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In this paper we investigate the active inference framework as a means to enable

autonomous behavior in artificial agents. Active inference is a theoretical framework

underpinning the way organisms act and observe in the real world. In active inference,

agents act in order to minimize their so called free energy, or prediction error. Besides

being biologically plausible, active inference has been shown to solve hard exploration

problems in various simulated environments. However, these simulations typically require

handcrafting a generative model for the agent. Therefore we propose to use recent

advances in deep artificial neural networks to learn generative state space models from

scratch, using only observation-action sequences. This way we are able to scale active

inference to new and challenging problem domains, whilst still building on the theoretical

backing of the free energy principle. We validate our approach on the mountain car

problem to illustrate that our learnt models can indeed trade-off instrumental value

and ambiguity. Furthermore, we show that generative models can also be learnt using

high-dimensional pixel observations, both in the OpenAI Gym car racing environment and

a real-world robotic navigation task. Finally we show that active inference based policies

are an order of magnitude more sample efficient than Deep Q Networks on RL tasks.

Keywords: active inference, free energy, deep learning, generative modeling, robotics

1. INTRODUCTION

Enabling intelligent behavior in artificial agents has been one of the long standing goals of the
machine learning community (Russell and Norvig, 2009). Historically this has been tackled in
various different ways, starting from logic agents and knowledge bases and evolving into complex
neural network based reinforcement learning (RL) methods. Artificial intelligence agents have
made incredible progress in the field of game playing. Ranging from beating the world chess
champion in 1997 (King, 1997) to beating the world Go champion in 2016 (Silver et al., 2017).

Major advances in autonomous behavior are driven by deep neural networks on the one hand
and the application thereof in reinforcement learning on the other hand. In RL, agents optimize
their policy by interacting with an environment in order to maximize a scalar reward signal.
Despite recent advances in solving games with reinforcement learning (RL), this leap in intelligence
however has not manifested itself as much in real world cases, such as robotics (Irpan, 2018). This is
caused by a number of limitations of the current RL methods. First, RL algorithms typically do not
perform as well in the real world due to their notoriously bad sample efficiency (Kurenkov, 2018).
In order to learn, agents need to perform a lot of (bad) interactions to improve their policy. Second,
to be able to start improving a policy, RL agents first need to find at least some reward. Sometimes it
is sufficient to introduce some random exploration, but often a more complex exploration strategy
is required, using concepts such as novelty or curiosity (Abbeel and Ng, 2005). Third, whereas
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games have an obvious and well-defined reward definition such
as a score or the ability to win the game, it is much harder to
define and obtain a consistent and relevant reward signal for a
real-world task (Wiewiora, 2010). Finally, RL agents are generally
trained with a single task in mind. Generalizing to new tasks
either requires retraining or fine-tuning the agent, or requires the
addition of meta-learning components (Hospedales et al., 2020).

Human beings on the other hand grow up and learn new
tasks without the need for an external reward signal (Oudeyer
and Kaplan, 2007). A promising emerging theory from cognitive
neuroscience, called active inference, provides a mathematical
framework rooted in physical and biological observations
describing the mechanisms of natural agency and behavior in the
human brain (Dayan et al., 1995; Rao and Ballard, 1999; Friston,
2010).

Active inference rests upon the free energy principle for the
brain (Friston, 2010), which models the brain as a Bayesian
inference engine. The free energy principle states that every
self-organizing system in environmental equilibrium must be
minimizing its free energy (Friston et al., 2006). Free energy in
this respect can be seen as a proxy for “surprise” or prediction
error, and offers a unified account of action, perception and
learning (Friston, 2010). The free energy principle has been able
to explain a wide array of anatomical and physiological aspects of
brain systems (Angelucci et al., 2002; Bastos et al., 2012; Friston
et al., 2017a) Furthermore it allows for an elegant treatment of
the intricate relationship between perception and action while
inherently balancing the exploration and exploitation trade-off.

In recent years, active inference has been demonstrated in a
lot of use cases, ranging from decision making under uncertainty
to structure learning, navigation, etc., an overview is given
in Da Costa et al. (2020). In these cases an agent is typically
equipped with a predefined, discrete state space generative model
of its environment, on which the agent performs inference
and learning. Although such simulations showcase the effects
of active inference on the behavior of the agent studied, this
is impractical for applications in the real-world, where it is
impossible to engineer such a generative model. However,
we know that natural selection can learn such models in a
biological setting. This means, in principle, it is possible to
learn a generative models of the world. In what follows, we
show that this is the case using deep learning. Recently there
has been an increase in research on the application of deep
learning to active inference (Ueltzhöffer, 2018; Tschantz et al.,
2019; Millidge, 2020). However, these approaches either specify
some parts of the state space beforehand or only treat low
dimensional observations.

In this paper, we use recent advances in deep neural networks
to learn generative models of the world purely from experienced
action-observation pairs without specifying any part of the agent
state space. We show that agents equipped with these models
can engage in active inference by free energy minimization
while achieving high sample efficiency. We demonstrate our
approach on three use cases with increasing complexity: the
mountain car problem (section 3.1), the OpenAI Gym car racing
environment (section 3.2), and a real-world robot navigation
task (section 3.3). We benchmark our approach against DQN, a

FIGURE 1 | An agent’s Markov blanket. An agent has no direct access to the

environment’s hidden states h̃. It can only perceive the consequences of its

actions at by means of observations ot, and develop its own internal belief

states st. Note that st does not necessarily have to match the environments

hidden states ht. Tildes indicate sequences of observations, actions or

hidden states.

well-known RL baseline, and show that our approach is able to
achieve significantly higher rewards in a low-data regime.

2. METHODS

2.1. Active Inference
Any agent, either artificial or natural, can only perceive the
surrounding environment (characterized by its hidden state
h) through sensory observations, and changes its environment
through actions. The implicit sensory blanket (Figure 1)
separates external (environmental) states from the internal states
of an agent –that entail a generative model of the external states.
An agent’s action at time step t will change the environment’s
hidden state ht according to some generative process R(õ, ã, h̃)
over sequences of observations õ, actions ã and hidden states s̃;
and provide new observations ot to the agent. We will use tildes
to designate sequences in the remainder of this paper. However,
as the agent has no direct access to the hidden states of the
environment, it can only develop its own internal belief states
st that explain the perceived observations as well as possible, by
means of a generative model.

More concretely, the agent’s world model can be formalized
as partially observable Markov decision process (POMDP), with
the probability distribution P(õ, s̃, ã,π), specifying the joint
probability of the agent’s observations, belief states, actions and
policies. In this formalism a policy is nothing more than a
sequence of actions at :T up until some time horizon T. Without
loss of generality, we assume the world model is Markovian, so
that the agent’s state st at time step t is only influenced by the
previous state st−1 and action at−1. Graphically this model can
be visualized through time according to Figure 2A. Formally, it
can be factorized as follows:

P(õ, s̃, ã,π) = P(s0)P(π)

T
∏

t=1

P(ot|st)P(st|st−1, at−1)P(at−1|π).

(1)
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FIGURE 2 | (A) The POMDP depicting an agent’s model of the world up until the current timestep t. The current state st determines the current observation ot and is

only influenced by the previous state st−1 and action at−1. Both actions and observations are assumed to be observed, indicated by a gray coloring, whereas states

need to be inferred. (B) The agent’s model of the world from timestep t onward. As with the model for the past we assume that for each timestep the observation is

only influenced by the corresponding state. Note that for the future we assume the agent has control over which states to visit through its actions which are

determined by a policy π .

