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Our understanding of the neurofunctional mechanisms of speech production and

their pathologies is still incomplete. In this paper, a comprehensive model of speech

production based on the Neural Engineering Framework (NEF) is presented. This model

is able to activate sensorimotor plans based on cognitive-functional processes (i.e.,

generation of the intention of an utterance, selection of words and syntactic frames,

generation of the phonological form and motor plan; feedforward mechanism). Since the

generation of different states of the utterance are tied to different levels in the speech

production hierarchy, it is shown that different forms of speech errors as well as speech

disorders can arise at different levels in the production hierarchy or are linked to different

levels and different modules in the speech production model. In addition, the influence of

the inner feedback mechanisms on normal as well as on disordered speech is examined

in terms of the model. The model uses a small number of core concepts provided by

the NEF, and we show that these are sufficient to create this neurobiologically detailed

model of the complex process of speech production in a manner that is, we believe,

clear, efficient, and understandable.

Keywords: neurocomputational model, computer simulation, speech processing, speech disorders, aphasia,

hierarchical sequencing, neural engineering framework (NEF), semantic pointer architecture (SPA)

INTRODUCTION

This paper provides an overview of the neurolinguistic part of speech production, from initiation
through formulation to implementation of the cognitive specification of an utterance in a
phonological form (Levelt, 1989; Levelt et al., 1999; Indefrey and Levelt, 2004). First, the intention,
the message, or the amount of information that the speaker wants to pass on to a communication
partner is activated (i.e., a preverbal message). This information corresponds to a selection of
semantic concepts (e.g., “boy, dog, hunting”) and a concept frame (e.g., “action, action executor,
action object”). As part of the formulation, the language-specific knowledge repository (i.e., the
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mental lexicon) is then accessed and a word or lemma is assigned
to each concept. In addition, every lemma is integrated into
a grammatical-syntactic framework (e.g., “subject—predicate—
object,” here: “boy—hunt—dog”) such that the selected words are
inflected, functional words are added, and the words are ordered
as a sentence in a defined sequence (here: “the boy is chasing
the dog”). The formulation includes phonological encoding (i.e.,
access to the phonological form of each word), along with
re-syllabification of the entire utterance, which may become
necessary due to the inflection and sequencing of the words
(e.g., in English: /he/passed/us/ -> /hi/pEs/t@s/; phonological
transcriptions are embraced by /. . . / and written in SAMPA-
notation here (SAMPA, 2005).

The purely cognitive-symbolic representation of an utterance
must be transformed into a movement sequence for the lips,
tongue, soft palate, vocal folds, and chest (or respiratory system)
as part of the articulation. For this purpose, the existence of a
mental syllable memory (“mental syllabary”) is assumed (Cholin,
2008), which converts the phonological representation into
motor commands, which then lead to articulation movements
and are converted by the articulation apparatus into an acoustic
speech signal. While the mental lexicon is a knowledge repository
for cognitive entities, the mental syllabary can be viewed as
a knowledge and skill repository for the motor realization of
syllables based on phonological input entities. All common
syllables of the speaker’s practiced language are coded here in
the form of motor plans. For each of these motor plans for a
syllable there is at least one auditory and one somatosensory
target representation with which the correct articulation of the
syllable can then be checked (Guenther et al., 2006; Kröger
et al., 2010, 2019; Guenther and Vladusich, 2012). Extending
these models by implementing the concept of speech gestures
(Goldstein and Fowler, 2003; Goldstein et al., 2006), a motor plan
can be understood as a set of gestures in which the timing, i.e.,
the temporal coordination of all syllable speech movement units
(“speech gestures,” e.g., consonant closure gestures, vocal opening
gestures) is fixed. Spelling out the entire repertoire of gestures
for a target language (e.g., for German) is given by Kröger and
Birkholz (2007) and by Kröger and Bekolay (2019, p. 20).

The speech production model defined above includes six
levels: a concept level, a lemma level, a level of phonological
forms, a motor plan level, an articulatory level, and an acoustic
signal level. Furthermore, in addition to the top-down processing
within this model, several feedback mechanisms are included
based on the information or data generated during top-down or
“feed-forward directed” production. This information is passed
on bottom-up in a “feedback” manner from lower to higher
levels (Postma, 2000). A well-known and important feedback
mechanism is that of controlling the self-generated acoustic
speech signal by self-perception. If this signal does not meet
the expectations of the speaker, a new and corrected realization
of the utterance can be produced. The motor, phonological or
conceptual realization of the utterance, which is feed bottom-
up on the basis of the acoustic-auditory signal, can be compared
with the previously planned motor, phonological, or conceptual
form of the utterance and checked for differences in order to

identify possible production errors at certain levels within the
speech production process.

Hickok (2012) assumes that auditory feedback at the
motor level is more used to correct syllabic motor plans,
while somatosensory feedback, i.e., the feedback of tactile and
proprioceptive information, serves to control the sound-related
speech gestures (“speech movement units,” Kröger and Bekolay,
2019, p. 17ff). While auditory feedback is too slow to effect
real-time corrections, somatosensory feedback control of speech
gestures can lead to real-time corrections. Since speaking can also
take place internally (inner speech, Postma, 2000), the control
of the phonological as well as of the conceptual realization of
an utterance can already be achieved if the inner realization of
the utterance at the phonological level is realized and if perhaps
in addition motor and sensory correlates of the syllables of the
utterance are activated as well, but without concrete articulatory
execution. At this point in time an internal feedback process can
be initiated (Postma, 2000), leading to a bottom-up feedback
process involving the produced forms at the phonological,
lemma, and concept levels of the production hierarchy. This
feedback mechanism is fast and can lead to real-time corrections
at the cognitive level in the production hierarchy.

A quantitative formulation of the modules and levels of
language production described above is achieved in particular
by two models. The model WEAVER (Word Encoding by
Activation and VERification; Roelofs, 1992, 1997, 2014) is a
quantitative formulation and computer implementation of the
cognitive modules. This model is a quantitative implementation
of the approach described by Levelt et al. (1999), which
comprises all levels from conceptualization to the realization of
the phonological form of an utterance. The model is able to
simulate behavioral data for word production, for example by
correctly simulating picture naming tasks, word comprehension
tasks, and nonsense-word (“logatome”) repetition tasks. This
applies both to behavioral data from healthy people as well as
behavioral speech data gathered from patients suffering from
aphasia. In particular, six different forms of aphasia, namely
Broca-, Wernicke-, transcortical-motor, transcortical-sensory,
mixed and conduction aphasias can be modeled using this model
(Roelofs, 2014).

The DIVA model (Directions Into Velocities of Articulators:
Guenther, 2006; Guenther et al., 2006; Golfinopoulos et al.,
2010; Guenther and Vladusich, 2012) also describes a concrete
computer-implemented model of speech production. This model
starts with the phonological level and implements all phonetic
and motor processes involved in speech production down to
articulation, generation of the acoustic signal, and processing
of somatosensory and auditory feedback information for error
correction on the speech signal just realized. The model is
able to correctly simulate syllables, words, and short multi-
syllable utterances. In addition, by means of the modeling of
the somatosensory and auditory feedback, this model is able
to implement the generation of typical modifications to the
already learned and automated motor commands (“forward
control”) that are necessary in the case articulatory or sensory
disturbances leading to differences between the signals that
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have just been generated and those that are expected. This “re-
learning” of articulation in cases of unexpected but longer lasting
disturbances of the articulatory and sensory conditions (e.g.,
“bite-block” cases or “formant shifting”) is in accordance with
behavioral experimental data. In more recent simulation studies,
the DIVA model has also been successfully used to simulate the
articulation of patients suffering from apraxia of speech from
different forms of dysarthrias (Kearney and Guenther, 2019;
Miller and Guenther, 2020).

The above-mentioned model approaches are already capable
of imitating behavioral experimental data (Guenther and
Vladusich, 2012; Roelofs, 2014). In addition, the individual
modules mentioned in these models can be assigned to defined
cortical and subcortical regions (Indefrey and Levelt, 2004;
Golfinopoulos et al., 2010).

The models mentioned above are, however, quite simple
connectionist models (for a differentiation of simple
connectionist models and spiking neuronmodels see: Kröger and
Bekolay, p. 133 ff). It is assumed that each concept, each lemma,
and each phonological form is described by a defined “node”
on the corresponding level of a neural network representing
the production model. These nodes can be “activated” and the
activation of individual nodes can be spread to other nodes
by means of “edges.” In contrast the modeling approach for
speech production described in this publication is based on
the NEF-SPA (Neural Engineering Framework, see Eliasmith
and Anderson, 2004; and Semantic Pointer Architecture, see:
Eliasmith et al., 2012; Eliasmith, 2013; Stewart and Eliasmith,
2014). Here, neural states are represented by biologically
inspired neural activity patterns occurring in defined neural state
buffers. These neural state buffers consist of several thousand
specifically implemented “leaky-integrate-and-fire” neurons
(Eliasmith, 2013). Each state buffer is capable of representing
different neural states, and each state can be identified by its
own characteristic “neural activity pattern” occurring in that
neural state buffer. Different neural activation patterns represent
different cognitive, motor, or sensory states corresponding to
concepts, lemmas, and phonological forms, as well as motor,
auditory, and sensory states of syllables. Thus, each state is
not realized by a node (by a “local representation” of states)
in terms of our NEF-SPA approach, but by an activation
pattern of many neurons associated with each other within
a specific state buffer (i.e., by a “distributed representation”
of states).

