonists for negative sustained
disturbance need to be loaded more than the flexors functioning
as agonists for positive sustained disturbance. To process this
additional modulation, the SC-MS-produced muscle activities
shown in the second column of Figure 7A were loaded with the
antagonistic and agonistic TGs, GF and GE, respectively. These
TGs were produced by the following process.

As shown in the first graph in the bottom row of Figure 7B,
the three incremental components of GF and GE were produced
by combining the three k-term components of the TG (third
graph, top row of Figure 7B) and their corresponding deviations
from the desired state (second graph, top row of Figure 7B).
These three components of GF and GE were summed to produce
1GF and 1GE, respectively, which were accumulated to produce
GF and GE as shown in the second graph in the bottom row of
Figure 7B. The precise process was achieved as follows.

In agreement with the rules shown in Figures 2A,B, during
the initial overshooting shown in the first graph in the top
row of Figure 7B, the kp component was almost suppressed in
response to the high overshooting but the kd and ka components
drastically increased in response to the large increase in ‖12t

G‖.
After the joint movement started to recover to its preloading
state at about 0.57 s, kp drastically increased in response to the

large increase in 12̇
G
t ; this increase was attributed to the high-

speed downward motion, and both the kd and ka components
decreased in response to the decrease in ‖12t

G‖. Thereafter,
the joint angle finally recovered to its preloading state via the
slight undershooting and the second overshooting, which was less
pronounced. In response to this recovery, kp decreased to almost
zero, whereas kd and ka stably decreased to their preloading
values via their transient increase, as shown in the third graph
in the top row of Figure 7B. According to Equation (4), these
three k-term components combined with their corresponding
deviations of desired states to produce the 1GF and 1GE, as
shown in the first graph in the bottom row of Figure 7B. Under
the rule of Equation (6), the 1GF and 1GE were regulated to
modify theGF andGE, respectively, as shown in the second graph
in the bottom row of Figure 7B. The bottom part of this graph
shows the1GF and1GE, which actually contribute to modifying
the GF and GE, respectively. The tracks of the TGs and their
contribution to tuning the SC-MS were as follows.

GE substantially increased during the overshooting and then
stabilized at a lower level owing to the recovery of the preloading
state. To assist GE, GF was completely suppressed during the
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FIGURE 7 | Tuning the learned synergy strategy-based muscle control motor skill (SC-MS) to recruit it after a −1 kg loading. (A) Loading the SC-MS-produced

signals with tuning gain (TG) signals. (B) The process of producing TG signals. The SC-MS produced the activities of eight muscles, which are pronator teres(PT),

brachialis(BRA), biceps brachii (long head)(BILH), biceps brachii(short head)(BISH), brachioradialis(BRAD),anconeus(ANCN), triceps brachii(long head)(TRIO), triceps

brachii(medial head)(TRIM), and triceps brachii (lateral head)(TRIA).
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overshoot and then increased for a very short time before
decreasing slowly to a stable level.

Because of this modulation of GF, as shown in the top
of the second and third columns of Figure 7A, the SC-MS-
produced signals of flexors were dynamically unloaded in
response to the overshooting attributed to a negative sustained
disturbance because they were antagonists for the negative
disturbance. In comparison with the flexors, the extensors
were highly loaded with GE to function as agonists against
the overshooting (the bottom part of the second and third
columns, Figure 7A). Through this tuning process, the handicap
in recruiting an SC-MS under overshooting conditions attributed
to sustained negative disturbances, which was mentioned in the
first paragraph of this section, could be overcome.

DISCUSSION

A learned MS can potentially be used for effective motor control
in a novel context. In addressing this issue, we hypothesized
that an MS can be retained through learning it in the CNS and
then recruiting it. Through the simulation using the proposed
neurophysiological computational model, we have shown that
the MS might be retained through learning the muscle synergy
to achieve its task and recruited through dynamically tuning
it according to novel feedback contexts. In this tuning, the
learned muscle synergy, termed SC-MS, produces the muscle
control signals through its dynamic modulation according to
the feedback context and these signals are additionally loaded
with tuning signals, termed TG signals, which are dynamically
modulated according to the feedback context. Through this
dynamic modulation, a skilled MS might be recruited in a variety
of conditions besides those experienced during motor learning.
Furthermore, this involvement of the muscles’ synergy with a
skilled MS demonstrates that it might subserve the learning and
retaining of an MS in the CNS.