Due to the separation between the agent and the environment
through the Markov blanket, the agent is only able to infer
the effects of its actions on the world through observations.
This entails that the agent can only update its beliefs over
world states through Bayesian inference on possible belief state
values conditioned on observed actions and observations. In
fact the agent tries to infer its belief state value s through
the posterior belief P(s̃|õ, ã). The actual posterior in this form,
derived directly from Bayes rule is, in general, intractable to
calculate directly from the given joint model in Equation (1).
To avoid this, the agent resorts to variational inference (Beal,
2003), and approximates the true posterior by some approximate
posterior distributionQ(s̃|õ, ã), which is in a form that is tractable
to the agent. Similar to the model posited in Equation (1), the
approximate posterior distribution can be decomposed as:

Q(s̃|õ, ã) = Q(s0|o0)

T
∏

t=1

Q(st|st−1, at−1, ot). (2)

In active inference, the agent is believed to be acting according
to the free energy principle, which states that every agent’s
goal is to minimize its variational free energy. In view of our
generative model, the variational free energy F is formalized as
(Friston, 2013):

F = EQ(s̃|õ,ã)

[

logQ(s̃|õ, ã)− log P(õ, s̃, ã)
]

= DKL

[

Q(s̃|õ, ã)||P(s̃|õ, ã)
]

︸ ︷︷ ︸

posterior approximation

− log P(õ)
︸ ︷︷ ︸

log evidence

= DKL

[

Q(s̃|õ, ã)||P(s̃, ã)
]

︸ ︷︷ ︸

complexity

−EQ(s̃|õ,ã)

[

log P(õ|s̃)
]

︸ ︷︷ ︸

accuracy

. (3)

When rewriting the variational free energy using the second
equality, it decomposes into two terms: the KL-divergence
between the approximate and true posterior distribution, and
the (negative) log evidence. This means that minimizing free
energy is equivalent to maximizing the log evidence, while
making the posterior approximation as good as possible. One can
also see that the variational free energy is actually the negative
evidence lower bound, which is maximized in variational
inference (Bishop, 2006). Variational free energy can also be
written as the third equality, which comprises a complexity
and accuracy term. This states that the model should minimize
the complexity of accurate explanations of the observations
(Schwartenbeck et al., 2019).

Note the omission ofπ in Equation (3), as we assume the agent
has a (perfect) proprioceptive feedback channel, i.e., all executed
actions are observed. For time steps in the future this is not the
case, and the agent will have to make inferences about which
policy (and actions) to select.

The crucial aspect of active inference is that agents not only
try to minimize their free energy for past observations, but also
aim to minimize their free energy in the future. For future time
steps, the actions are determined by a chosen policy π , and both
actions and observations are no longer observed, but become
random variables that have to be inferred, as shown in Figure 2B.
In order to minimize the free energy in the future, the agent not
only needs to form posterior beliefs over its current state, but also
form beliefs over future states and observations when following
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certain policies. This allows the agent to evaluate the so-called
expected free energy G for some policy π , and form a belief over
possible policies P(π) (Schwartenbeck et al., 2019) as:

P(π) = σ (−γG(π)). (4)

This means the agent picks or samples policies according to some
softmax σ function with temperature γ over the total expected
free energy. Policies that exhibit low total expected free energy
will have a higher likelihood to be sampled. The above equations
denote a crucial aspect of active inference, namely that the only
self-consistent prior belief over policies P(π) is to believe that the
agent will follow policies that minimize the expected free energy
(Friston K. et al., 2015).

The expected free energy is defined as the sum of the expected
free energy of a policy over all timesteps that we look ahead in
the future:

G(π) =
∑

τ

G(π , τ ), (5)

with

G(π , τ ) = EQ(oτ ,sτ |π)

[

logQ(sτ |π)− log P(oτ , sτ |π)
]

= EQ(oτ ,sτ |π)

[

logQ(sτ |π)

− log P(oτ |sτ ,π)− log P(sτ |π)
]

= DKL

[

Q(sτ |π)||P(sτ )
]

︸ ︷︷ ︸

risk

+EQ(sτ )

[

H(P(oτ |sτ ))
]

︸ ︷︷ ︸

ambiguity

(6)

Note that we set P(sτ |π) = P(sτ ), which reflects that the agent
has a prior preference over which states to visit (Friston K. et al.,
2015). One can interpret this as the agent having prior beliefs
over states that it will visit, independent of a policy, but driving
policy selection to these attractor states. An obvious example of
a preferred state is for example maintaining a temperature of
37 ◦C (Van De Laar and De Vries, 2019). These preferred states
basically determine the agent, and can be endowed on the agent
either by nature through evolution, in the case of natural agents,
or by humans in the case of artificial agents.

Two important parts emerge from Equation (6): the KL-
divergence between the approximate posterior distribution over
future states and their corresponding prior belief, called the risk,
and the expected entropy over future observations, also known as
the ambiguity (Friston et al., 2016). These terms illustrate the way
an active inference agent will act. On the one hand the agent will
try to match the states it visits in the future with its prior belief
over future states, hence realizing preferences or exhibiting goal-
directed behavior (Schwartenbeck et al., 2019). On the other hand
the agent will try to reduce the conditional entropy on future
observations, or avoid ambiguous states.

2.2. Active Inference and Deep Neural
Networks
Current active inference schemes usually start by specifying the
belief state space manually, in terms of a generative model.
Variational Bayes is then used to infer hidden states and
parameters under this model (Friston et al., 2009; Sajid et al.,

2019; Van De Laar and De Vries, 2019). This approach works
well for low-dimensional problems or problems where a sensible
belief state can be devised for the task at hand. If the problem
domain at hand is high-dimensional (e.g., the observations
are in pixel space) or the dynamics are difficult to model
manually (e.g., pedestrian dynamics for an autonomous car),
it becomes exceedingly difficult to handcraft the agent’s belief
states. Instead, it would be better if the agent could learn its
own representation and parameterization of the belief state space.
To do so, we build and learn the generative model using deep
artificial neural networks, which are trained on sequences of
action-observation pairs.

2.2.1. The Generative Model
To achieve state space learning, we map the different factors
of the POMDP model of Equation (1) and the corresponding
approximate posterior of Equation (2) to three neural network
models: the transition model pθ , the likelihood model pξ and the
posterior model pφ , as shown in Equation (7).

P(õ, s̃, ã) = P(s0)

T
∏

t=1

pθ (st |st−1 ,at−1)
︷ ︸︸ ︷

P(st|st−1, at−1) ·

T
∏

t=0

pξ (ot |st)
︷ ︸︸ ︷

P(ot|st)

Q(s̃|õ, ã) = Q(s0|o0)

T
∏

t=1

Q(st|st−1, at−1, ot)
︸ ︷︷ ︸

pφ (st |st−1,at−1 ,ot)

(7)

The transition model pθ takes as input a previous state and
action pair, and outputs a distribution of the current state. The
approximate posterior model pφ also outputs a distribution of
the current state, but in addition to the previous state and
action, also receives the current observation as input. Finally
the likelihood model pξ outputs a distribution of the current
observation, given the current state. The output distributions of
these neural networks are each parameterized as a multivariate
normal distribution with diagonal covariance matrix, i.e., each
neural network outputs the means µ and standard deviations
σ of N (µ, σ ). Assuming a multivariate normal distribution of
this kind can be regarded as restricting the class of generative
models to the same distributional forms used in mean field
approximations of the variational posterior. In other words,
we make simplifying assumption that the generative model can
itself be factorized by precluding off diagonal terms in the
covariance matrix.

