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Rhythmic activity in the brain fluctuates with behaviour and cognitive state, through a

combination of coexisting and interacting frequencies. At large spatial scales such as

those studied in human M/EEG, measured oscillatory dynamics are believed to arise

primarily from a combination of cortical (intracolumnar) and corticothalamic rhythmogenic

mechanisms. Whilst considerable progress has been made in characterizing these two

types of neural circuit separately, relatively little work has been done that attempts to

unify them into a single consistent picture. This is the aim of the present paper. We

present and examine a whole-brain, connectome-based neural massmodel with detailed

long-range cortico-cortical connectivity and strong, recurrent corticothalamic circuitry.

This system reproduces a variety of known features of human M/EEG recordings,

including spectral peaks at canonical frequencies, and functional connectivity structure

that is shaped by the underlying anatomical connectivity. Importantly, our model is

able to capture state- (e.g., idling/active) dependent fluctuations in oscillatory activity

and the coexistence of multiple oscillatory phenomena, as well as frequency-specific

modulation of functional connectivity. We find that increasing the level of sensory drive to

the thalamus triggers a suppression of the dominant low frequency rhythms generated

by corticothalamic loops, and subsequent disinhibition of higher frequency endogenous

rhythmic behaviour of intracolumnar microcircuits. These combine to yield simultaneous

decreases in lower frequency and increases in higher frequency components of the

M/EEG power spectrum during states of high sensory or cognitive drive. Building on this,

we also explored the effect of pulsatile brain stimulation on ongoing oscillatory activity,

and evaluated the impact of coexistent frequencies and state-dependent fluctuations on
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the response of cortical networks. Our results provide new insight into the role played by

cortical and corticothalamic circuits in shaping intrinsic brain rhythms, and suggest new

directions for brain stimulation therapies aimed at state-and frequency-specific control

of oscillatory brain activity.

Keywords: neural mass and field models, MEG magnetoencephalography, EEG electroencephalography,

connectome, alpha rhythm, brain stimulation

1. INTRODUCTION

A key characteristic of the fluctuations in extracranial electrical
and magnetic fields measured by electroencephalography
(EEG) and magnetoencephalography (MEG), resulting from
the collective activity of large numbers of (primarily) cortical
neurons, is that they are highly rhythmic.While the physiological
origins and cognitive function of these rhythms remains unclear,
their features are clearly highly labile: spatial location, frequency,
and oscillatory power can vary considerably as a function of
behaviour, cognitive processes, and disease. This suggests that not
only the oscillations themselves, but also their fluctuations over
time, space, and cognitive state play a key role in brain function.
Moreover, multiple frequencies can coexist and interact,
fluctuating in a highly correlated manner (Lisman and Jensen,
2013; Cohen, 2014). Understanding the mechanisms mediating
the coexistence of these rhythms, as well as state-dependent
changes in their properties, would yield important insight about
how collective neural activity and synchronization phenomena,
shaped by both sensory and recurrent inputs, mediate neural
communication (Akam and Kullmann, 2012). “State” here
simply refers loosely to gross cognitive/perceptual/neural activity
regimes, as for example seen in the difference between low-
frequency, high-amplitude oscillations observed at rest, and the
relatively higher-frequency activity elicited by focused cognitive
tasks. In the present paper we opt for the more neutral terms
“idling” and “active” (as opposed to “rest” and “task”) to indicate
these two dynamical regimes. To date only a few models in the
literature have sought to explicitly capture transitions between
these oscillatory states, and the dependence of certain neural
processes on the current state (e.g., Cohen, 2014; Lefebvre et al.,
2017). Experimental and theoretical results have shown that
neural systems can undergo oscillatory transitions due to changes
in stimuli statistics at various spatial scales (Jadi and Sejnowski,
2014; Hermes et al., 2015; Mierau et al., 2017), suggestive of
a state-dependent flexibility in oscillatory coding and activity.
Theoretical studies have highlighted multiple mechanisms that
could mediate such fluctuations in the power spectrum (Brunel
and Wang, 2003; Lefebvre et al., 2015), which is a principal focus
of the present study.