In addition, as already mentioned above, the model neurons
within the NEF-SPA approach are implemented here in a
biologically inspired manner. Furthermore, the modeling of
neuronal connections using associative memories and the
modeling of “binding” or “unbinding” of states (i.e., modeling
of short-term relationships between states, e.g., for two concepts
such as “blue” and “ball” to “blue ball”) by using special
processing buffers (binding and unbinding buffers) is also
biologically motivated (Stewart and Eliasmith, 2014). Thus,
neural connections exist not necessarily between all neurons
of two buffers, but between all neurons of one buffer (input
buffer, holding the neural activity pattern of the input state)
and all input neurons of a processing buffer as well as between
all output neurons of that processing buffer and all neurons of

the second buffer (output buffer, holding the neural activation
pattern of the transformed or processed state). This modeling
of transformations of states by interconnected processing buffers
between state buffers is indicted by arrows in Figure 1, e.g.,
for the transformations of neural states from concept buffers
to lemma buffers, or from lemma buffers to phonological form
buffers on the production as well as on the perception side. This
holds as well for those neural connections which implement
complex transformations of states from one level to another
level within the speech production model as well as for clean-
up processes (Stewart and Eliasmith, 2014). The NEF-SPA
approach is explained more fully below in the context of our
speech production model. The NEF-SPA approach also allows a
clearly structured implementation of neurobiological processes
for modeling different behavioral scenarios because it includes
a biologically motivated account of the selection of actions and
thus of the control of neural processes (Stewart and Eliasmith,
2014). Thus, the NEF-SPA approach comprises a cortico-cortical
circuit including basal ganglia and thalamus, biologically realistic
neural firing processes for individual neurons, and biologically
inspired modeling of the dynamics of information transfer
at different types of synapses (Eliasmith, 2013; Stewart and
Eliasmith, 2014). Such biologically inspired modeling of neural
processes directly defines the timing of all neural processes in an
unconstrained way.

It is the aim of this publication to describe a new
comprehensive model of speech production based on the
principles of the NEF-SPA. As explained below, this model is
able to replicate behavioral data convincingly, by simulating
both non-disordered as well as disordered speech realistically.
Parts of the model have already been implemented and used
for simulation experiments in earlier studies (Kröger et al.,
2016a,b; Stille et al., 2019) but for the first time a comprehensive
overview of the complete model is given in this publication in the
next chapter.

METHOD: DESCRIPTION OF THE
COMPUTER-IMPLEMENTED MODEL

The Entire Model: Feed-Forward-,
Feedback-, and Learning-Processes
The model presented here comprises seven modules, namely
the production channel, the perception channel, a knowledge
repository and a skill repository that includes world knowledge
and vocabulary knowledge within the mental lexicon and
speaking skills in the mental syllabary, a module for the cognitive
processing of input information and for the preparation of output
information, a module for controlling all neural processes, and
a module for the implementation of primary motor control
commands and their muscle activation patterns into speech
articulation with subsequent generation of sensory feedback
signals for processing in the perception channel, called peripheral
system (Figure 1).

The current version of our speech processing model is able
to produce single words. The process of word initiation (Levelt
et al., 1999) corresponds to the activation of a concept in the
cognitive state memory C_cog_out (“C” means “concept;” the
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FIGURE 1 | The entire neural model of speech processing. Blue, names of modules; red, hypothetical anatomical location of modules or parts of modules; black,

production and perception modalities within production and perception pathway; black, different state levels within the knowledge and skill repository (mental lexicon

and mental syllabary); black, peripheral sub-systems and cognitive processes; back, external visual and auditory input; brown, names of state buffers (for description

of all state buffers see text and see Table A1 in Appendix). Thick brown arrows indicates the main processing or feedback loop (see text); thin brown arrows indicate

all other feedback loops; thin black arrows indicate the interaction between control module with all other modules.

abbreviations and names for all state buffers are listed inTable A1
in the Appendix). In the NEF-SPA approach, all neural state
buffers are able to activate S-pointers. An S-pointer represents
a cognitive, motor, or sensory state (e.g., a word, a motor
plan, or an auditory realization of a word or syllable). In the
NEF-SPA approach, a number of S-pointers can be understood
mathematically as D-dimensional vectors and, on the other hand,
as activity patterns representing neuronal states in state buffers
consisting of D ∗ N leaky-integrate-and-fire neurons (D = 64
and N = 100 in the case of speech for processing a small mental
lexicon; see Stille et al., 2019). Each individual dimension of
an S-pointer vector (i.e., each numeric value) is encoded as the
activation state of a neuron ensemble consisting of N neurons.
D neuron ensembles build up a complete neural state buffer. A
defined neural activity pattern in a neural state buffer consisting
of D ∗ N neurons can thus be assigned to each cognitive, motor,
or sensory state via the mathematical construct of the vector
representation (Kröger and Bekolay, 2019, p. 175ff).

An S-pointer network (Kröger and Bekolay, p. 206ff) also
enables the inclusion of relations between S-pointers. At the
concept level, this means that relations like “is a” put two S-
pointers like “boy” and “human” in closer relation to each
other than for example “boy” and “animal.” In our model, the
development of such relations occurs at the level of concepts

(world knowledge: concepts and their relations, Figure 1). In
addition, relations can also be established at the level of
phonological forms. Relationships are used here to relate similar
phonological forms, such as all phonological forms for syllables
that begin with /sk/ (e.g., /sku/ for the first syllable of the word
“squirrel” and for example /skEIt/ for the word “skate”).

States are represented on the mathematical level by S-pointers
of length one (Eliasmith, 2013; Stewart and Eliasmith, 2014;
Kröger and Bekolay, 2019, p. 175ff). The definition of a set
of S-pointers thus corresponds to the definition of a set of
unit vectors in a D-dimensional vector space. In the case of
independent S-pointers (independent states), these vectors are
spaced as far apart as possible. In this way, a constant distance
between the end points of the state vectors on the unit sphere
of the D-dimensional vector space is realized, which on the
mathematical level corresponds to a minimization of the DOT
product between S-pointers (i.e., the cosine product between
two vectors; Stewart and Eliasmith, 2014) for all combinations
of S-pointers occurring at one specific level of the model
(concepts, lemmata, phonological forms etc.). In the case of the
definition of S-pointer networks, however, the relations between
S-pointers are taken into account. Here, related S-pointers point
in similar directions in the D-dimensional vector space and thus
combinations of S-pointers that are in relation with each other
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have a higher DOT product and thus have a smaller distance to
each other in comparison to other S-Pointer combinations on a
specificmodel level (Kröger and Bekolay, 2019, p. 206ff). In terms
of neuronal states, this means that activations of an S-pointer
from an S-pointer network always co-activate those S-pointers or
those corresponding states that are related to this S-pointer. Thus,
a semantic S-Pointer network is able, for example, to represent
our world knowledge, because this knowledge can be seen as a set
of S-pointers and S-pointer relations.

S-pointers are of unit length (length one) in most cases,
indicating a “normal activation strength of the appropriate neural
state” or “clear activation” of that neural state. But after some
processing steps the activity of neural states can decrease (from
the mathematical viewpoint: its S-pointer decreases in length).
This can be overcome by adding clean-up processes (Stewart and
Eliasmith, 2014) in order to always clearly identify a cognitive,
sensory, or motor state during neural processing.

The transformations of neural states between individual state
buffers in the production channel [concept level (C_prod) -
> lemma level (L_prod) -> phonological level (P_prod) -
> motor plan level (M_prod)] as well as in the perception
channel [primary sensory level of the somatosensory, auditory or
visual signal (S_perc, A_perc and V_perc) -> phonological level
(P_perc) -> lemma level (L_perc) -> concept level (C_perc)] as
well as from the perception channel to the module of cognitive
processing (C_perc -> C_cog_in) and from the module of
cognitive processing to the production channel (C_cog_out ->
C_prod) is realized in the NEF-SPA approach by using associative
memories (Stewart and Eliasmith, 2014; Kröger and Bekolay,
2019, p. 186ff; for the definition of the neural buffers and
their abbreviations see Table A1, Appendix). These associative
memories are part of a long-termmemory developed by learning.
The memories contain the information about which concept
has to be transformed into which lemma, which lemma into
which phonological form etc. In the production channel, an
activated concept is thus passed on from the state buffer
C_cog_out to the state buffer C_prod, then by means of a
neural transformation network including associative memories
into the activation pattern of the associated lemma and then
further transferred into the associated phonological form. The
activations occur in state buffers L_prod for the lemma followed
by the state memory P_prod for the phonological form (see
Figure 1). If there is a one-syllable word, the associated motor
plan is activated in the state memory M_prod in the same way
using an associative memory. In the case of multi-syllable words,
however, a temporal coordination of the sequence of syllables
must also be implemented, which is done via the control module
(see Kröger and Bekolay, 2019, p. 203ff).

To locate the state buffers as well as the associative memories
in the brain it can be assumed: (i) all neuronal state buffers
and associative memories of the auditory perception channel are
located in the temporal lobe; (ii) all state buffers and associative
memories of the visual perception channel are located in the
occipital lobe toward the temporal lobe; and (iii) all neuronal
state buffers and associative memories of the production channel
are located in the frontal lobe, with strong neuronal association
fibers running from the Broca area of the frontal lobe to the

Wernicke area of the temporal lobe. Thus, motor information
for syllables (motor plans) stored in the mental syllabary (in the
Broca area of the frontal lobe) and their sensory correlates can be
located not only in the frontal lobe but also in the temporal lobe
(area Spt, see Hickok, 2012).

For each syllable, an associated motor plan is activated
from the mental syllabary in the neuronal state buffer M_prod
(Figure 1). All syllables which are represented in the mental
syllabary are already practiced by the speaker during the
course of language acquisition, such that it can be assumed
that in addition to the motor representations, there is also
an auditory (“A_perz”) and a somatosensory representation
(“S_perz”) stored in the mental syllabary for each already known
and already trained syllable (see perception channel in Figure 1).
The activated motor plans can therefore also be referred to
as sensorimotor representations for each syllable. On the side
of the production channel, these plans specify the temporal
coordination of all speech movement units occurring within
the syllable (Figure 1: “G_mot,” with G for “gesture”). Speech
movement units (gestures) are subordinate motor units (simple,
purposeful articulator movements) that can be directly assigned
to a goal-directed speech movement such as a labial closing
gesture for realizing a /b/, /m/ or /p/, a glottal opening gesture
for realizing an unvoiced sound (e.g., /p/, /f/, /s/, /t/ or /k/), or a
velopharyngeal opening gesture for realizing a nasal sound (e.g.,
/n/ or /m/; see Kröger and Bekolay, 2019, p. 17ff).