Rolling out through time is done in a recursive manner,
as shown on Figure 3. At each time step t, a sample st is
drawn from the posterior state distribution, which is forwarded
through the transition model and posterior model to get the next
state distribution, and through the likelihood model to obtain
an observation estimate. At t = 0 we start with the initial
observation and a zero vector for the state and action.

2.2.2. Training the Model
To optimize these neural networkmodels we first obtain a dataset
of sequences of action-observation pairs by interacting with the
environment. This can for example be obtained using a random
policy or by human demonstrations. We then train the models
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FIGURE 3 | The generative model is parameterized by 3 neural networks. The Transition Model models the prior probability of going from state st−1 to st under action

at−1. The Posterior models the same transition while also incorporating the current observation ot. Finally the likelihood model decodes a state sample st to a

distribution over possible observations. These models are used recurrently, meaning they are reused every time step to generate new estimates.

end-to-end on this dataset using stochastic gradient descent by
minimizing the free energy loss function:

L =
∑

t

DKL

[

pφ(st|st−1, at−1, ot)||pθ (st|st−1, at−1)
]

− log pξ (ot|st)

(8)
This resembles the loss function of a Variational Autoencoder
(VAE) (Kingma and Welling, 2014; Rezende et al., 2014), in
which the posterior model acts as the encoder and the likelihood
model as the decoder. The loss then consists of a (negative)
log likelihood term penalizing reconstruction errors, and a
KL-divergence between the posterior and a prior distribution.
However, in comparison with a VAE where typically a standard
normal prior is used, in our case the prior for time step t is
provided (and learned) by the transition model.

To allow the gradient flow through the sampling step, we use
the reparameterization trick, by which samples of a multivariate
Gaussian distribution parameterized by means µ and standard
deviations σ are calculated as:

s = µ + ǫ ⊙ σ , ǫi ∼ N (0, 1). (9)

Also note that we approximate the expectation of the accuracy
term in Equation (3) by a single sample in the loss function.

In practice this works due to the stochastic gradient descent
procedure that operates on batches of data per optimization step.

2.2.3. Planning as Inference
To engage in active inference using the trained models, we need
to infer the empirical prior P(π) for each policy π . We start by
generating imaginary rollouts from the learned transition model.
The action trajectories used to generate different imaginary
rollouts are then ranked according to expected free energy
G. We then execute the first action of the policy (i.e., action
sequence) π with the lowest G. By actually taking the action
in the environment, the agent gets a new observation from the
environment back. Which can then be used with the posterior
model to generate a new starting state for the planning, after
which the process outlined in this paragraph restarts.

Calculating the expected free energy G for all possible action
sequence π requires calculating G(π , τ ) using Equation (6),
which involves estimating Q(sτ |π) and the expected entropy
E

[

H(P(oτ |sτ ))
]

. Our models however only consider a single time
step at a time, so the only way to get estimates about future time
steps τ is by iterative Monte Carlo sampling.

Concretely, for each policy π , we sample N state trajectories
following π for K future time steps. As we have not yet observed
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FIGURE 4 | Estimating the expected free energy G(π ) for each policy involves sampling state and observation trajectories using the transition and likelihood model.

The depicted tree shows the first level of unfolding with N = 3 samples, K = 2 lookahead time steps and 2 policies π1,π2.

future observations, we now sample from the transition model pθ

instead of the posterior model as st+1 : t+K ∼ pθ (·|st+1 : t+K−1,π).
This results in N state samples ŝτ , for which we can sample N
observation estimates ôτ ∼ pξ (·|ŝτ ). To be able to calculate the
KL-divergence we use a Gaussian distribution with parameters
calculated from the sample batch means µŝτ

and variances σ 2
ŝτ
.

Similarly we use a Gaussian with mean µôτ
and variance σ 2

ôτ
to

calculate the entropy. We can then estimate the expected free
energy for each policy from current time step t onward as follows:

Ĝt(π) =

t+K
∑

τ=t+1

DKL

[

N (µŝτ
, σŝτ )‖P(sτ )

]

+
1

ρ
H(N (µôτ

, σôτ
))

+
∑

π ′

σ (−γ Ĝt+K(π
′))Ĝt+K(π

′) (10)

The first summation term looks K timesteps ahead, calculating
the KL-divergence between expected and preferred states and
the entropy on the expected observations. We also introduce
an additional hyperparameter ρ, which allows for a trade-off
between reaching preferred states on the one hand and resolving
uncertainty on the other hand. This hyperparameter can be
regarded as nuancing the effective precision of prior preferences
over states in the future. For example, a large value suppresses
the contribution of the entropy term in the same way that
increasing the precision of prior preferences would increase the
contribution of the KL divergence or risk. In other words, ρ

controls the risk aversion or greediness of the agent.

The second summation term implies that after K timesteps,
we continue to select policies according to their expected free
energy, hence recursively re-evaluating the expected free energy
of each policy at timestep t + K. This allows us to limit the size
of the search tree to multiples of K while still keeping in line
with the theoretical grounds of the active inference framework.
Calculation of G then unfolds as a search tree rooted at the
current state estimate st , as shown in Figure 4. In fact, this
scheduling scheme means that we run a particular action K
times and then consider a switch in the action for D times. In
practice, however, we evaluate the recursion D times, resulting
in an effective planning horizon of H = K × D. We select a
new action every time step, and then rebuild the search tree. This
means that even though our policy search plans ahead with a
fixed policy each K time steps, in reality we allow the agent to
reevaluate and possibly switch its policy at every time step.

Note that in Equation (10), we replaced the expected
conditional entropy in EQ

[

H(oτ |sτ )
]

by the unconditioned
entropy H(oτ ). As H(oτ ) ≥ H(oτ |sτ ) due to the elimination
of the mutual information I(ot; st) (noting that the mutual
information is always greater than zero), we effectively minimize
is in fact an upper bound on the expected free energy.

3. RESULTS

We evaluate our approach on three different problems of
increasing complexity. We start with the continuous control
mountain car problem, which has already been treated before in
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FIGURE 5 | Description of the mountain car problem and model rollout results. (A) Shows a render from the environment with the position axis included. The car is

shown at position −0.5 which is the starting position in our evaluations. The goal of the experiment is to drive an underactuated car up the right-hand mountainside.

The only way to achieve this is to first go left to gain enough momentum. (B) Shows the posterior and prior reconstructions of a trained mountain car model on a

rollout from a random agent over 300 timesteps. The transition model rollout is bootstrapped with the initial state value of the posterior model. Both prior and posterior

believes follow the groundtruth accurately.

active inference literature (Friston et al., 2009) with a generative
model specified upfront. Second, we address the OpenAI car
racing problem, in which the agent has to keep a car on the road
whilst only observing a low resolution topdown view of the car
and the road. Finally, we train a model on a real world mobile
robotics dataset and demonstrate the capacity of our model to
imagine future outcomes of the world.

We aim to address the following research questions:

• Can the agent learn a generative model purely from data to
engage in active inference?

• Does the generative model successfully capture the ambiguity
in the environment?

• Does the agent exhibit goal-directed behavior by specifying a
preferred state distribution?

• How does the agent compare to state of the art deep RL
methods such as DQN?

3.1. Partially Observed Mountain Car
The mountain car problem is an often used reinforcement
learning benchmark. It consists of a sinusoidal mountain range
with the goal of driving an underactuated car on top of the
taller mountainside. A rendering of the environment is found in
Figure 5A. The simplicity of the environment allows us to know
the ground truth world dynamics upfront. The agent state in the
world h is defined as the position and velocity of the car as given
by Moore (1990).