Physiologically-based mathematical models of neural activity
can be broadly divided into three types: morphological models—
which describe passive and active ion fluxes within spatially
extended neurons and circuits thereof; single neuron models—
which describe spiking or firing rate activity of individual
cells as point-processes with zero spatial extent; and neural
population models—which describe the collective activity of large

numbers of individual cells with low-dimensional equations.
Neural population models are particularly suited to the study
of noninvasive macroscopic signals such as MEG and EEG, for
which the measurement physics require co-ordinated activity
of thousands of individual cells to generate observable activity
fluctuations. Some of the earliest neural population model
formulations were due to Beurle (1956) and Freeman (1967),
however the seminal formulations by Wilson and Cowan (1972),
Nunez (1974), and Lopes da Silva et al. (1974) are those most in
use still today, with important updates introduced by Jansen and
Rit (1995), Jirsa and Haken (1996), Robinson et al. (1997, 2002),
Liley et al. (2002), David and Friston (2003), and others. All of
these approaches share the same basic structure, which can be
summarized in terms of two principal mathematical operations
(Freeman, 1975; Jirsa and Haken, 1997; Robinson et al., 2001):
pulse-to-wave conversion—where pulsed incoming firing at the
synapses of a neuronal population are converted to a continuous-
valued post-synaptic membrane responses, and wave-to-pulse
conversion—where average somatic post-synaptic depolarization
is converted to outgoing firing rates.

The majority of neural population models that have been
developed to account for the origins of large-scale brain rhythms
can be grouped into two broad categories: (i) cortical-only and
(ii) corticothalamic. A common feature of both of these is
the assumption (as has been established by substantial physical
and biophysical modelling and analysis) that the principal
contributor to the strong extracranial signals measured by EEG
and MEG are population-synchronous post-synaptic potentials
in cortical layer V pyramidal cells. A second common feature
of these, and indeed virtually all quantitative descriptions of
oscillatory activity in neural systems, is the interplay between
excitatory and inhibitory neural activity. The key difference
between cortical-only and corticothalamic neural population
models is where (i.e., which neural circuit, spanning which
anatomical locations) the key excitatory-inhibitory interactions
responsible for generating a given rhythmic pattern in observed
M/EEG data is located. Cortical-only models propose to situate
these circuit mechanisms directly within a cortical column (e.g.,
Jansen et al., 1993; Liley et al., 2002; David and Friston, 2003;
Moran et al., 2011; Bastos et al., 2012), with formulations
differing in precise details such as the number of interneuron
populations and the presence of self-connections in inhibitory
populations. Corticothalamic models (e.g., Robinson et al., 2001,
2002; Rowe et al., 2004; Cona et al., 2014; Saggar et al., 2015),
in contrast, situate the relevant inhibitory circuit mechanisms in
the thalamus rather than the cortex (specifically, the inhibitory
GABA-ergic neurons of the thalamic reticular nucleus, which
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inhibit the relay nucleus), and in interactions between thalamic
and cortical neural populations. These models thus attribute
prominent spectral features such as low-frequency oscillations to
delayed inhibition in long-range recurrent corticothalamic loops.
For an excellent schematic summary of these different model
classes and review of the theoretical landscape (see Liley, 2015).

Given the substantial bodies of empirical data from human
and nonhuman physiological recordings supporting the
existence of both the cortical-only and corticothalamic
rhythmogenic mechanisms, it is highly likely that both play
a role in the genesis of large-scale rhythmic activity observed
in local field potentials and extracranial electromagnetic fields.
Disambiguating the contribution of each to the different features
of M/EEG signals, and how they might interact, is a challenging
problem, however. Addressing this disconnect is one of the
principal aims of the present study.

One of the major points of dispute between cortical-only
and corticothalamic model types is the alpha rhythm. Alpha
frequency (8–12 Hz) oscillations are a hallmark pattern of
encephalographic activity (Berger, 1929; Adrian and Matthews,
1934). They have been linked to a wide variety of cognitive
processes such as perception and attention, and their dynamic
features (such as power and frequency) are also closely tied
to changes in behaviour (Pfurtscheller and Da Silva, 1999;
Mierau et al., 2017). Abnormal alpha activity is also involved
in many neurological disorders such as depression, Parkinson’s
disease, and Alzheimer’s disease (Uhlhaas and Singer, 2006;
Rossini et al., 2007; Vanneste et al., 2018). Although still not
uncontroversial, a broad range of experimental data point to
the corticothalamic system as the most likely locus of the
dominant alpha-frequency rhythmic activity seen in EEG and
MEG (Lopes da Silva et al., 1974), as well as the phase relationship
between alpha and other faster frequencies. In contrast, gamma
frequency oscillations have been robustly tied to intracolumnar
excitatory-inhibitory circuit mechanisms and active cortical
information processing (Buzsáki and Wang, 2012; Womelsdorf
et al., 2014). It remains an open question, however, how these two
types of oscillatory activity (plus associated circuit mechanisms)
shape large-scale neural dynamics, functional connectivity, and
information integration in a state-dependent fashion.