In addition to the production channel, the perception channel
is of crucial importance for speech production, since sensory
feedback signals are processed in this channel. This results
in a “large processing loop” that can be found in the model
(Figure 1). This large processing loop can be explained by
taking into consideration two process scenarios that often
occur in speech production. The first process scenario is
“direct word production,” which begins with the self-induced
generation of an utterance; i.e., one word in case of our
current model. Here, an intention realized as a semantic concept
(C_cog_out) is forwarded to the concept level of the mental
lexicon in the production channel (C_prod) and from there is
forwarded through the production channel without intervention
by the control module of the model (Figure 1). After running
through an associative memory it leads to the activation of a
lemma (L_prod), then, after passing through another associative
memory, to the activation of a phonological form (P_prod), to
the activation of a sequence of motor plans (M_prod) for each
syllable in the word, and to the activation of a set of temporally
coordinated speech movement units (SMUs or gestures, G_mot,
see Kröger and Bekolay, 2019, p. 17ff). The resulting articulatory
movement sequences leads to a generation if somatosensory and
auditory feedback information activated in S_perc and A_perc,
which then can be processed within the perception channel and
be compared with the sensory expectations for the production of
the word via the mental syllabary and mental lexicon.

A second process scenario that occurs frequently, a word
repetition task, begins within the perception channel as part of
the “large processing loop.” Based on an externally generated
visual or auditory stimulus (V_perc, A_perc), a concept (C_perc)
is activated, which can then be passed on directly to the
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production channel without further cognitive processing. In the
further course of this paper, we differentiate between a word
repetition task as was just mentioned here, and a logatome
repetition task (logatomes=meaningless words or syllables), that
involves repeating syllables or nonsense words without activating
the mental lexicon, since nonsense words are not represented
in the mental lexicon. In this second case, the auditory input
signal, after recognizing its phonological structure (activation at
level P_perc), is passed on directly to the phonological level of
the production channel (P_prod) (shortcut from perception to
production side on the phonological level; see thin brown arrows
on that level in Figure 1).

Moreover, it should be noted that in a more complete model,
in addition to the visual part of the perception channel (V_perc
-> C_perc), there would also be an orthographic part for
written language, or for the conversion of a word or lemma
into an orthographic hand-arm-motor form: O-prod, Figure 1).
However, this part of the model has not yet been implemented.

From the point of view of speech acquisition, the “large
processing loop” described above can also be seen as a “large
learning loop.” Let us imagine the model as a child, who sees a
ball for example (activation of C_perc, C_cog, C_prod for the
concept “ball”) and now wants to name this object (activation
of L_prod and P_prod for the word “ball”). For this purpose,
the child will draw the caregiver’s attention to the ball in a
specific process scenario, here called “word learning.” Then, by
looking at it, the child will motivate the caregiver to pronounce
the associated word “ball” (triangulation process: child looks at
the ball, points to the ball, looks at the caregiver). This process
scenario is implemented in the model in the following way: The
concept “ball” is activated in a preliminary neuronal specification
at the cognitive level (C_cog). The child then tries to realize the
word (the syllable) by activating preliminary neural specifications
of motor plans (M_prod -> S_perc and M_prod -> A_perc
due to the self-perception of what has been said). Based on the
target word uttered by the caregiver, the child already has an
idea of the auditory form of the word (A_perc). In an iteration
process, the motor form of the word or syllable (M_prod) and the
speechmovement units (gestures G_mot) involved in this syllable
are produced now and are modified and optimized until the
caregiver accepts the acoustic correlate of the word production
done by the child after several attempts. The accepted speech
items are then stored in the mental lexicon and in the mental
syllabary (see also Kröger and Bekolay, 2019, p. 71ff; Kröger
et al., 2019 for the formulation of this learning scenario in a
connectionist approach).

In the course of language acquisition, themodel acquires more
and more syllables, words and phrases and thus also recognizes
grammatical structures and will thus also build up knowledge
at the lemma level (Figure 1). In addition, through linguistic
as well as non-linguistic interactions with the environment, the
child will also build up a world knowledge and thus learn a lot
of semantic concepts and also build up a set of relationships
between concepts (see the mental lexicon and world knowledge,
Figure 1). Over time, the child will also be able to expand the set
of phonological forms and derive syllabic-phonological structure
rules (phonotactic rules) from the large number of syllables

learned (see the set of all phonological forms in the mental
lexicon and in the mental syllabary; Figure 1). The same applies
to the amount of motor plans and to the amount of speech
movement units. Thus, in the course of language acquisition, all
areas of the mental lexicon and mental syllabary are built up.
Stored items can be activated both on the production side and
on the perception side on each level of the production model
(i.e., the concept level, the lemma level, the phonological form
level, the level of the sensorimotor plans, and the level of speech
movement units).

All levels of our knowledge and skill repository have been
addressed in the language acquisition process. Thus, a defined set
of items has been learned and saved for each of these levels. These
items are modeled by sets of S-pointers and S-pointer-networks,
which can be defined for each level of the model. Each of these
levels is linked from neural state buffers on the production side
to neural state buffers on the perception side. These buffers can
each contain an item or a sequence of items as a neural activity
pattern for a short period of time in order to be able to process a
word in the top-down manner defined by the model. The arrows
of the model in Figure 1 indicate that a neuronal activation
occurring in a state buffer activates the next state belonging to
the same syllable or word in the subsequent buffer of the next
higher level (on the perception side) or the next lower level (on
the production side). Thus, the thick brown arrows in Figure 1

describe the normal course of the neuronal transformations
within the production and perception channels. While at the
higher levels, the same types of representations occur at each
level, we have to cope with different types of representation at the
lower process levels. Here we must differentiate between sensory
and motor specifications of the motor plans as well as the speech
movement units. It can be assumed that motor plans on the
sensory side correspond to auditory forms of whole syllables,
while speech movement units or sound-related small production
units correspond more with somatosensory information (tactile
and proprioceptive movement information; see Hickok, 2012).

Since the “large processing loop” which can be identified
from Figure 1 underlies the hierarchical structure of language
production and thus the idea of “sequential processing” of neural
signals, it should also be remembered that every neural state
activated in a state buffer is activated for longer time periods
on each side (production or perception) on each level (concept
level down to the levels of sensorimotor representations). This
becomes clear from the visualization of the neuronal activity
of each state buffer over the entire course of a combined word
perception, word comprehension, and word production scenario
(Figure 2). The sequence of activations on different model
levels and their overlapping activation time intervals can be
recognized here for each S-pointer activated in the state buffers.
The model thus clearly shows the flow of information during
speech processing while also indicating the temporal overlap of
activations at different model levels.

Due to the priming of the test person (the model) with
regard to the task to be executed (here: word recognition
and word comprehension based on auditory inputs (here the
word “apple”) with identification of a superordinate term for
this word (here: “fruits”), the input signal for the control
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FIGURE 2 | Decoded neural information in the neural state buffers of different model levels on the perception and production side by displaying activation strength of

states (y-axis; the value one indicates an activation level of 100% for a specific neural state) over time (x-axis in sec). The task defining the process scenario is word

(Continued)
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FIGURE 2 | perception (here of the word “apple”), word comprehension, and word processing (here of the word “apple is a”) and word production of the result of

cognitive processing (here: the word “fruits”). State buffers and there activation patterns from above: input control activity for the process scenario (in_con); generated

actions of the control module (out_con); utility values for the selection of actions [see “action selection” processes in Stewart and Eliasmith (2014)]; visual input (arrow

under V_perc); auditory input (arrow under A_perc); Concept input for the cognitive processing module (C_cog_in); Relation type input for cognitive processing

(rel_type); cognitive output from the cognitive processing module (C_cog_out). Remaining part of the figure: state buffer activations at the concept level (states are

named: C_... and Cn_...), lemma level (L_...) and phonological form level (P_ and Pn_...) on the production and perception side (small “n” indicates S-pointers which

are part of a S-Pointer network; see text; small “w” indicates “word” in contrast to sub-word units like syllables). On bottom: state buffer activation patterns of the

motor plan on the production side (see text). Activation patterns are decoded in form of S-pointer-amplitudes for each speech item at each model level. The standard

S-pointer amplitude (i.e., the activation strength of the appropriate neural state) in these “similarity plots” (cf. Eliasmith, 2013) is one (unity length). It can be assumed

that a neural representation is activated sufficiently in a state buffer, if the amplitude of the associated S-pointer is higher than 0.7. The display of activation levels is

limited to value of two (see C_cog_in and C_cog_out) for all figures, because no new information is given if the activation level of a state is higher than “full activation”

(i.e., one). Activation levels higher than one sometimes occur due to a building up of neural energy in a memory buffer, if information is transferred that memory (see

figures below).

module first defines a time interval for recognizing the
input word for later determination of the superordinate term
(Q_SUPERORDINATE). The action to activate the generic
superordinate term (PRODUCE_SUPER) is then activated.
The auditory input activity extends over almost both time
intervals and activates the lemma and the concept of the word
“apple” within the perception channel. At the level of cognitive
processing, the S-pointer for the semantic relation “is a” is then
activated in the state buffer (rel_type; not indicted in Figure 1).
Within the cognitive processing module, a binding process
between “apple” and “is a” takes place, which subsequently leads
to the activation of the concept “fruits.” This result is then passed
on to the output state buffer of the cognitive processing module.
The word “fruits” is then activated and implemented as soon as
it passes to the production channel. No further action is needed
from the process model for word activation and word processing
within the production channel down to the motor plan state. It
can be seen that between the activation of the auditory word input
and the activation of the motor plan output, there is a time delay
of∼250 ms.

It should also be pointed out that the coupling between the
currently activated state of a word and the mental lexicon can
also be recognized very well from Figure 2. For example, the
phonological similarity relationships can be recognized from the
co-activation of phonologically similar words (here: “apathy” and
“aprikot” for the activated word “apple”) in the phonological
buffer on the perception side. Similar relationships can be
recognized for the semantically similar words at the concept
level on the perception side (here: “apricot” and “peach” for the
primarily activated word “apple”).