In spite of its apparent simplicity, this problem remains
an interesting first benchmark for any dynamics modeling or
behavior learning approach due to the sparseness of the reward,
as the agent only receives reward when the car reaches the top of
the hill. Also, the top can only be reached by first moving in the
opposite direction to build up enoughmomentum to drive up the

hill. As such, the mountain car problem is not solvable by greedy
approaches that aim to directly move toward the mountain top.

In order to amend the mountain car to a POMDP formalism,
we allow our agent to only observe a noisy estimate of its
actual position and omit the velocity information. As to properly
solve the resulting problem, the agent now has to learn how
to model the velocity and denoised position in its belief state
space s. The agent can follow either policy πl or πr , which
each repeat the same action of either throttling to the left or
the right. By switching between these policies at different time
steps a more complex policy can be built. The low-dimensional
nature of this problem allows us to explore the effect of the risk
and ambiguity terms on G, and by extension on the learned
behavior. Furthermore we experiment with two variants of the
environment. The agent can start with a fixed zero initial velocity,
or it can start with a randomized velocity. When starting with a
randomized velocity the agent has to learn to quickly estimate its
current velocity in order to estimate when to start driving right,
increasing the problem complexity.

For our generative model, we instantiate pθ (st|st−1, at),
pφ(st|st−1, at , ot) and pξ (ot|st) as fully connected neural networks
with two hidden layer containing 20 hidden neurons, and
a 4-dimensional state space. The model architecture and
parameterization were determined empirically. To bootstrap the
model, we train on actions and observations of a random agent
that randomly selects to throttle left or right with 10% chance,
and repeats the previous action otherwise. Themodels are trained
until convergence with a batch size of 32 sequences of length
100 each, minimizing the loss as described in Equation (8)
using the Adam optimizer with learning rate 0.0001. We used
PyTorch for the definition and training of all neural networks.
The performance of the model is assessed through inspecting the
difference between state reconstructions and ground truth values,
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FIGURE 6 | We plot the agents imagined trajectories, in terms of imagined position, under different policies. Action sequences starting with a left action are colored

red. Sequences starting with a right action are colored blue. Each action is repeated 30 times before picking a new action. Due to the random initial velocity, the car

will reach the hill fast using the always right policy in only part of the samples (E), however starting with the left policy first consistently reaches the hill top with low

entropy on the observations (A). A greedy agent (ρ > 1) will pick (E) whereas a cautious agent (ρ << 1) will favor (A). For each policy (A–H) we report the values of

KL, H and G for ρ = 0.1.

illustrated in Figure 5B. Both the prior and posterior model are
capable of estimating the ground truth observations accurately.

Next, we instantiate an active inference agent that uses
Equation (10) to plan ahead and select the policy with the
lowest expected free energy. As preferred state distribution
P(sτ ), we manually drive the car up the mountain and evaluate
the model’s posterior state at the end of the sequence ŝend,
and set P(sτ ) = N (ŝend, 1). To limit the computations, we
allow the active inference agent to plan ahead for 90 timesteps,
where policies are evaluated for K = 30 time steps, with a
recursion depth of D = 3, and drawing N = 100 samples for
each policy.

To evaluate the planning as inference, we visualize sampled
trajectories for all branches of the search tree at t = 0,

after observing only a single observation at start position −0.5.
This is a challenging starting position as the car needs enough
momentum in order to reach up the hill from there. In the case
of a random starting velocity, the generative model is not sure
about the velocity after only the first observation. This is reflected
by the entropy (i.e., the expected ambiguity) of the sampled
trajectories as illustrated in Figure 6. Now following πr from the
start will sometimes reach the preferred state, depending on the
initial velocity. In this case the active inference agent’s behavior
is determined by the parameter ρ. For ρ > 1, the agent will act
greedily, preferring the policy that has a chance of reaching the
top early, cf. Figure 6E. When setting ρ << 1, the entropy term
will play a bigger role, and the agent will select the policy that
is less uncertain about the outcomes, rendering a more cautious
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FIGURE 7 | As in Figure 6, we plot the agents imaginary trajectories for different policies. When the environment starts the car with a fixed zero velocity, the model is

on average much more certain on the predicted trajectories, resulting in lower entropy terms. However, policy (E) still achieves the lowest KL value, as this term is

evaluated each time step, and moving away from the preferred state yields a high KL penalty. When choosing ρ = 0.1, the agent again favors (A). For each policy

(A–H) we report the values of KL, H and G for ρ = 0.1.

agent that prefers amore precise and careful policy, moving to the
left first see Figure 6A. We found setting ρ = 0.1 yields a good
trade-off between cautiousness and greediness for the mountain
car agent.

In the environment with no initial velocity, the transition
model learned by the agent is quite accurate and the entropy
terms are an order of magnitude lower than the case with random
initial velocity, as shown in Figure 7. However, in terms of
preferred state the lowest KL-value is still achieved by following
πr . This is due to the fact that the KL-term is evaluated each time
step, and moving to the left, away from the preferred state in the
sequence then outweighs the benefit of reaching the preferred
state in the end. Choosing ρ = 0.1 again forces the agent to
put more weight on resolving uncertainty, preferring the policy
in Figure 7A.

We compare our approach with a often used reinforcement
learning baseline for problems with discrete action spaces,
DQN (Mnih et al., 2015). Similar to our active inference approach
DQN learns from off-policy data, but however, it also explores the
world with the policy it is learning. We compare the success rate
of agents trained using active inference to DQN agents, trained
on 10, 100, 1000 and 10 000 episodes. The DQN agents are
parameterized by amMLP with two hidden layers of 200 neurons
and are trained using stochastic gradient descent with a fixed ǫ

value of 0.3, a γ of 0.99 and a learning rate of 0.001.We repeat the
training process 10 times to account for effects of randomness on
the training performance. Finally we repeat the evaluation run for
each train run 100 times to eliminate the effects of randomness
in the environment on the agents performance. In Figure 8A, we
plot the average success rate and its spread for the active inference
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FIGURE 8 | Comparison between DQN agents and Active Inference agents in terms of reward. We compare each agents performance when trained over 10, 100,

1,000, and 10,000 episodes. We trained each agent ten times for each episode amount to account for training instabilities. (A) Shows the success rate for both active

inference agent (orange) and the DQN agent (blue) on the mountaincar problem. Note that success rate and reward are interchangeable here as an agent only gets a

reward of one when reaching the top. We do not train the active inference agent for 10,000 episodes since it already consistently achieves a high success rate in 100

and 1,000 episodes. (B) Shows the reward score the car racing DQN agent (in blue) achieves. The Active inference agent is trained on only 10 episodes and is

indicated in red.

agents (orange) and the DQN agent (blue). Note that we did not
train the active inference agent for 10,000 episodes as it already
outperforms the DQN agent by a significant margin.

If we zoom in on the active inference performance when only
trained on a single rollout, we must note that the performance is
very dependent on the content of the train data. Only if during
this random sequence the car reaches the top, the agent is able to
create a plan that solves the environment.

3.2. Car Racing
The aim of the car racing task is to keep a car on the road,
observed from a top down 2D perspective as shown in Figure 9.
The track is randomly generated every time the agent is reset.
The action space comprises a vector indicating the steering angle,
the amount of throttle and brake as continuous values, which we
discretized to three possible policies: go forward, go left and go
right. The observation space consists of RGB images of 96 by
96 pixels, as shown in Figure 9. The agents own internal state
representation s is given by 16 independent Gaussian distributed
state variables.