Dynamic Modulation of an MS According
to the Feedback Context
To recruit a learned MS for novel contexts, we assumed that a
learnedMS is dynamicallymodulated for the feedback context. In
addressing this issue, we used the concept of SC (Min et al., 2018),
which dynamically regulates the redundant functional roles of
individual muscles according to consecutive feedback contexts.
As described in Equations (1) and (2), this SC-driven regulation
contributes to the dynamic modulation of anMS for the feedback
context. Consequently, this modulation contributes to robust
recruitment of an MS in various novel feedback contexts that did
not involve the learning of an MS, as shown in Figures 4, 5A, 6A,
7A. These results show that the SC may be an optimal strategy to
learn an MS and to recruit it.

Robust Recruitment of a Learned MS
Through Tuning It According to the
Feedback Context and Its Implications
Even if an SC-MS is modulated according to the feedback context
as mentioned in the above subsection, this modulation is learned

in the dynamics under the learning context of SC-MS. Because of
this learning condition, to robustly recruit an SC-MS in a novel
context, it needs to be additionally tuned. To validate this tuning,
we hypothesized that a muscle loading tuner may operate in the
CNS to tune the SC-MS through dynamically loading its muscle
control signals according to the feedback context. This hypothesis
was validated with the simulation results shown in Figures 5A,
6A, 7A, in which the SC-MS could be successively recruited
through dynamically loading its muscle control signals according
to the feedback context under three different novel sustained
disturbances. This recruitment may involve the rapid adaptation
of motion control to novel contexts without learning a new MS
for them. If this rapid adaptation is impaired, the normal motion
control in novel dynamic contexts may be seriously disturbed.
To test the potential clinical implications, this hypothesis needs
to be further studied in neurophysiology. Through this study,
the proposed model may provide a new clinical view of
motion control disorders attributed to cortico-BG loop-related
CNS diseases in pathophysiology and therapeutics/rehabilitation.
Furthermore, through the transcortical circuit, the recruitment-
produced muscle control signals may be transferred to the
cerebellum as a correction signal to train a neural network,
on which a feedforward motor command is generated in the
cerebellum (Kawato et al., 1987; Kawato, 1990; Kambara et al.,
2009). Therefore, the T-SC may involve robust feedforward
motion control in novel contexts.

Previous studies, such as proportional integral derivative
control (Petkos and Vijayakunar, 2007) and optimal feedback
control (Todorov and Jordan, 2002; Liu and Todorov, 2007)
in modeling the feedback control process, focused only on the
correction of the motor control error but did not address the
contribution of a learned MS to feedback control. Our new
approach to recruitment of a learned MS in novel contexts may
offer a new viewpoint for this previously unaddressed feedback
control issue.

Recruiting a Learned MS via the
Cortico-Basal Ganglia Loop
The BG contributes to “stabilization augmentation” by
facilitating an optimal activity that fits the desired situation
and context while suppressing other ongoing CNS activities
that would interfere with the desired behavior (Mink, 1996).
Furthermore, Turner and Anderson (1997) showed that
movement-related changes in pallidal discharge to specific
parameters of movement are discharge of neurons in the
skeletomotor portions of both pallidal segmentations. This
BG response is demonstrated by encoding the combination of
the sensory and contextual state through the sensory feedback
process, which may involve online motion control with the
selective facilitation and suppression of different frontal
thalamocortical circuits (Turner and Anderson, 1997). As the
BG reinforces a new MS through reinforcement learning and
retains it subsequently (Lehéricy et al., 2005), this online motion
control role of the BG may involve the recruitment of a learned
MS retained in the BG, which is dynamically modulated by
the selective facilitation and suppression of different frontal
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thalamocortical circuits. Based on the aforementioned previous
studies, this cortico-BG scheme may be a common framework
for the learning and recruitment of an MS in the CNS. Therefore,
the T-SC-driven recruitment of a learned MS though the cortico-
BG loop may involve different kinds of motion control, which
need to respond to various sensory feedback contexts via the
M1 from different sensory areas, including the somatosensory
cortex and the visual cortex. This hypothesis may be reasonable,
even if it has recently been demonstrated that the roles of neural
structures differ between different tasks (Paparella et al., 2020).