Furthermore, it should be stated here that activation levels of
neural states are visible in the similarity plots, or plots indicating
the activated neural states in a specific neural buffer (see Figure 2
ff). Here normal activation levels are indicated by S-pointer
amplitudes of about 1 (unit length S-pointers). This reflects 100%
activation of a neural state. We will see later, that already an
activation below 70% (amplitude of 0.7 in the similarity plots for
a specific S-pointer) already may lead to erroneous processing
because activation amplitudes normally decrease to a certain
degree with each neural forwarding and neural processing step.
Processing buffers like associative memories normally cannot
process states indicating activations below a level of 0.3 in the
similarity plots (i.e., a state activation below 30%). Thus, we

define this 30%-level as threshold activation level for further
processing of a neural state.

Moreover, it should be mentioned that neural memories in
the form of recurrent neural state buffers can exhibit state
activities represented by S-pointers with a length above one,
because during the signal input time interval the recurrent neural
connections together with the neural input connections amplify a
neural state strongly. That automatically stops if the input signal
time interval ends, because the recurrent neural connections
from now on only serve to hold the input signal at a particular
intensity level, represented by a S-pointer length of about one.

At this point of the paper we want to address an important

question: How do concepts from the NEF-SPA approach inform

the structure of our actual speech production model? This
question can be answered by addressing three main points:

(i) The NEF-SPA clearly separates knowledge storage and

(dynamic) neural processing. Knowledge is stored in the
form of sets of S-Pointer and of S-Pointer networks.
These sets or networks are fixed in the model before the

simulations start. Each S-Pointer represents a state (e.g., a
word or an executable action). The neural realization of an

S-Pointer corresponds to a particular pre-defined activity

pattern of the neurons in that buffer.
(ii) Only a few building blocks (buffers, memories, connections)

are required for neural processing and thus for developing
a speech production model if the NEF-SPA approach is
used. Buffers allow neuronal states to be activated at certain
time intervals at certain locations within the overall neural
network. These states can either only be activated as long as
they are carried by the buffer input, or they can be held in a
buffer for a short period of time if this buffer is additionally
equipped with recurrent neuronal connections (short-term
memory). This concept of neural engineering is sufficient to
model lexical access in language production.

(iii) Neural connections can be realized in the NEF-SPA
approach by direct connections between buffers if the
neuronal information is only to be passed on. Neural
connections that transform neural states, for example
through the conversion of an S-pointer A into an S-
pointer B, always requires the interposition of an associative
memory, which contains exactly the knowledge of how
each S-pointer must be transformed. Associative memories
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enable the realization of different model levels in our
lexicon model (concept level, lemma level, phonological
form level, engine plan level) as part of the entire speech
production model.

(iv) In the NEF-SPA, in addition to the neural transformation
of S-pointers done by means of associative memories,
an additional neural transformation of S-pointers by
defining binding and/or unbinding processes can also
be implemented. In our modeling approach for word
production, binding and unbinding processes are only
suitable for processing S-pointers within an S-pointer
network, and to thereby store short-term relations in short-
term memories (e.g., binding a specific object with a
specific color currently of interest: “(this is a) blue ball” vs.
“(this is a) red ball”) while associative memories process
knowledge stored in long-term memories in order to unfold
stored relations between objects or concepts like e.g., “an
apple” (object) “is a” (relation)? “fruit” (object). The neural
mechanism of binding and unbinding can be realized in the
NEF-SPA approach like the neuronal mechanism of simple
S-pointer transformation by means of defining specific
binding and unbinding buffers. In our model, this concept
of the NEF-SPA is only used at the level of cognitive
word processing.

It should be noted that this minimal set of concepts prescribed
by the NEF-SPA is sufficient to adequately model the complex
neuronal mechanisms of word production. Through this
minimalism, a clear model of word production can be created
that is capable of simulating normal as well as disrupted word
production. The reduction to a few neural storage and processing
principles is therefore the key to creating the model described in
this paper.

Different Process Scenarios
The tasks to be performed by a test person define the simulation
scenarios to be performed by the model. In the context of this
paper, we simulated three different tasks or process scenarios:

(i) A picture naming task wherein the item to be named is
presented visually as the main part of a picture. It is the task
of the test subject or model to produce the associated word.
An example of the sequence of activations of state buffers
for this process scenario is given in Figure 3. Here the
word “bread” is offered as a visual stimulus (visual_in) and
recognized as such (C_perc). The word is passed through
on the cognitive processing level without further processing
steps (C_cog_in ->C_cog_out) and then passes through the
production channel down to the motor plan state buffer.

(ii) A word comprehension task wherein a term is offered
auditorily (e.g., by the test supervisor) and it is the task of
the subject or model to find and produce a generic term or
superordinate describing the word (see Figure 2: perception
of the word “apple” and expression of the generic term or
superordinate term “fruits”).

(iii) A word (logatome) repetition task wherein a syllable or a
combination of syllables is offered auditorily. However, this
should not be a word which occurs in the subject’s mental
lexicon, but rather a meaningless word or logatome. The

subject is then forced to imitate the word on the phonetic-
phonological level. We simulate this in the model by cutting
the connection between the phonological state buffer and
the lemma state buffer in the perception channel. Thus,
the model cannot recognize the word, even if it is not a
logatome, and cannot transfer it to the production channel
via the concept level. Rather, the model is forced to use
a direct or “shortcut” neural association between the two
state memories on the phonological level, namely from the
perception side (P_perc) to the production side (P_prod;
see also the thin brown arrows on that level in Figure 1).
The activation pattern for a perceptually offered example
syllable (here: “truck”) is shown in Figure 4. There are no
neuronal activations above the phonological level, because
the mental lexicon is disconnected. The phonological form
is thus transferred directly from the perception side to
the production side at the phonological level. However,
the activation of the motor plan, which begins about
500ms after the start of the auditory stimulus, does not
mean that articulation is already beginning at this point
in time. The resulting activation of the sequence of speech
movement units (G_mot) in the primary motor area of the
cerebral cortex and the consequent initiation of articulation
movements is not shown in Figure 4, since this part of the
model has not yet been implemented. A first version of this
motor part of the model part is discussed in Kröger et al.
(2016a).

On the Influence of Feedback Mechanisms
In addition to the “large processing loop” (indicated by thick
brown arrows in Figure 1), there are a number of smaller
feedback loops, indicated by thin brown arrows in Figure 1. The
associated feedback mechanisms play an important role both
during speech acquisition and later during speech production.
Three more feedback loops are discussed here.

First, there is the “motor plan feedback loop” (S_perc and
A_perc -> M_prod, and further down on the production side
toward articulation; Figure 1): This loop plays an important
role in learning motor plans. In the babbling phase of
speech acquisition, motor-auditory and motor-somatosensory
relationships are initially perceived based on randomly produced
speech articulator movements. This basic knowledge is stored
in the lower levels of the mental syllabary as well (Kröger and
Bekolay, 2019, p. 71ff). This basic knowledge of sensorimotor
relationships allows the subject to successfully imitate speech
items (Kröger and Bekolay, 2019). This subsequently allows the
subject to build up the higher levels of the mental syllabary,
i.e., sensorimotor representations of all frequent syllables.
The syllabic motor plans and the associated auditory and
somatosensory representations of each syllable are then stored.
After the mental syllabary has been built up, the subject is able
to call up motor plans for the learned syllables immediately and
to implement them correctly in the articulatory processes. In
addition, the subject is now able to compare the auditory and
somatosensory states resulting from a current articulation with
the already learned auditory and somatosensory states for the
syllable just realized.
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FIGURE 3 | Decoded neural information in the neural state buffers at different model levels on the perception and production side. For a description of the individual

buffers, see Figure 2. The process scenario is that of a picture naming task (see text).
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FIGURE 4 | Decoded neural information in the neural state buffers at different levels of the model on the perception and production side. For the description of all

state buffers, see Figure 2. The process scenario is that of a word or logatome repetition task (see text).
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If there are discrepancies between the sensory results of a
syllable that has just been realized and the stored sensory patterns
for the correct realization of a learned syllable that has just
been produced, then the motor plan of that syllable is modified.
This change is such that the new sensory patterns come closer
to the stored sensory pattern (i.e., the sensory target state of
the already learned syllable) than the previous realization of the
syllable (see Guenther, 2006; Guenther et al., 2006). Accordingly,
the motor plan feedback loop is not only required in speech
acquisition for the construction of a repository for correct
sensorimotor relations within the lower levels of the mental
syllabary (Figure 1), but also afterwards for the continuous
verification of the correct realization of all syllable productions
by becoming aware of discrepancies between current ones and
stored sensory target states.

However, this feedback loop triggers actions via the control
module if the correction of a word or a syllable is needed. In
the event of a discrepancy between the sensory states of syllables
that have just been realized and their learned sensory target
states, the correction process is initiated via the basal ganglia
and thalamus, but only after finishing the incorrect realization
of the syllable. In the event of such a discrepancy, the motor
plan of the syllable is modified and checked again during the
new articulation process initiated by the control module. The new
motor plan should bring the sensory target and the sensory state
of the actual realization closer together. In the mental syllabary,
due to the multitude of production attempts already done by the
child during speech acquisition, knowledge is stored concerning
the direction in which the parameters of the motor plans and
of gestures have to be changed. This is done in order to bring
the sensory target closer to the already learned target (see the
definition of the “error maps” according to Guenther et al., 2006).