A key experimental direction for investigating the dynamic
properties and functional role of neural oscillations is to study
the relationship between endogenous activity and responses
to electromagnetic stimulation. This is not only critical for
understanding the functional role of brain oscillations in general,
but also for improving the efficacy of clinical applications
of noninvasive brain stimulation, such as in the treatment
of depression (Cocchi and Zalesky, 2018). Interestingly, a
confluence of experiments with both intra-cranial and non-
invasive stimulation have revealed frequency-specific responses,
with low-frequency stimulation decreasing the excitability of
stimulated tissue (Chen et al., 1997), and conversely higher
frequency stimulation having the opposite effect (Dayan et al.,
2013). Experiments in primates (Logothetis et al., 2010) and
rodents (Liu et al., 2015) have indeed demonstrated that
thalamic stimulation can be used to either activate or inactivate
cortical networks in a frequency-dependent manner, opening

new perspectives on the functional manipulation of cortical
dynamics by exogenous signals.

To better understand state-dependent changes in oscillatory
dynamics, their involvement in inter-area communication, and
how they might be controlled by non-invasive stimulation,
we present in this paper a novel connectome-based neural
mass model that combines cortical and corticothalamic circuit
mechanisms in a minimal and parsimonious fashion. As detailed
in the Methods, the full model consists of a network of 68
interconnected nodes, representing brain regions derived from
a commonly used parcellation covering most major cortical
structures in the human brain. The dynamics of each node
is described by an extension of the classic Wilson-Cowan
(WC) equations (Wilson and Cowan, 1972), which we refer
to as the “Cortico-Thalamic Wilson-Cowan” (CTWC) model.
Our primary goal was to investigate how state-dependent
inputs mediate changes in brain oscillations within multiple
frequency bands, and how these spectral fluctuations shape
functional connectivity. To do this, we began by examining
the behaviour of a single isolated network node corresponding
to an individual corticothalamic motif. We then moved on to
examining collective dynamics, interactions, and the influence of
stimulation within the whole-brain network.

2. RESULTS

In the following sections, we first demonstrate that the CTWC
model accurately reproduces several key characteristics of
measured power spectra and functional connectivity from resting
state MEG recordings. The model is then used to study the
impact of sensory drive on brain rhythms, and how this serves
to switch between low-frequency corticothalamically-driven vs.
high-frequency cortically-driven oscillatory regimes. Finally, we
show how the model predicts a number of empirical observations
in humans and rodents on the relationship between brain
state, periodic brain stimulation, and rhythmic entrainment of
neural activity.

2.1. Alpha Rhythms Emerge From Delayed
Recurrent Cortico-Thalamocortical Loops
In examining the dynamics of our corticothalamic model, we first
considered the idling state, which we defined as being a state
of minimal thalamic drive (see section 4) and thus reflecting
dynamics in the steady state. Consistent with previous work
(Lefebvre et al., 2017), this system produces a robust alpha
rhythmwith a spectral peak at approximately 10 Hz. In this idling
regime, the higher frequency peaks in the power spectrum at beta
and gamma frequencies reflect harmonics of the fundamental
frequency (alpha), in line with previous reports using similar
model architectures (e.g., Robinson et al., 2001).

To assess quantitatively the extent to which the model
power spectra match empirical recordings in humans, we fit the
model to MEG data in 10 subjects from the HCP WU-Minn
consortium. Specifically, we computed the Pearson correlation
between single-node model power spectra and channel-averaged
empirical MEG power spectra, allowing two model parameters
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(as and ar ; see section 4) to vary around their nominal values.
As shown in Figure 1, this resulted in a good fit to the MEG
data, with all subjects tested showing R2 ≥0.6. Interestingly, we
see in empirical MEG data that there are larger differences in
power spectra between subjects than between regions within a
given subject (data not shown). This observation supports the
modelling strategy of choosing a single set of parameters for each
subject, and using those for all regions in the network; as opposed
to using regionally varying parameter values. We return to the
question of spatially varying spectral power below.