We use the same general model architecture as in the
mountain car experiments, instantiating pθ (st|st−1, at−1) as a
multilayer perceptron with 128 hidden neurons. We use a
VAE architecture for pξ (ot|st) and pφ(st|st−1, at−1, ot). The
conditioning on at and st−1 is achieved by concatenating them
to the feature vector generated by a convolutional pipeline on
the initial input image ot . Details about the specific neural
architecture can be found in Appendix A.

We have trained our models on a dataset consisting of seven
human demonstration sequences on 7 tracks of varying length.
We used the Adam optimizer with an initial learning rate of
0.0001 and a minibatch size of 32 consisting of subsequences of
length 15. Due to the fact that the reconstructed observations are

FIGURE 9 | A render from the OpenAI gym car racing environment. The car

will always be present in the bottom center of the image in this environment,

the only parts that change in the observations will be the black bar at the

bottom and the shape of the track.

images where likelihood distributions are difficult to interpret,
we fix the standard deviation of the resulting pixel likelihood
distributions to 1. This in fact means that the negative log
likelihood term in our loss function is equivalent to a mean
squared error loss on the means of the likelihood distributions.

An example of model beliefs on a human rollout is given
in Figure 10. The prior samples are generated from 10 samples
out of the initial posterior distribution, and are only updated
through the transition model using the previous state and
action, resampling from the resulting prior distributions every
timestep. The posterior samples are generated using the initial
posterior state sample and then updating that sample using the
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posterior model from the previous state and action and the real
observation. In Figure 10C, we see that the model is capable of
modeling temporally coherent states from just previous beliefs
and actions.

Because the agent always starts at the middle of the road
we take the initial frame of a rollout as preferred observation,
which can be translated to a preferred state distribution P(s̃)
through the agents posterior model, as seen in Figure 11A. From
this preferred state distribution and the trained model we then
instantiate an active inference agent that uses Equation (10) in
the same way as we did in the mountain car experiments, setting
K, D and N to 10, 2 and 2, respectively. We also find that a ρ

of 0.0001 yields the best results in terms of imaginary planning.
This is possible due to the low variability in the environment and
the environment lending itself to a greedy solution. We provide
Figures 11B,C as references as how to interpret the expected
entropy terms in this experiment. In these figures we overlay 10
different trajectories each starting from the same initial state with
the same action sequence. If there is little variation in what the
agent believes will happen, the imagined trajectories will overlap
a lot, their superposition will become less blurry as can be seen
in Figure 11B. However, if there is a lot of variation in the
imaginary rollouts, the trajectories will overlap less, resulting in
blurry images, as can be seen in Figure 11C. This visual blurriness
correlates with the entropy of the planned trajectories.

Finally it is worth noting that although the agents’ preferences
are defined only by situations with straight road segments, as seen
in Figure 11A, the agent has no issues in driving through corners.
Figure 12 shows the agent taking a sharp and straight corner,
when the only option to safely navigate the corner is to keep on
the road the agent will do just that (Figure 12A). However, when
the corners are more shallow the agent will try to cut the corner
in order to realize its preferences faster (Figure 12B).

As with the mountaincar experiment, we benchmark our
approach against DQN and compare the performance of a DQN
agent trained for 10, 100, and 1,000 episodes against an active
inference agent trained on only 10 episodes. We use the stable
baselines3 (Raffin et al., 2019) implementation of DQN using the
library’s CNNPolicy. We train with stochastic gradient descent
with a learning rate of 10−4 and a scheduled ǫ starting at 1 and
decreasing linearly proportional with the training length up until
a minimum of 0.05. The results are visualized in Figure 8B. As
with the mountaincar setting, the active inference agent is able to
obtain high rewards from a handful of demonstration rollouts,
whereas a DQN agent requires a lot of interactions with the
environment before it starts obtaining rewards.

3.3. Robotic Navigation
As a final experiment we test our technique on a robotics case.
We collect a dataset of real world (camera image, action) pairs
using a Kuka youbot (Figure 13) equippedwith a Realsense RGB-
D camera. Note that the depth information of the RGB-D camera
is omitted.

We collect the data by driving the robot up and down the aisles
of a warehouse lab. Action information is provided in the form of
linear and angular velocity commands. All data is synchronized
and recorded at a frequency of 10Hz. As can be seen in Figure 14,

the added difficulty of this dataset is the amount of clutter that the
real world offers in the observation space. Note as well, that in
order to comprehend the effect of the action vector on the world
effectively the model will also need to learn to translate its own
velocity information to distortions and translations on the image
feed in its belief space.

We use the same architecture as in the car racer experiment,
keeping the VAE encoder and decoder networks, while changing
pθ (st|st−1, at−1) to an LSTM to allow for more temporal depth in
the prior transition model following the findings of Hafner et al.
(2019). The exact parameterization of our models is provided
in Appendix A. These models are trained with Adam optimizer
using the objective function from Equation (8) for 1M iterations.
We use a mini-batch size of 128 and a sequence length of
10 timesteps.

We utilize the same approach as in the mountain car and
car racing problems for our imaginary trajectories and planning.
The agent has access to three base policies to pick from: drive
straight, turn left and turn right. Actions from these policies
are propagated to the learned models at different time horizons
H = 10, 25, or 55. For each resulting imaginary trajectory,
the expected free energy G is calculated. Finally the trajectory
with lowest G is picked, and the first action of the chosen
policy is executed, after which the imaginary planning restarts.
The robot’s preferences are given by demonstration, using the
state distribution of the robot while driving in the middle of
the aisle. This should encourage the robot to navigate safely in
the aisles.

At each trial the robot is placed at a random starting
position and random orientation and tasked to navigate to the
preferred position. Figure 14 presents a single experiment as
an illustrative example. Figure 14A shows the reconstructed
preferred observation from the given preferred state, while
Figure 14B shows the trial’s start state from an actual
observation. Figure 14C shows the imagined results of either
following the policy “always turn right,” “always go straight,”
or “always turn left.” Figure 14D is the result of utilizing the
planning method explained above.

The robot indeed turns and keeps driving in the middle of
the aisle, until it reaches the end and then turns around1. When
one perturbs the robot by pushing it, it will again recover and
continue to the middle of the aisle due to the way the planning
takes place in the agents belief space.

4. DISCUSSION

We have shown in the above experiments that it is indeed
possible to learn a generative active inference model purely from
data without specifying any transition dynamics or meaning to
the state spaces upfront. The required dataset size varies from
problem domain to problem domain and can be collected by a
random agent or human experts. We found that such a learned
generative model can indeed capture the dynamics and the
ambiguity of the environment well enough to be able successfully
represent the environment in a its own belief states. From these

1A movie demonstrating the results is available at https://tinyurl.com/smvyk53.
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FIGURE 10 | Visualization of the models belief states for a human rollout. Time flows from left to right. In (A), we show the ground truth observations. In (B), we show

the reconstructions from a belief sample that was updated every time with both the real action and real observation. In (C), we have the corresponding reconstructions

from imagined belief states sampled by the transition model, after observing only the initial observation. As the position of the car is always fixed at the center bottom,

the shape of the reconstructed road segments gives insight in how the agent performs.