Second, there is the “feedback loop for speech movement
units” (also called: “gesture feedback loop:” S_perc -> G_mot,
and further down on the production side toward articulation).
The motor plan of a syllable defines the types of speech gestures
and specifies the number of speech gestures per syllable and their
temporal coordination within the syllable. The speech gestures
or speech movement units themselves contain the information
for the implementation of target- or goal-directed vocal and
consonant articulation movements (Kröger and Bekolay, 2019, p.
17ff). Each speech movement unit defines a targeted movement
of one or more articulators (e.g., lower jaw, lower lip, and
upper lip in case of the realization of a bilabial closure). It has
already been emphasized that in addition to the use of auditory
information, speech movement units are primarily controlled
by means of somatosensory feedback information. For vocalic
gestures (e.g., shaping the vocal tract to articulate an /a/), this
somatosensory movement and target information can be in the
form of a proprioceptive target: (i) adjustment of the muscular
tension and stretching for the tongue body and (ii) adjustment
of the joint angles for example of the temporomandibular joint
when lowering the tongue body and opening the mouth for
producing the vowel /a/. For high vowels (e.g., /i/ or /u/) there
will additionally be tactile information about the contact area and
contact strength of the tongue edges with the side edges of the
hard and soft palate. In the case of the consonant articulation,

the sensory target is mainly in the form of tactile information,
such as the location and size of the contact surface of the tip
of the tongue with the hard palate when an apical closure such
as /t/ or an apical constriction such as /s/ is produced. While
acoustic information is more complex can only be processed
slowly, somatosensory feedback information can be processed
very quickly, such that the gesture feedback loop can even be
used for online corrections of the articulation movements of
gestures (Parrell and Houde, 2019). The correction information
for these simple, goal-directed articulation movements, which in
particular result in the realization of individual speech sounds, is
therefore also partially stored in the cerebellum (Hickok, 2012).
The part of the gesture feedback loop that is controlled by
the cerebellum can therefore do online movement corrections.
The auditory part of the sensory feedback information is only
partly used to adjust the parameters of (mainly vocalic) speech
movement units. Basically, the acoustic information serves to
check the correct temporal coordination of all speech gestures
involved in the production of a syllable, a word, or an utterance.

Third, there is the “internal (cognitive) feedback loop”
(P_prod -> P_perc, and further up within the perception
channel; Figure 1). It has been shown that internal perceptions
of the phonological form, the lemma, and the concept of the
word to be produced occur earlier than the motor realization of
that word. So even during the production of a word, it can be
perceived “internally” before the articulation of the word starts
(Postma, 2000). Therefore, it is assumed that there is a feedback
shortcut on the phonological level from the production to the
perception side (i.e., in the opposite direction from the short cut
necessary for logatome repetition). This feedback enables an early
correction of word production if, for example, an incorrect word
selection has already taken place in the production channel at
the lemma level. It can be assumed that this internal feedback
loop is able to compare the concept, lemma, and phonological
forms of a word under production between the perception
channel (i.e., for the intended word) and the production channel
(i.e., for the produced form). If there is a discrepancy between
these two forms, the ongoing production of the word can be
interrupted so that a new (correct) production attempt can start,
starting with a new selection process for that concept. Both the
termination of the current (wrong) production and the start
of a new (possibly correct) production is carried out via the
control module. Such a “stop” of the wrong production can be
evoked, in particular during a picture naming task with auditory
interspersed distractor words (Slevc and Ferreira, 2006).

Modeling Speech Disorders and Speech
Errors
Since we want to model the effects of defined speech disorders
and of speech errors that occur spontaneously in normal subjects
in this paper, a brief overview of speech disorders and methods
of triggering speech errors is given here. All types of speech
disorders and speech errors mentioned here were simulated in
this study.

According to the model of the mental lexicon (Levelt et al.,
1999), six different types of aphasias can be distinguished
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(Roelofs, 2014). In Broca vs. Wernicke aphasia it is assumed
that the phonological state buffers on the production side
vs. the perception side are neuronally disturbed. In the case
of transcortical motor vs. transcortical sensory aphasia, it is
assumed that the associative memories between the phonological
form buffer and the lemma buffer are disturbed on the
production side vs. the perception side. Mixed aphasia assumes
that the associative memories between the lemma and concept
buffers are disturbed on both the production and the perception
side. Conduction aphasia assumes that the neuronal connections
between the phonological state buffers reaching from the
perception to the production side are disturbed. Roelofs (2014)
presents a computer simulation of the resulting symptoms in
picture naming, word comprehension, and logatome repetition
tasks by implementing these neural disruptions in different
buffers or memories at different levels of the production model.
These types of neural disruptions can be modeled in our
approach by ablating a percentage of neurons in specific state
buffers as well as in associative memories, which in the second
case leads to a disruption of neural connections between state
buffers. For modeling a healthy person, the percentage of ablated
neurons is zero. The degree of a neural dysfunction and thus
the severity of a disorder increases with increasing percentages
of neural ablation in specific buffers.

Other typical neurogenic speech disorders are apraxia of
speech and the dysarthrias. Apraxia of speech is defined as a
motor planning disorder where motor plans cannot be learned,
stored, or retrieved correctly. Dysarthrias are defined as a
set of speech disorders stemming from disruptions of the
neural motor pathways and the muscular systems of the speech
articulators. Thus, the correct execution of activated motor plans
is not possible. Modeling the resulting speech behavior and
the symptoms of these neurogenic speech disorders is difficult.
Kearney and Guenther (2019) discuss the localization of these
speech disorders in the module structure of their model, but do
not yet provide any simulation examples.

Higher level speech errors can be triggered, for example,
by using the experimental paradigm described by Slevc and
Ferreira (2006). Distractor words are interspersed during a
picture naming task. The subject is asked to either stop the
production of a word in different runs of the test (“stop-trial”)
when she/he hears the distractor word, or to try to continue
word production despite the occurrence of the distractor word
(“go-trial”). It has been shown that those distractor words that
are phonologically similar to the target word to be produced are
ineffective. Stopping word production is therefore more likely
the less similar the distractor word is in comparison to the
target word to be produced. In particular, semantically similar
distractor words had the same effect as completely dissimilar
distractor words, while the distractor word is more ineffective
in stopping picture naming if it is phonologically similar. A
first computer simulation of this test scenario was developed by
Kröger et al. (2016b). The behavioral effects could be modeled
with regard to the effect of dissimilar and phonologically or
semantically similar distractor words. In particular, in this paper
examines which level of the internal feedback loop triggers
the effect.

It has been shown that speech errors occur frequently for
speakers suffering from speech disorders, for example when
lexical access is disturbed or when the motor planning or motor
execution levels are disturbed (Liss, 1998). In this case, speech
errors are not spontaneous like in the case of healthy speakers,
but rather are frequently occurring errors, which often fluctuate
with regard to the type of error. In an experiment in this paper we
simulate lexical retrieval disorders and the resulting speech errors
that occur in that case. A study introducing the basic test scenario
for this test is introduced by Stille et al. (2019).

METHOD: DESCRIPTION OF SIMULATION
EXPERIMENTS

Experiment 1: Neuronal Dysfunctions at
Different Levels of the Model Due to the
Modeling of Different Forms of Aphasia
Three simulation scenarios were implemented: a picture naming
task, a word comprehension task, and a logatome repetition
task. Each simulation scenario was implemented for all 18 target
words for the picture naming task (see Table 1). These 18 target
words as well as 18 phonetically similar, 18 semantically similar,
18 semantically and phonetically similar and 18 semantically
and phonologically dissimilar words were stored in the mental
lexicon at the concept level, the lemma level, and the level of
the phonological forms (see Table 1). Similarity relations were
realized on a semantic and phonological level. To define the
semantic similarity relations, 18 generic terms or superordinate
words were defined and stored in the mental lexicon. To
define the phonological similarity relations, phonological sound
sequences were defined and also fixed as logatomes. For the
transcription of all phonological forms for each word, see Kröger
et al. (2016b). It should be stated here that the limitation of a
vocabulary to just about 100 words does not limit the generality
of the results (cf. Roelofs, 2014, p. 37).

In the case of the logatome repetition task, the neural
association between the state buffer of the phonological forms
and the state buffer of the lemmas was separated within the
perception channel, so that the target words are interpreted
and processed by the model as meaningless syllable sequences
(logatomes). Example activations for all three simulation
scenarios have already been given in the theory section of this
paper (Figures 2–4).

Experiment 2: Picture Naming Task With
Distractor Words in a Halt Scenario
The scenario simulated in this experiment is based on a
picture naming task in which a distractor word is acoustically
interspersed during the production of the target word (Slevc
and Ferreira, 2006). In our implementation of this experiment,
the distractor word, an auditory stimulus, is interspersed 50ms
after the visual stimulus containing the target word is presented
(Figures 5, 6). Although the production of the target word is
permitted, a HALT-signal (S-Pointer HALT, see Figures 5, 6)
is generated based on the evaluation of the strength of the
activation difference (i) in the phonological state buffers alone
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TABLE 1 | Words and sound combinations anchored in the mental lexicon for all three simulation experiments of this study.

Target word Semantically

similar word

Phonologically

similar word

Phonologically

and semantically

similar word

Dissimilar word Semantically

superordinate item

(semantic cues)

Similar sound segments

(phonological cues)

Apple Peach Apathy Apricot Couch Fruits /Ep/

Basket Crib Ban Bag Thirst Bin /bE/

Bee Spider Beacon Beetle Flag Crawler /bi/

Bread Donut Brick Bran Nail Cereal /br/

Camel Pig Cash Calf Bucket clovenHooved /kE/

Carrot Spinach Cast Cabbage Evening Veg /kE/

Duck Raven Sub Dove Brass Bird /da/

Elephant Moose Elm Elk Stripe HornAnimal /El/

Fly Moth Flu Flea Rake Bluebottle /fl/

Lamp Candle Landing Lantern Package LightSource /lE/

Peanut Almond Piano Pecan Dress Nut /pi/

Rabbit Beaver Raft Rat Coffee Rodent /rE/

Snake Eel Snack Snail Fire Invertebrate /snE/

Spoon Ladle Sparkle Spatula Cable Lifter /sp/

Squirrel Mole Skate Skunk Chain HairySkin /sk/

Train Bus Trophy Trolley Fox PublicTrans /tr/

Truck Jeep Trap Tractor Celery UtilityVehicle /tr/

Trumpet Horn Traffic Trombone Corner BrassWind /tr/

The semantic cues are also anchored in the mental lexicon as meaningful units. These terms (superordinate words) are not necessarily real words of the target language and in

addition need not necessarily have to be correct in an overall sense, because the mental lexicon is subject-specific and represents world knowledge of an individual. The phonological

sound segment sequences (phonological cues; last column of the table) can be interpreted as logatomes. They have no equivalents at the lemma and concept level. The phonological

transcription symbols correspond to the SAMPA standard (SAMPA, 2005).

or (ii) in the phonological and semantic state buffers of the
production and perception sides of the model. If the absolute
value of this difference is too high, the HALT action is triggered.
Thus, the HALT action occurs if the difference in the activations
between the production and the perception side exceeds a
certain threshold. This activation of the HALT action is activated
in the control module of our model (out_con; see Figures 5,
6). In our simulations, however, this action only causes the
activation of a motor-level S-pointer “Nil” in the motor plan
buffer which overlays the motor plan S-pointers of the target
word (herein Figures 5, 6: “Pw_St_traIn,” which points on the
motor realization of the word “train”).