2.2. Phase Transition From Low-Frequency
Idling to High-Frequency Active State
Having characterized the dynamics within the idling state and
the prevalence of alpha activity, we next asked how increasing
the drive to the thalamic populations (either in one or multiple
nodes) would impact the spectral properties of cortical activity.
To emulate a task or “active” state, we thus increased the
drive to the thalamic populations (see section 4) and observed
the resulting behaviour. We first studied this systematically for
a single isolated node. Figure 2 shows trajectories in the 3-
dimensional phase space defined by the state variables ue, ui,
and us (representing activity of excitatory cortical, inhibitory
cortical, and thalamic specific relay nuclei, respectively), along
with time series and power spectra for ue, which we take as a
proxy for M/EEG source activity (Robinson et al., 2001; Moran
et al., 2011). As the top left panel of Figure 2A shows, the
system in the idling alpha-dominated regime (consistent with
Figure 1) is characterized by a clean and highly stereotyped
10Hz limit cycle. Figure 2B and the right panels of Figure 2A
then show how the system’s dynamics and phase space are
modified upon raising the static sensory input or drive parameter
Io. We first observe (Figure 2B) with increasing Io a gradual
destabilization of the resting alpha rhythm, and a transfer
of oscillatory power from alpha to higher frequencies. This
destabilization is characterized in the three-dimensional phase
space by an increase in the number and regularity of short,
rapid excursions (“twists”) within the alpha limit cycle, which
in the time series plots appear as nested higher-frequency
“ripples” within the 10 Hz base oscillation. Eventually, after a
bifurcation point around Io=1.3 is crossed, the system shifts
completely to a noisier, low(er) amplitude gamma-frequency
limit cycle, with a clear peak in the power spectrum observed at
30 Hz. In line with a confluence of empirical studies (Jadi and
Sejnowski, 2014), this high-frequency component of the power
spectrum reflects the fast-paced interplay between excitatory and
inhibitory neural populations, and is generated locally within the
cortical compartments of each network node. Due to the nature
of the corticothalamic circuit motif we considered here, this
increased thalamic drive also represents an increased engagement
of cortical excitatory and inhibitory populations, that are now
recruited for active processing of afferent inputs.

2.3. Influence of Regionally Focal Thalamic
Drive
We now extend the observations and insights obtained from
the single-node case considered in the previous section to the

case of whole-brain network behaviour. Figure 3 shows time
series, power spectra, and brain-wide plots of the change (1) in
alpha and gamma power for simulations where Io is modulated
focally for a single node (left V1) in the 68-node network. The
suppression of alpha power and enhancement of gamma power
with increasing drive is clearly evident in the surface plots and
lower power spectrum (Figure 3A).

2.4. Functional Connectivity
Given the salient differences in oscillatory dynamics observed
in the idling and active states, we investigated how these
different oscillatory regimes shaped inter-area interactions in
a whole-brain network context. To do this, we compared
functional connectivity, as measured by amplitude-envelope
correlations (AECs) of band-limited power time series (Hunt
et al., 2016), in model-generated time series and empirically
measured MEG data.

Heuristically, moving from an isolated node to a network
of coupled nodes results in two important changes in the
“environment” experienced by each node. First, the overall or
time-averaged activity level of a given brain region will be higher
when there are inputs from other regions than when there are
no inputs. Second, depending on the behaviour of the incoming
signals from other regions, that node may experience periodic
or otherwise temporally structured driving inputs. This, in turn,
may lead to the emergence of synchronization and collective
behaviour throughout the system due to processes of entrainment
or resonance, possibly also accompanied by bifurcations. As
shown in Figure 4, we found idling and active states in the model
to be characterized by quite different functional connectivity
profiles. The idling state exhibits relatively weaker and spatially
non-specific AEC patterns at both alpha and gamma frequencies.
In contrast, as the increased static drive Io pushes the system
into the gamma-dominated active state, both alpha- and gamma-
frequency AEC matrices increasingly come to display the kind of
spatial structure characteristic of empirically measured AEC (as
well as by various other M/EEG, fMRI functional connectivity,
and indeed anatomical connectivity metrics). Specifically, the
active state shows a stronger tendency for spatially nearby regions
to show high correlations (as indexed in the AEC matrices
by the “halo” of high connectivity values around the leading
diagonal), and the classic two-block hemispheric structure with
stronger intra- than inter-hemispheric correlations. Interestingly,
although the two characteristic frequency regimes within the
model are in the alpha- and gamma- ranges, it also captures
some properties of AEC outside of these ranges. Figure 5 shows
empirical vs. simulated AEC for the full range of classic M/EEG
frequencies: delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz),
beta (13–30 Hz), and gamma (30–60 Hz). As can be seen,
moving from low to high frequencies within the active regime
is also accompanied by sparser and more spatially structured
correlation patterns.