FIGURE 11 | (A) Shows the agents preferences generated from a human demonstration. The preferences specify that the agent should prefer to drive on the road

instead of the grass. Note that here there is no temporal correlation between each frame in the sequence. (B,C) show how the expected entropy term of G can be

interpreted in the case of our latent spaces. They show the superposition of 10 different imaginary trajectories under the same action sequence (forward, forward),

with a look ahead of 2. Time flows from left to right in these sequences. The car is always in the bottom center of the image.

belief states we can successfully plan ahead, giving rise to goal-
directed behavior toward the preferred state distribution. Our
approach is able to outperform DQN in terms of reward in a

low-data regime without being trained specifically on solving the
corresponding task. However, in order to achieve this sample
efficiency, we assumed that the training data covers the real
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FIGURE 12 | Active inference agent performance in corners. The agent will sometimes cut shallow corners (B) in order to achieve its goals as fast as possible. When

the corner is too sharp to safely cut (A) the agent will follow the road instead.

FIGURE 13 | The Robotic setup used to collect the real world data. The

mobile platform is a Kuka Youbot, the data is captured with a Intel Realsense

RGB-D camera.

underlying distribution of observations and sufficiently covers
the action space. This is the case for the problems on which
we benchmarked, however for more complex environments
the agent would need an improved and guided exploration
mechanism. In addition, we currently train the generative model
beforehand, and only afterwards we introduce the planning as
inference. Ideally the agent should be trained while interacting
with the environment, making the entire system end-to-end. This
would require the agent to also evaluate expected free energy
during the training process for exploration (Schwartenbeck et al.,
2019), i.e., by maintaining a posterior distribution over model
parameters similar to Tschantz et al. (2019).

One of themain difficulties in our approach of active inference
is the specification of the preferred state distribution, as it
generally requires that the corresponding preferred observation
is already acquired in some way so that the desired state
values can be calculated through the agents generative model.
In the above experiments we acquired the desired observations

either from the agents first observation (car racing experiment)
or from human demonstration (mountain car and navigation
experiment). However, as the generative model is trained, also
this preferred state distribution can shift as the model can assign
new meaning to state vectors trough the learning process. One
way to mitigate this is by defining the preferences in terms
of observations instead of states, as in Friston et al. (2016).
However, this is impractical for high dimensional observations
such as pixels. Another option is to embed a reward signal in the
observation space as proposed by Tschantz et al. (2019), and put
a prior preference on high reward outcomes.

Together with the specification of the preferred state
distribution, one also determines how strong the agent is
attracted by its preferences. For example, by defining the prior
as a Gaussian distribution with low variance around a preferred
state sample, the KL-term in Equation (6) becomes very large and
overwhelms the ambiguity term. To overcome this issue we again
make use of the ρ hyperparameter (Equation 10) which enables
to weigh the two terms, resulting in a risk-taking or risk-averse
agent, as shown in the mountain car experiment.

In our current experiments, we always trained the model on
relatively short subsequences in comparison to the time horizon
the agent needs to operate on. The downside of this, is that our
model has a shallow temporal depth. The model cannot actually
predict accurately far in the future, and also can not keep amental
“map” of the environment. In the robotic navigation experiment
the model only knew that the aisles are straight and how to
avoid obstacles. However, it could not differentiate between the
different aisles. In the car racing experiment the model is also
not able to predict entire circuits, it just knows that the road
is a continuous object, and that after each segment it currently
sees there will be another segment. Future work might focus on
how to incorporate the current technique into hierarchical and
temporally deeper models (Friston et al., 2017b), allowing the
agent to reason on different levels of action abstractions.

Finally, in the current experiments we did not perform any
pruning in the policy search tree, all possible branches of the
tree were evaluated. This currently prevents the application of
our approach to problems requiring significant temporal depth.
However, as the expected free energyG is a non-negative additive
quantity we could effectively prune the tree by eliminating
all branches above a certain G value, following the principle
of Occam’s Window (Madigan and Raftery, 1994). Another
path forward might be to replace the explicit planning by an
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FIGURE 14 | Experimental results: (A) Shows the target observation in imagined (reconstructed) space. (B) The start observation of the trial. (C) Shows different

imaginary planning results, while (D) Shows the actually followed trajectory.

amortized habit policy neural network which could be used in
unsurprising states. The agent could then switch back to explicit,
and expensive, planning when encountering uncommon, high
surprise states.

4.1. Related Work
Active inference, as described by Friston since 2003 (Friston,
2003, 2010, 2013; Friston et al., 2006, 2009; Friston K. et al., 2015;
Friston et al., 2016), has been applied to many different problem
domains, highlighting the potential of a free energy driven
artificial agent. Active inference based models have been shown
to solve a wide array of tasks in different settings ranging from
thermostats (Friston et al., 2012) to foraging problems (Mirza
et al., 2016). In Friston et al. (2009, 2012), it is shown that a
well-parameterized active inference model is capable of solving
optimal control problems, including a discrete version of the
mountain car problem. In Sajid et al. (2019), an in-depth
comparison is made between active inference and reinforcement
learning on the OpenAI Gym frozen lake environment. Other
applications of active inference are text recognition (Friston K. J.
et al., 2015), speech recognition (Kiebel et al., 2009a), perceptual
categorization (Kiebel et al., 2009b), robotic arm control (Pio-
Lopez et al., 2016). These approaches however all rely on a
carefully specified generative model to operate successfully, a
process that has to be done manually before any Bayesian
inference on the model parameters proceeds. Our approach,

on the other hand, leverages recent advances in the field of
generative modeling (Higgins et al., 2017) using deep neural
networks, allowing to fully learn a generative model from data.

A popular approach to generative modeling is variational
autoencoding. The variational autoencoder (VAE) is a method
to translate the variational inference process to a deep learning
setting. VAEs form the basis of many model-based reinforcement
learning approaches (Johnson et al., 2016; Moerland et al.,
2017; Buesing et al., 2018; Cornell et al., 2018; Racanière and
Weber, 2018), and are used to introduce stochasticity in model
dynamics in a scalable way. A notable paper utilizing VAE-
based dynamics models is the World Models paper by Ha
and Schmidhuber (2018), in which a mixture density model is
learned for the car racing environment. In Hafner et al. (2019),
the policy component typically encountered in reinforcement
learning is swapped for a planning component. Their model
learns not only the dynamics but also an estimate of the
reward associated with every possible belief state. This allows
for the use of the cross entropy method (Rubinstein and
Kroese, 2004) to plan trajectories in latent space. In follow-
up work (Hafner et al., 2020) the generative model is also
used to generate new training data, improving the sample
efficiency of the algorithm. Despite using a generative model,
these approaches still rely on a scalar reward signal as utility
function, whereas the free energy objective combines exploration
and exploitation.
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Ours is not the only work on the intersection between deep
artificial neural networks and active inference. In Ueltzhöffer
(2018), a generative model for active inference on the mountain
car environment was learned using evolution strategies (Salimans
et al., 2017) as a policy gradient estimator, while partially
fixing the model’s state space to allow for easy preferred
state specification. More recently in Millidge (2020) the free
energy objective is used to learn amortized policies using policy
gradient methods on several RL benchmarks. Finally in Tschantz
et al. (2019), the application of Bayesian neural networks to
model the inherent stochasticity necessary for active inference
is explored. However, these applications were still limited
to simulated scenarios with low dimensional observations,
whereas we learn complex models directly from real-world
pixel data.

5. CONCLUSION

In conclusion, we have presented a fully learned way to perform
active inference without any prior specification of the agent’s
belief space. We achieve this by training three different artificial
neural networks, each calculating a probability distribution,
while minimizing the variational free energy. This way we
are able to accurately capture world dynamics, allowing for
successful active inference based action selection. We propose
a method to estimate the expected free energy from sampled
trajectories, effectively implementing active inference as a tree
search over policies.