If the distractor word is phonologically dissimilar to the target
word, a strong and only slightly (about 20–40ms) delayed Nil
signal occurs in the motor plan buffer (Figure 5). However, if
the distractor word is phonologically similar, a much weaker and
more time-delayed Nil-signal (delay time∼100ms) occurs in the
motor plan state buffer (Figure 6).

Experiment 3: Phonological and Semantic
Retrieval Aids
As part of the “linguistic test for lexical storage and lexical
retrieval for Standard German” (WWT 6–10, Glück, 2011),
we are using the picture naming task for the 18 target words
introduced above (see Table 1) in this simulation experiment.
In a pilot experiment, the associative connections between
the concept and lemma state buffers on the production side
were dampened by decreasing the output amplitude of the

neural signals traveling through this connection, so that the
correct and full activation of a lemma even in the case
of a correct and complete activation of the concept leads
to lemma activations with low amplitude (i.e., activation
strength of <70% of normal state activity in M_prod). From
Figure 7 we can see that the activation of the target word
“snake” at the lemma level in the production channel leads
to the activation of three lemmata, i.e., “snake,” “snail,” and
“eel,” at the same time and both S-pointers have a low
activation level.

The target words, which are systematically only weakly
activated in this experiment within the picture naming time slot,
can be compared to the phenomenon that speakers describe
colloquially as “the word is on the tip of my tongue.” This
situation applies to the initial period of the simulation up
to ∼750ms. The simulation experiment is defined such that
phonological or semantic help is given in the following time
period. Even if the correct word was activated at the lemma
level of the production channel due to picture naming in the
first 750ms (see Figure 8), in many cases the activation remains
poor in the lower-level state buffers (i.e., below 30% of normal
activation on the motor plan level in the first 750ms for the target
word; no activation in case of the examples given in Figures 7,
8) and thus does not lead to activation of the motor plan of the
target word. This can be clearly recognized from the simulation
examples in Figures 7, 8. But even if in the time window up to
750ms, before a semantic or phonological cue is introduced, the
motor plan of the target word (here: “snake” or “duck”) is not
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FIGURE 5 | Decoded neural information occurring in the neural state buffers at different model levels on the perception and production side. For the description of the

individual state buffers, see Figure 2. The process scenario is a picture naming task (target word here: “train”) with an acoustically interspersed distractor word (here:

the phonologically and semantically dissimilar word: “fox”). See text for further explanations.
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FIGURE 6 | Decoded neural information in the neural state buffers at different model levels on the perception and production side. For a description of the individual

state buffers, see Figure 2. The process scenario is a picture naming task (target word here: “train”) with an acoustically interspersed word (here: phonologically and

semantically similar word: “trolley”). See text for further explanations.
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FIGURE 7 | Decoded neural information in the neural state buffers of different model levels on the perception and production side. For the description of the individual

buffers see Figure 2. The process scenario up to 750ms is a picture naming task (target word here: “snake”). After 750ms, the test supervisor provides an additional

phonological cue via the auditory channel [“(the target word begins with) /snE/”]. In this simulation example, this cue leads to the full activation of the correct word at

the motor plan level.
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FIGURE 8 | Decoded neural information in the neural state buffers of different model levels on the perception and production side. For a description of the individual

buffers, see Figure 2. The process scenario is the picture naming task (target word here: “duck”). After 750ms, the test supervisor provides an additional semantic

cue via the auditory channel [“(the target word belongs to the group of) birds”]. In this example simulation, this leads to the activation of the correct word.
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activated, then it becomes fully activated with respect to the later
occurring cues.

The adjustment experiment showed that a damping of the
neural association between the concept and lemma state buffers
by approximately one third is sufficient to meet the precondition
of a partly disturbed lexical call. The target word is “on the tip of
the speaker’s tongue,” but the speaker cannot access it completely
during picture naming.

As a result of the occurrence of a phonological cue (/snE/ in
Figure 7) or of a semantic cue (“bird” in Figure 8) offered by the
test supervisor, the correct target word is activated at the motor
plan level in the time period from 750 to 1,500ms (see: M_prod
buffer in Figures 7, 8).

The aim of this simulation experiment is to evaluate the
influence of phonological and semantic cues. Indirectly, this
simulation experiment is also used to check the S-pointer
networks on the concept level and on the level of the phonological
forms within the mental lexicon. These networks realize the
relations between the S-pointers occurring at these levels and
thus determine the similarity relations between concepts or
between phonological forms.

Based on the example simulations shown in Figures 7, 8,
the activation of the selected word on the lemma level (i.e., an
activation of not more than 70% of normal state activation),
which was initially too low and leads to no or only very low
activation at the motor plan level, is ultimately strengthened
now at the motor plan level as a result of the cues provided.
The phonological S-pointer network is designed in such a way
that, for example, all words that begin with the sound sequence
/snE/ have a common similarity relationship (here: the words
“snake,” “snail,” and “snack” for Figure 7, see also Table 1). The
same applies at the semantic level to all concepts that can be
summarized under the same generic term (e.g., under the generic
or superordinate term “bird;” here: “duck,” “dove,” and “raven,”
for Figure 8, see also Table 1). The construction of an S-pointer
network for the phonological form and for the motor plan
level inventory used in these simulation experiments (Table 1) is
described in detail in Kröger et al. (2016b).

In both cases shown above for phonological and semantic
cures, no direct coupling from the perception channel to the
production channel was used at the phonological level. In the
two examples given above, the processing of the phonological
cue is initially carried out via the large processing loop and
thus via the concept level. According to Figure 7, this leads
to the situation that, based on the phonological cue, all words
beginning with /snE/ (“snake,” “snail,” and “snack”) are ultimately
activated within the perception channel and then passed on via
the concept level toward the production channel. This ultimately
strengthens the activation of the target word “snake” in the
period after 750ms on the phonological level as well as on the
motor plan level of the production side. Thus, a phonological
cue is also successful via the detour of a lexical processing for all
phonologically similar words.

However, a simpler processing route for phonological cues
is also conceivable, namely the non-lexical route of the direct
connection from the perceptual to the production side at the
phonological level (P_perc -> P_prod), which has already been

discussed in simulation experiment 1. In order to be able to
evaluate the influence of this shortcut, a version of the model
with that shortcut from the perception to the production side
at the phonological level is implemented (simulation example in
Figure 9) as well.

It can be seen in Figure 9 from the activation pattern in
the phonological state buffer of the production channel that
the activation of the word “apple” increases slightly here after
750ms. While the mean activation before this point in time was
∼60–75% of the standard activity, it now increases slightly due
to the co-activation of the phonetic form of the word “apple”
in the phonological state buffer on the perception side, which
helps to increase the activity in the phonological state buffer
on the production side to about 90%. While this increase on
the phonological level is only very slight, there is a significant
increase in the neuronal activation for the target word at the
motor plan level (from ∼800ms; Figure 9). It therefore only
takes a small impulse, here through the phonological cue,
to actually trigger the production of the weakly pre-activated
target word.

This third simulation experiment thus consists of three
subsets of simulations. (i) Picture naming (18 target words) with
phonological cues—model without shortcuts at the phonological
level; (ii) Picture naming (18 target words) with phonological
cues—model with shortcuts at the phonological level; (iii) Picture
naming (18 target words) with semantic cues—model without
shortcuts at the phonological level. The simulations for all 18
target words were done three times for each of the three subtests,
because the target words are sometimes already fully activated
on the motor plan level in the initial time range of the picture
naming part of the simulation task. A total of 3 × 18 × 3 =

162 simulations were carried out. The phonological cues are also
listed in Table 1 for each target word. The semantic cues are the
generic or superordinate terms, which are also listed in Table 1.

RESULTS

Experiment 1
The simulation results from experiment 1 can be categorized as
follows: (i) The picture naming task is successfully completed
by the model if the activation of the correct target word in
the motor plan buffer is at least 70% of the normal activation
(see Figure 2) after the point in simulation time of 300ms; (ii)
The word comprehension task is successfully completed by the
model if the activation of the target word in the concept state
buffer of the perception channel during the time interval between
150 and 300ms simulation time is at least 70% of the normal
activation, or if the activation of the word characterizing the
generic term in the concept buffer of the production channel
in the time interval 200–300ms is at least 70% of normal
activation. Since this is a word comprehension task, the full
activation of one of the two words at the concept level is
sufficient and therefore a verbal realization. In other words, a
high activation of the target or word or of the superordinate
on all levels within the production channel, is not necessary.
(iii) The repetition task is successfully completed by the model
if the activation of the target word in the motor plan state
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FIGURE 9 | Decoded neural information in the neural state buffers at different model levels on the perception and production side. For the description of the individual

state buffers, see Figure 2. The process scenario is a picture naming task (target word “apple”) plus phonological cue (/Ep/) comparable to Figure 7. In contrast to

the simulations shown in Figures 7, 8, a model version was chosen here that directly connects the perception to the production side at the phonological level of the

model (shortcut P_perc -> P_prod).
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buffer after the point in time of 300ms simulation time is at
least 70% of the standard activation. The simulation results
were evaluated for each simulation run using the generated
plots of S-pointer activations within the appropriate state buffers
(see Figures 2–4). The results are summarized in Figure 10.
The degree of neuronal dysfunction is given as percentage (0%
means no dysfunction and no ablation of neurons, while 100%
means all neurons of the corresponding buffer or memory
are ablated).