Muscle Control Scheme of the
Corticospinal Tract in Recruiting an SC-MS
The experimental evidence introduced in section Recruiting a
Learned MS via the Cortico-Basal Ganglia Loop shows that
the BG may retain a learned MS and involve the recruitment
of it to control movement according to the feedback context.
Based on this concept, to recruit an SC-MS according to the
feedback context, we assumed that the BG may dynamically
modulate an SC-MS with the synergistic combination of two
control policies of the SC, GCP, and ICP, which is driven by a
combination of their inhibition and disinhibition. As shown in
Figure 1, this synergistic combination of GCP and ICP in the
BG produces muscle control signals through the corticospinal
tract. As outlined in section Introduction, GCP-driven signals
may function as group unit control signals that are decoded
into synergistic combinations of MPs (Bizzi et al., 1991; d’Avella
et al., 2003) retained in the spinal cord because the group
units produce the contraction sets of muscles termed MPs in
processing the SC. Furthermore, as the ICP-driven signals serve
as the control signals for individual muscle units, they may
be directly copied from the corticomotor neurons among the
CSTs to MNs. Therefore, the ICP-driven signals sculpt GCP-
driven signals through their synergistic combination to optimally
modulate an SC-MS according to the feedback context. This
recruitment of an SC-MS may support the concept introduced
in section Introduction that muscle activities are produced by
combining two pathways of MNs (Rathelot and Strick, 2009).

Evaluating the Proposed Model in
Comparison With Human Subjects
Evaluating the proposed computational model in comparison
with human subjects, the two disadvantages of the computational
model were as follows.

In this study, an SC-MSwas learned only through one learning
experience of a particular task, which was to move the hand
to its goal within a limited joint angular range as described
in section Learning and Recruitment Condition of an SC-MS.
While learning the SC-MS, no disturbances were involved (Min
et al., 2018), as described in section Learning and Recruitment
Condition of an SC-MS. Therefore, the recruitment of an SC-
MS under sustained disturbance was simulated as a pure novel
recruitment, as described in section Results. To evaluate this
simulation in comparison with human subjects, as shown in the
top row of Figure 4, we approximated a pure novel recruitment
as closely as possible using only those data that were recorded

during the first trial for each of the four subjects. However, the
subjects have experienced and learned various tasks during their
whole life and thereby have experienced various tasks under
various sustained disturbances. Therefore, the sustained 1 kg
loading on the hand is not a pure novel context for these subjects.
Consequently, this should be taken into account when evaluating
the simulation results through a comparison with the subjects’
movements. Because of the disadvantage attributed to pure novel
recruitment, an SC-MS is even more difficult to recruit under
novel sustained disturbances, such as a sustained 1 kg loading,
than the subjects. Considering this disadvantage, wemay evaluate
that an SC-MS can be robustly recruited through the proposed
recruitment model termed T-SC.

As mentioned in section Introduction, innate and learned
MSs are recruited in the CNS for effective and fast motion
control in response to novel external disturbances. To validate
this, the recruitment of a learned MS in a pure feedback
control process is the most optimal task because the pure
feedback control, which is not involved in the prediction of any
disturbance, may need the most effective and fast response to
the feedback context. Therefore, as described in section Results,
novel recruitment with T-SC was simulated in pure feedback
control. To evaluate this simulation by comparison with human
subjects’ movements, as shown in the top row of Figure 4, we
approximated this pure feedback control process as closely as
possible, as described in section Experimental Setup, through
an experimental setting in which the subjects were blindfolded
and not informed regarding the timing of the loading. To avoid
the weight being misloaded on the subjects’ hands, as shown
in Figure 3B, the distance between the initial falling point of
the weight and the initial position of the hand was set close to
zero. Further, we instructed the subjects not to predict the timing
of the loading weight. However, even though this instruction
was given to the subjects, they might instinctively have some
preliminary joint stiffness by co-contraction of both agonists and
antagonists in preparation for the incoming disturbance before
loading. Because of this, as shown in the top row of the right
column of Figure 4, the mean joint angular trace of the subjects
after loading undershot was slower than the simulating joint
angular trace. In evaluating the simulation results in the top
row of Figure 4, we considered that the simulation model was
disadvantaged in responding to a disturbance in comparison with
human subjects.
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