We have demonstrated our approach on three tasks of
increasing difficulty. To our knowledge we are the first

to successfully apply active inference on real-world, pixel-

based inputs without any explicit state space dynamics
specification. Our approach makes use of tried and tested deep
learning techniques, and is capable of scaling over input and
dataset size.

Our current approach relies on the presence of a pre-recorded
dataset of (observation, action) pairs. In future work we will
focus on learning the model in an online fashion, so that acting
and learning can be interleaved, removing the need for a pre-
recorded dataset.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

OÇ and TV conceived and performed the experiments.
OÇ, SW, CD, and TV worked out the mathematical
basis for the experiments. OÇ, SW, CD, TV, and BD
contributed to the paper. Bart supervised the experiments.
All authors contributed to the article and approved the
submitted version.

FUNDING

OÇ was funded by a Ph.D. grant of the Flanders Research
Foundation (FWO). This research received funding from the
Flemish Government (AI Research Program).

REFERENCES

Abbeel, P., and Ng, A. Y. (2005). “Exploration and apprenticeship learning in

reinforcement learning,” in Proceedings of the 22nd International Conference on

Machine Learning (New York, NY), 1–8. doi: 10.1145/1102351.1102352

Angelucci, A., Levitt, J. B., Walton, E. J. S., Hupe, J.-M., Bullier, J., Lund, J.

S., et al. (2002). Circuits for local and global signal integration in primary

visual cortex. J. Neurosci. 22, 8633–8646. doi: 10.1523/JNEUROSCI.22-19-086

33.2002

Bastos, A., Usrey, W., Adams, R., Mangun, G., Fries, P., and

Friston, K. (2012). Canonical microcircuits for predictive

coding. Neuron 76, 695–711. doi: 10.1016/j.neuron.2012.1

0.038

Beal, M. (2003). Variational algorithms for approximate Bayesian inference. (Ph.D.

thesis).

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information

Science and Statistics). Berlin; Heidelberg: Springer-Verlag.

Buesing, L., Weber, T., Racanière, S., Eslami, S., Rezende, D., Reichert, D.,

et al. (2018). Learning and querying fast generative models for reinforcement

learning. arXiv [Preprint] arXiv:1802.03006.

Cornell, D., Gerstner, W., and Brea, J. (2018). “Efficient model-based deep

reinforcement learning with variational state tabulation,” in 35th International

Conference on Machine Learning, ICML 2018 (Stockholm), 1708–1725.

Da Costa, L., Parr, T., Sajid, N., Veselic, S., Neacsu, V., and Friston, K.

(2020). Active inference on discrete state-spaces: a synthesis. arXiv [Preprint].

arxiv:2001.07203.

Dayan, P., Hinton, G. E., Neal, R. M., Zemel, R. S., Dayan, P., Hinton, G.

E., et al. (1995). The Helmholtz machine. Neural Comput. 7, 889–904.

doi: 10.1162/neco.1995.7.5.889

Friston, K. (2003). Learning and inference in the brain. Neural Netw. 16,

1325–1352. doi: 10.1016/j.neunet.2003.06.005

Friston, K. (2010). The free-energy principle: a unified brain theory? Nat. Rev.

Neurosci. 11:127. doi: 10.1038/nrn2787

Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., O’Doherty, J., and Pezzulo,

G. (2016). Active inference and learning. Neurosci. Biobehav. Rev. 68, 862–879.

doi: 10.1016/j.neubiorev.2016.06.022

Friston, K., Kilner, J., and Harrison, L. (2006). A free energy principle for the brain.

J. Physiol. 100, 70–87. doi: 10.1016/j.jphysparis.2006.10.001

Friston, K., Rigoli, F., Ognibene, D., Mathys, C., Fitzgerald, T., and Pezzulo,

G. (2015). Active inference and epistemic value. Cogn. Neurosci. 6, 187–214.

doi: 10.1080/17588928.2015.1020053

Friston, K., Samothrakis, S., and Montague, R. (2012). Active inference and

agency: optimal control without cost functions. Biol. Cybern. 106, 523–541.

doi: 10.1007/s00422-012-0512-8

Friston, K. J. (2013). Life as we know it. J. R. Soc. Interface. 10:20130475.

doi: 10.1098/rsif.2013.0475

Friston, K. J., Daunizeau, J., and Kiebel, S. J. (2009). Reinforcement learning or

active inference? PLoS ONE 4:e6421. doi: 10.1371/journal.pone.0006421

Friston, K. J., Frith, C. D., Friston, K. J., and Frith, C. D. (2015).

Active inference, communication and hermeneutics. Cortex 68, 129–43.

doi: 10.1016/j.cortex.2015.03.025

Friston, K. J., Parr, T., and de Vries, B. (2017a). The graphical brain:

belief propagation and active inference. Netw. Neurosci. 1, 381–414.

doi: 10.1162/NETN_a_00018

Friston, K. J., Rosch, R., Parr, T., Price, C., and Bowman, H.

(2017b). Deep temporal models and active inference. Neurosci.

Biobehav. Rev. 77, 388–402. doi: 10.1016/j.neubiorev.2017.

04.009

Frontiers in Computational Neuroscience | www.frontiersin.org 15 November 2020 | Volume 14 | Article 574372

https://doi.org/10.1145/1102351.1102352
https://doi.org/10.1523/JNEUROSCI.22-19-08633.2002
https://doi.org/10.1016/j.neuron.2012.10.038
https://doi.org/10.1162/neco.1995.7.5.889
https://doi.org/10.1016/j.neunet.2003.06.005
https://doi.org/10.1038/nrn2787
https://doi.org/10.1016/j.neubiorev.2016.06.022
https://doi.org/10.1016/j.jphysparis.2006.10.001
https://doi.org/10.1080/17588928.2015.1020053
https://doi.org/10.1007/s00422-012-0512-8
https://doi.org/10.1098/rsif.2013.0475
https://doi.org/10.1371/journal.pone.0006421
https://doi.org/10.1016/j.cortex.2015.03.025
https://doi.org/10.1162/NETN_a_00018
https://doi.org/10.1016/j.neubiorev.2017.04.009
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Çatal et al. State Models for Active Inference

Ha, D., and Schmidhuber, J. (2018). World models. arXiv [Preprint].

arxiv:1803.10122.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. (2020). “Dream to control:

learning behaviors by latent imagination,” in 8th International Conference on

Learning Representations, ICLR 2020 (Ethiopia: Addis Ababa). Available online

at: https://dblp.org/rec/conf/iclr/HafnerLB020.html?view=bibtex

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., et al. (2019).

“Learning latent dynamics for planning from pixels,” in 36th International

Conference on Machine Learning, ICML 2019 (Long Beach), 4528–4547.

Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., et al.

(2017). “Beta-vae: learning basic visual concepts with a constrained variational

framework,” in 5th International Conference on Representation learning (ICLR)

(Toulon).

Hospedales, T., Antoniou, A., Micaelli, P., and Storkey, A. (2020). Meta-learning

in neural networks: a survey. arXiv [Preprint]. arxiv:2004.05439.

Irpan, A. (2018). Deep Reinforcement Learning Doesn’t Work Yet. Available online

at: https://www.alexirpan.com/2018/02/14/rl-hard.html

Johnson, M. J., Duvenaud, D. K., Wiltschko, A., Adams, R. P., and Datta, S.

R. (2016). “Composing graphical models with neural networks for structured

representations and fast inference,” inAdvances in Neural Information Procesing

Systems 29 (Barcelona), 2946–2954.