Six different types of neural dysfunctions are simulated:
Broca or Wernicke aphasia: dysfunction of the phonological
state memory on the production or on the perception side;
transcortical motor or transcortical sensory aphasia: dysfunction
of the associative memory between the lemma and concept
memory in the production or perception channel;mixed aphasia:
dysfunction of the neuronal associations between the lemma and
word levels in both the perception and production channels;
conduction aphasia: dysfunction of the neuronal association
between the phonological state buffers from the perception to the
production side. These dysfunctions are simulated by ablating a
certain percentage of the neurons in certain buffers or associative
memories in the model. The percentage of ablated neurons varies
between 0 and 100%.

It can be seen that in all six cases of different neural
dysfunctions, the performance of the simulation drops from
100% (all 18 target words correctly recognized) to 0% (none
of the target words was correctly recognized for specific tasks;
Figure 10). In the case of Broca aphasia, the production side
reacts. At 20–30% ablation of the affected buffer an abrupt
decrease in the test performance occurs for the picture naming
task, and in the case of 50–60% ablation of the affected buffer
an abrupt decrease in test performance occurs for the repetition
task. Word recognition remains intact. In the case of Wernicke’s
aphasia, the perception side changes. Word comprehension and
repetition show an abrupt decrease in test performance in the
range of 20–40% of the ablation of the affected buffer. The picture
naming task is not affected here.

In the case of transcortical motor aphasia, we can find a
continuous decrease in test performance over the entire range
of ablation from 0 to 100% for the task of picture naming
(production). Word comprehension and word repetition remain
untouched. In the case of transcortical sensory aphasia, a
continuous decrease in test performance can be seen over the
entire range of ablation from 0 to 100% for word understanding.
Picture naming and repetition remain unaffected. In the case
of mixed aphasia we find of a continuous decrease in test
performance over the entire range of ablation from 0 to 100%
for the tasks of picture naming and word comprehension. Word
repetition remains untouched.

In the case of conduction aphasia, the test performance
for repetition drops abruptly at 35–45% ablation for the
appropriate neural connections between P_perc and P_prod.
Word comprehension and picture naming are not affected by
this neural dysfunction. However, since we have “uncoupled”
the mental lexicon for the implementation of this repetition
task, so that the 18 target words in this test series do not result
in any neural activation at the lemma or concept levels, the

test performance of the remaining two tasks (production and
comprehension) is always zero in this simulation experiment.

In summary, it can be seen that in the event of a disruption
of neural associations, which are realized by ablating associative
memories, the test performance is reduced relatively slowly and
continuously during the increase of strength to the neuronal
dysfunctions, while the test performance in the case of the
dysfunction of a particular state memory occurs abruptly in a
small range of ablation values. In other words, while associative
memories are relatively robust with regard to neural ablation,
this is not the case for state buffers. State buffers implement
neural activations of a currently active S-pointer by activating
specific sets of neurons within the state buffer. The associated
neuronal activation patterns can only be assigned to certain states
(certain S-pointers) if only a small percentage of the neurons in
this memory are ablated. In the case of association memories,
however, the ablation of a certain percentage of neurons only
leads to a reduction of the corresponding neuronal activation
patterns being passed, i.e., to a signal damping, while the activated
S-pointers are passed correctly. The degree of attenuation of
the transmitted neuronal signal corresponds approximately to
the percentage of ablated neurons within the corresponding
associative memory.

Experiment 2
In the picture naming task with distractor words, a total of two
different model variants are tested: (model type 1) To initiate
the HALT signal in the control module, both the differences
between the type of neural activation of the perception and
production side on the phonological level (P_prod/P_perc) as
well as at the concept level (C_prod/C_perc) are evaluated by the
control module. (model type 2) To initiate the HALT signal in the
control module, only the difference between the type of neural
activation of the perception and production side is evaluated on
the phonological level (P_prod/P_perc). The simulations for each
of the 18 target words were implemented with four different
types of distractor words and three runs were simulated for
each model variant and each target word. The total number of
simulations is thus 2× 3× 4× 18= 432. The simulation results
are given in Table 2 for these four different types of distractor
words (semantically or phonologically similar to the target word,
semantically and phonologically similar to the target word, and
semantically and phonologically dissimilar to the target word).
To evaluate the simulation results, it is assumed that halting or
stopping word production before the start of articulation only
takes place if the HALT signal appears strong in amplitude and
not later than 40ms after the starting of the word activation on
the motor plan level (see Figures 5, 6).

It is striking that dissimilar distractor words are most likely
to activate an early HALT signal and thus stop word production.
In addition, it can be seen that semantic similarity between
target word and distractor word also enables word production
to be stopped, while phonetically similar words implement word
production in far fewer cases. In addition, it can be seen that
the evaluation of the discrepancy of the stimuli between the
perception and production side on the phonological level is
already very effective for dissimilar as well as for semantic similar
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FIGURE 10 | Number of correctly implemented target words (maximum value is 18) as a function of the degree of neural dysfunction for the appropriate state buffer or

associative memory perturbed by the speech disorder for three different tasks [picture naming (i.e., production); word comprehension and word repetition] for six

different neuronal dysfunctions (Broca, Wernicke, transcortical motor, transcortical sensory, mixed and conduction aphasia). In the case of conduction aphasia, the

percentage of neuronal dysfunction corresponds directly to the percentage of weakening the appropriate neuronal connections between P_perc and P_prod, since

both memories (P_prod and P_perc) use the same S-pointer activation pattern and therefore no associative memory has to be interposed, but a direct neuronal

association is possible. In the case of neuronal dysfunction of a buffer or associative memory, the percentage indicates the percentage of ablated neurons within that

buffer or memory.

TABLE 2 | Number of triggered stops (HALT signal) in a picture naming task as a function of two different model variants and as a function of the type of distractor word.

Type of model Type of

distractor word

Number of stops

(test series 1)

Number of stops

(test series 2)

Number of stops

(test series 3)

Number of stops

(sum)

Number of simul.

Without stop (sum)

1 Semantic similar 1 2 0 3 51

1 Phonological

similar

10 10 9 29 25

1 Sem + phono

similar

1 1 0 2 52

1 Dissimilar 17 18 15 50 4

2 Semantic similar 15 15 16 46 8

2 Phonolgical similar 2 2 2 6 48

2 Sem + phono

similar

0 1 1 2 52

2 Dissimilar 17 14 13 44 10

The maximum number of simulations per test series is 18. With a number of stops = 1, no stop is realized in 17 out of 18 simulation cases. The total number of simulations per table

row is 54.

distractor words.When including the evaluation of the activation
difference within the model buffers at the concept level (model
type 2), the simulation results only change with regard to the
generation of the HALT signal in case of semantically similarity
between target and distractor words.

In this experiment, speech errors occur in the form of
two different words being activated in quick succession (time
intervals of not more distance than 50ms) at the motor plan

level (Figure 11). In the case shown in Figure 11, the target word
“peanut” is activated on the motor plan level in the time interval
250–320ms, while the distractor word “pecan” is activated in
the time interval 320–380ms. In total, such a situation occurs
in four out of the 432 simulation cases. In two cases, only a
semantically similar distractor word is activated. In another two
cases, a semantically and phonologically similar distractor word
is activated.
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FIGURE 11 | Decoded neural information in the neural state buffers on different model levels on the perception and production side. For a description of the individual

state buffers, see Figure 2. The process scenario is a picture naming task (target word here: “peanut”) with an acoustically interspersed word (here: phonologically

(Continued)
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FIGURE 11 | and semantically similar word: “pecan”). See text for further explanations of this rarely occurring case. In order to give the reader an impression how the

association of trajectories and S-pointer names is realized, we here included the labels, automatically generated by the simulation software. (These labels were deleted

in Figures 2–9).

TABLE 3 | Number of correct target word activation in a picture naming task with phonological or semantic cues before/after occurrence of the cues.

Number of test

series: type of

model and type

of cue

Number of target

word activation

before/after cue

(test-series 1)

Number of target

word activation

before/after cue

(test-series 1)

Number of target

word activation

before/after cue

(test-series 1)

Number of

correct target

word activation

before cue (sum)

Number of

correct target

word activation

after cue (sum)

Number of

activation of

incorrect target

words (sum)

1: L-route, phono 8/5 6/6 10/3 24 14 16

2: shortcut, phono 4/6 2/10 8/4 14 20 20

3: L-route,

semantic

6/7 4/5 4/4 14 16 24

The maximum number of simulations per test series is 18. With a number of correct target word activation of 6, correct target word activation was not achieved in 12 out of 18 simulation

cases. The total number of simulations per table row is 54. A distinction is made in this table regarding whether a target word is already correctly and completely activated in the

motor plan state buffer before cues are given, i.e., within the first 750ms of the simulation time, or whether the target word was only correctly activated after occurrence of cues. “L

route” is model type “lexical route” without short-circuit at the phonological level; “Shortcut”: model type with decoupled mental lexicon, but with short-circuit of the state buffers at the

phonological level P_perc -> P_prod.

Experiment 3
This simulation experiment comprises three sub-groups of
simulations: Picture naming (18 target words) with additional
phonological cues (i) without short-circuiting the state memories
at the phonological level (lexical route) or (ii) with short-
circuiting the state memories at the phonological level and (iii)
picture naming (18 target words) with additional semantic cues
(model type: no short circuit on the phonological level). The 18
picture naming tasks with additional cues per sub-group were
simulated three times for each of the three sub-groups. The
results of the total of 3 × 54 = 162 simulations are summarized
in Table 3.