Kiebel, S. J., Daunizeau, J., and Friston, K. J. (2009a). Perception and

hierarchical dynamics. Front. Neuroinform. 3:20. doi: 10.3389/neuro.11.02

0.2009

Kiebel, S. J., von Kriegstein, K., Daunizeau, J., and Friston, K. J. (2009b).

Recognizing sequences of sequences. PLoS Comput. Biol. 5:e1000464.

doi: 10.1371/journal.pcbi.1000464

King, D. (1997).Kasparov V. Deeper Blue: The UltimateManV.Machine Challenge.

London: Batsford Ltd. doi: 10.3233/ICG-1997-20309

Kingma, D. P., and Welling, M. (2014). “Auto-encoding variational bayes,”

in 2nd International Conference on Learning Representations, ICLR 2014

(Banff, AB).

Kurenkov, A. (2018). Reinforcement learning’s foundational flaw. The Gradient.

Madigan, D., and Raftery, A. E. (1994). Model selection and accounting

for model uncertainty in graphical models using Occam’s window.

J. Am. Stat. Assoc. 89, 1535–1546. doi: 10.1080/01621459.1994.1047

6894

Millidge, B. (2020). Deep active inference as variational policy gradients. J. Math.

Psychol. 96:102348. doi: 10.1016/j.jmp.2020.102348

Mirza, M. B., Adams, R. A., Mathys, C. D., and Friston, K. J. (2016). Scene

construction, visual foraging, and active inference. Front. Comput. Neurosci.

10:56. doi: 10.3389/fncom.2016.00056

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,M. G., et al.

(2015). Human-level control through deep reinforcement learning.Nature 518,

529–533. doi: 10.1038/nature14236

Moerland, T. M., Broekens, J., and Jonker, C. M. (2017). Learning transition

dynamics for model-based reinforcement learning. arXiv [Preprint].

arxiv:1705.00470.

Moore, A. W. (1990). Efficient Memory-Based Learning for Robot Control.

Technical report. University of Cambridge, Computer Laboratory.

Oudeyer, P.-Y., and Kaplan, F. (2007). What is intrinsic motivation?

A typology of computational approaches. Front. Neurorobot. 1:6.

doi: 10.3389/neuro.12.006.2007

Pio-Lopez, L., Nizard, A., Friston, K., Pezzulo, G., Pio-Lopez, L., Nizard, A., et al.

(2016). Active inference and robot control: a case study. J. R. Soc. Interface

13:20160616. doi: 10.1098/rsif.2016.0616

Racaniére, S., and Weber, T. (2018). Learning dynamic state abstractions for

model-based reinforcement learning, 1–17.

Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto, A., and Dormann, N.

(2019). Stable Baselines3. Available online at: https://github.com/DLR-RM/

stable-baselines3

Rao, R. P. N., and Ballard, D. H. (1999). Predictive coding in the visual cortex:

a functional interpretation of some extra-classical receptive-field effects. Nat.

Neurosci. 2, 79–87. doi: 10.1038/4580

Rezende, D. J., Mohamed, S., andWierstra, D. (2014). “Stochastic backpropagation

and approximate inference in deep generative models,” in Proceedings of the

31st International Conference on Machine Learning (ICML), Vol. 32 (Beijing),

1278–1286.

Rubinstein, R. Y., and Kroese, D. P. (2004). The Cross-Entropy Method - A

Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and

Machine Learning vert Reuven Y. Rubinstein vert Springer. New York, NY:

Springer-Verlag.

Russell, S., and Norvig, P. (2009). Artificial Intelligence: A Modern Approach, 3rd

Edn. Cambridge: Prentice Hall Press.

Sajid, N., Ball, P. J., and Friston, K. J. (2019). Demystifying active inference. arXiv

[Preprint]. arxiv:1909.10863.

Salimans, T., Ho, J., Chen, X., and Sutskever, I. (2017). Evolution strategies

as a scalable alternative to reinforcement learning. arXiv [Preprint].

arxiv:1703.03864.

Schwartenbeck, P., Passecker, J., Hauser, T. U., FitzGerald, T. H., Kronbichler,

M., and Friston, K. J. (2019). Computational mechanisms of curiosity and

goal-directed exploration. Elife 8:e41703. doi: 10.7554/eLife.41703

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,

et al. (2017). Mastering the game of go without human knowledge. Nature 550,

354–359. doi: 10.1038/nature24270

Tschantz, A., Baltieri, M., Seth, A. K., and Buckley, C. L. (2019).

Scaling active inference. arXiv preprint arXiv:1911.10601.

doi: 10.1109/IJCNN48605.2020.9207382

Ueltzhöffer, K. (2018). Deep active inference. Biol. Cybern. 112, 547–573.

doi: 10.1007/s00422-018-0785-7

Van De Laar, T. W., and De Vries, B. (2019). Simulating active inference processes

by message passing. Front. Robot. AI 6:20. doi: 10.3389/frobt.2019.00020

Wiewiora, E. (2010). Reward Shaping. Boston, MA: Springer.

doi: 10.1007/978-0-387-30164-8_731

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Çatal, Wauthier, De Boom, Verbelen and Dhoedt. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 16 November 2020 | Volume 14 | Article 574372

https://dblp.org/rec/conf/iclr/HafnerLB020.html?view=bibtex
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://doi.org/10.3389/neuro.11.020.2009
https://doi.org/10.1371/journal.pcbi.1000464
https://doi.org/10.3233/ICG-1997-20309
https://doi.org/10.1080/01621459.1994.10476894
https://doi.org/10.1016/j.jmp.2020.102348
https://doi.org/10.3389/fncom.2016.00056
https://doi.org/10.1038/nature14236
https://doi.org/10.3389/neuro.12.006.2007
https://doi.org/10.1098/rsif.2016.0616
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
https://doi.org/10.1038/4580
https://doi.org/10.7554/eLife.41703
https://doi.org/10.1038/nature24270
https://doi.org/10.1109/IJCNN48605.2020.9207382
https://doi.org/10.1007/s00422-018-0785-7
https://doi.org/10.3389/frobt.2019.00020
https://doi.org/10.1007/978-0-387-30164-8_731
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Çatal et al. State Models for Active Inference

A. NEURAL NETWORK ARCHITECTURES

TABLE A1 | Neural network architectures for the car racing (C.R) and robotic

navigation (Robo) experiment.

Layer C.R. neurons/filters Robo. neurons/filters

P
o
st
e
rio

r

Convolutional 8 8

Convolutional 16 16

Convolutional 32 32

Convolutional 64 64

Convolutional 128 128

Concat

Linear 128 2 × 128

Linear 2 × 16

L
ik
e
lih
o
o
d

Linear 16 × 8 × 8 128 × 8 × 8

Convolutional 128 128

Convolutional 64 64

Convolutional 32 32

Convolutional 16 16

Convolutional 8 8

Convolutional 3 3

Tr
a
n
s.

Linear 2 × 16 states

LSTM cell 400

Linear 2 × 128 states

The convolutional layers in the Likelihood model have a stride and padding of 1 to ensure

that they preserve the input shape. All convolutional filters are 3 × 3. Upsampling is done

by nearest neighbor interpolation in the Likelihood model after each convolutional layer.

The concat step concatenates the flattened processed image pipeline with the vector

inputs a and s. All layers have a leaky ReLU activation function, except for the concat

step, which has no activation. For the variance output of the variational layers (denoted

with 2x) is activated with a softplus function instead of a leaky ReLU.
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