In total, wrong words (speech errors) are realized in three
of 162 simulation runs. One speech error occurs in the case
of phonological cues in the lexical route model. Here the
phonological cue leads to a correction of the production toward
the correct target word. Two other speech errors occur in the case
of simulation runs using semantic cues, whereby in one case the
help is then used to implement the cue word itself and in the other
case a phonologically similar form is generated first, but then the
correct target word is still activated with help of the semantic cue.

As an example, the simulation of the error in the last
simulation run described above is presented in Figure 12. Due
to the insufficient activation of the target word at the lemma
level within the production channel, the word “flea,” which is
phonologically and semantically similar to the target word “fly,”
is activated here from ∼350ms. Due to the latter semantic cue,
the correct target word is then realized starting with its activation
at 1,700ms in the motor plan buffer.

DISCUSSION AND OUTLOOK

We have implemented a biologically inspired computational
model of speech production that is able to simulate both
non-disturbed and disturbed speech. The model is structured

hierarchically and the neural feedforward activations from the
cognitive level to the motor level of speech production are
influenced by several feedback mechanisms.

Five main results of this study can be noted:

(i) Neural dysfunctions can be implemented to model certain
types of speech disorders. In this paper, six different
types of aphasia were modeled. The simulations indicate
decreasing speech performance with increasing severity
of neural dysfunction. Our simulation results are in line
with behavioral data and with the data generated in other
simulation studies (cf. Roelofs, 2014). One specific result
of experiment 1 is that associative memories are relatively
robust with regard to neural ablation, while this is not
the case for state buffers. Associative memories are mainly
impaired in the transcortical motor area and the transcortical
sensory area in the mixed type of aphasia, while state
buffers are mainly impaired in Broca’s, Wernicke’s, and
in conduction aphasia. This finding can only be seen
in modeling studies and cannot be replicated easily by
behavioral experimental studies because the severity of
different types of aphasia is mainly clustered (Kang et al.,
2010). Here, Broca’s aphasia in many cases occur as a
moderately severe speech disorder, while all other types of
aphasia are clustered as moderate. On the one hand, further
studies collecting behavioral data from patients are needed
in order to underpin these very specific results stemming
from modeling studies in general, but on the other hand it
demonstrates that modeling is capable of generating results
or knowledge which cannot easily be generated from natural
behavioral data, because of the difficulties in finding enough
patients covering a wide range in different degrees of severity
for different sub-types of aphasia.

(ii) Experimental behavioral results which prove the existence of
the inner feedback loop can be simulated in our model as
well. For this purpose, the model receives auditory distractor
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FIGURE 12 | Decoded neural information in the neural state buffers at different model levels on the perception and production side. For the description of the

individual state buffers see Figure 2. The process scenario here is a picture naming task (target word here: “fly”) with a later occurring semantic cue, i.e., the

superordinate word “bluebottle.” See text for further explanations of this rarely occurring case.
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words during a picture naming task. These distractor words
are phonologically and/or semantically similar or dissimilar
to the current target word. It can be seen in the behavioral
experiments (e.g., Slevc and Ferreira, 2006) as well as in
our simulation experiments that phonologically dissimilar
distractor words in particular disrupt word production.
This result can be explained in the context of our speech
production model by evaluating the activation differences
occurring in the state buffers in the production as well
as in the perception channel on the phonological level of
our model.

(iii) Speech errors as well as the effectiveness of phonological
or semantic cues within a word production task can be
simulated in the experimental paradigm of picture naming
in our model, if word production is already disturbed in
the model by restricting the neural association from the
state buffer for concepts to the state buffer for lemmas in
the production channel. The resulting effectiveness of the
phonological as well as the semantic cues results in ourmodel
from the implementation of similarity relations between
concepts or between phonological forms in the appertaining
S-pointer networks. The effectiveness of semantic as well as
phonological cues was proven by natural data, for example in
the context of the evaluation of the WWT (Glück, 2011).

(iv) Speech errors arise from the modeling of aphasic neuronal
dysfunctions in the context of our simulations only insofar
as at higher degrees of dysfunction, words are not activated
at different levels of the production hierarchy. This creates
Nil productions (a complete stop of word production).
These simulations did not show any word productions.
The production of wrong words occurred in the other
two simulation experiments. To a limited extent, words
other than the target words were realized as part of an
image naming task due to semantic cues. On the one
hand, these “wrong words” were the words of the semantic
cues itself or phonologically similar words. Similar types of
speech errors also occurred in the case of the simulation
experiment on picture naming in the context of auditorily
presented distractor words. In this case the erroneous
word productions were always the semantically and/or
phonologically similar distractor words themselves.

(v) A major innovation of the simulation approach presented
here in comparison to other existing approaches (Guenther,
2006; Roelofs, 2014; Kearney and Guenther, 2019) is the use
of a biologically more realistic modeling approach (NEF-
SPA, Eliasmith, 2013; Stewart and Eliasmith, 2014). Our
approach has the advantage over conventional connectionist
approaches that a realistic basicmodel for individual neurons
exists (here: the “leaky-integrate-and-fire” approach). This
also leads to a realistic modeling of state activations at
all levels of the production model. Concepts, lemmas,
phonological forms as well as motor plan states are realized
through realistic specific neural activation pattern involving
all neurons within a neuron buffer, in contrast to simple
connectionist approaches wherein every state is realized by
an (artificial) physical model node.

However, further work is necessary, especially for themodeling of
auditory and somatosensory feedback, which is not implemented
in our current model. A successful modeling of these further
feedback loops and the successful simulation of behavioral effects
they imply for speech production has already been successfully
presented in part by Guenther (2006). However, as already
described in the theoretical part of this article, our goal is to
model the level of the speech movement units in addition to the
level of the motor plans in order to differentiate between acoustic
feedback to mainly regulate the coordination of speech gestures
and somatosensory feedback to mainly control individual speech
movements units (cf. Hickok, 2012).

A major question of the research topic of modeling is
always: How do concepts from the engineered systems help to
understand and inform the biological model? To be more precise
in the case of our model of speech production: How do the
concepts of the Neural Engineering Framework (Eliasmith and
Anderson, 2004; Eliasmith, 2013) extended by the concepts of
the Semantic Pointer Architecture (Eliasmith, 2013; Stewart and
Eliasmith, 2014) inform our speech production model? This can
be answered in three main points:

(i) The NEF-SPA concepts clearly separate knowledge storage
and (dynamic) neural processing leading to a clear definition
of the mental lexicon in our model. (ii) Only a few model
components (buffers, associative memories, connections) are
required for neural processing in the NEF-SPA approach,
which leads to a clear definition of neural processing in word
production. (iii) Neural connections can be realized in a way
that leads to a clear definition of hierarchy in our speech
production model. (iv) The NEF-SPA approach clearly defines
both transformation and binding/unbinding processes, both of
which are required for cognitive processing above the linguistic
or lexical level. Through this minimalism of concepts offered by
the NEF-SPA approach, a clear model of word production can
be created, which is able to model normal as well as disrupted
word production.

In conclusion, it should be emphasized that our model in
particular shows the separation of knowledge stored in long-
term memory and the short-term activation and processing
of states on the perception side as well as on the production
side of speech processing. Long-term knowledge is realized in
our model by preset S-pointers on the basis of the internal
mathematical model. The setting of these S-pointers happens
in reality during speech acquisition. In our approach, which is
currently limited to word production, relations between concepts
on the semantic as well as between phonological forms of words
on the phonological level are realized by establishing S-pointer
networks. In addition to this long-term storage of states in the
form of S-pointer networks, there is the short-term activation,
forwarding and processing of states (S-pointers) from state buffer
to state buffer by using mainly association memories for defining
the transformation of neural states. The basic neural approach
behind the implementation of neural buffers, neural memories,
and neural connections is already established here as part of the
NEF-SPA and is neurobiologically inspired. Another advantage
of our approach is the detailed modeling of control flow based on
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the neuronal processes taking place in the basal ganglia and in the
thalamus (Stewart and Eliasmith, 2014).

Currently, neural learning is not included in our model.
Neural connections and S-pointer networks are pre-defined
on the basis of statistical principles drawn from the NEF-
SPA framework. But this is no disadvantage, because in
this paper we described a model of an adult language user
and the issue of learning during adulthood is not a topic
of consideration here. Thus, speech acquisition should also
be included in future developments of our model. While
the S-pointer networks are completely pre-defined in their
specifications in the current simulation model, a continuation
of our simulation model is also planned in such a way
that learning can be simulated during defined scenarios of
speech acquisition in order to build up the mental lexicon
and the mental syllabary during simulations of the child-
caretaker interaction.
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APPENDIX

TABLE A1 | Abbreviations, names, and brief description of all state buffers used in our model (see Figures 1, 2 ff).

Module Buffer

Abbreviation Name Description

Control out_con Output@control Output action buffer at control module

in_con Input@control Input signal buffer at control module

Cognitive processing C_cog_in ConceptInput@cognitiveProcessing Concept input buffer at cognitive processing module

C_cog_out ConceptOutput@cognitiveProcessiong Concept output buffer at cognitive processing module

rel_type RelationTypeBuffer@cognitiveProcessing Relation type buffer at cognitive processing module

Production C_prod conceptState@production Concept state buffer at production pathway

L_prod LemmaState@production Lemma state buffer at production pathway

O_prod orthographyState@production Orthography state buffer at production pathway

P_prod phonologicalForm@production Phonological form buffer at production pathway

M_prod motorState@production Motor state buffers at production pathway (gesture score of a syllable or

word)

G_mot gestureState@motor Gesture state buffer at motor level of production module (the gesture score

of a syllable or word comprises more than one gesture per syllable or word)

Perception C_perc conceptState@perception Concept state buffer at perception pathway

L_perc lemmaState@perception Lemma state buffer at perception pathway

V_perc VisualState@perception Visual state buffer at perception pathway

P_perc phonologicalForm@perception Phonological form buffer at perception pathway

A_perc auditoryState@perception Auditory state buffer at perception pathway

S_perc somatosensoryState@perception Somatosensory state buffer at perception pathway
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