Our findings described thus far have shown that active and
idling states are characterized by different spectral signatures,
and that functional connectivity is differentially expressed in a
frequency-specific way in these two states. Next, we examined the
effects of periodic stimulation on ongoing cortical activity. That
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FIGURE 1 | Resting state power spectrum fit to MEG data. (A) Sensor-averaged power spectrum from eight example HCP subjects’ resting state MEG data (orange

line), and corresponding simulated power spectrum from the CTWC model (dotted blue line). The simulated activity shows excellent fit to the empirical power

spectrum (R2 between 0.6 and 0.8 in these examples), and accurately captures the alpha rhythm peak frequency in each subject. (B) Mean +/-1 standard deviation of

the empirical and fitted power spectra for all 10 HCP subjects. Both the empirical and simulated power spectra also show 1/f scaling when plotted on log-log axes

over a larger frequency range, as discussed in Supplementary Material, section 1.

is, we asked: can the temporal structure neural activity be tuned
by exogenous signals in a frequency-specific way?

2.5. Susceptibility to Entrainment by
Exogenous Stimulation Is State-Dependent
Having characterized idling and active states, their dominant
spectral features and how they impact functional connectivity,
we investigated how exogenous periodic stimulation shapes the
power spectrum of the system and engages ongoing oscillations.
Numerous studies over the last few decades have used stimulation
paradigms of various kinds to access circuit function and
interfere with neural communication (Thut et al., 2011; Helfrich

et al., 2014; Cecere et al., 2015). One of the most robust
findings is that entrainment of ongoing brain oscillations is state-
dependent, and that susceptibility to control is tuned by ongoing
brain fluctuations - an effect that has also been reproduced
with modelling (Neuling et al., 2013; Alagapan et al., 2016)
and shown to involve stochastic resonance (Herrmann et al.,
2016). Given the ability of our model to switch between different
states and express multiple frequencies, we subjected cortical
populations to exogenous periodic stimulation and monitored
the spectral response. Specifically, we again studied an isolated
cortico-thalamo-cortical motif (i.e., a single network node),
and computed the peak power and frequency as a function
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FIGURE 2 | CTWC model phase space trajectories. (A) Exemplary phase space trajectories for a single corticothalamic unit in the idling (left; teal) and active (right;

orange) regimes. Central 3D plot in each panel shows trajectories in the 3-dimensional phase space defined by the cortical excitatory (e), cortical inhibitory (i), and

thalamic specific relay (s) population state variables. Orthogonal 2-dimensional views for each pair of state variables are shown on the left hand side. Panels above the

trajectory figures show corresponding time series and power spectra for the e variable. The idling state regime (Io=0) is characterized by slow, nonlinear

alpha-frequency (8–12 Hz) oscillations. Increasing the static sensory thalamic drive (here by setting Io=1.5) induces a phase transition into the active regime, where

neural population activity is dominated by gamma-frequency (approximately 30 Hz) limit cycle dynamics. (B) Progression from idling to active regime. Sub panels

show 3D phase plane trajectories, time series, and power spectra for incremental values of Io between the idling and active states shown in (A). As the system

approaches the bifurcation point (Io ≈1.4), the gamma attractor begins to manifest as a “twist” in the alpha limit cycle, which appears in the time series plot as

embedded high-frequency ripples on the peak/trough of the oscillation. As Io continues to be increase, eventually the low-frequency rhythm loses stability and the

dynamics switches to a pure gamma oscillation.

of stimulation intensity and frequency. Through this process,
we identified resonances and entrainment regimes (so-called
Arnold Tongues) and thus measured the susceptibility of our
model to entrainment. While oftentimes confused with one
another, resonance refers to the enhancement of power when the
stimulation frequency is in the vicinity of the system’s natural
frequency, while entrainment, refers to the phase locking of the
system’s response to the driving signal (Herrmann et al., 2016).

As shown in Figure 6, idling and active states exhibited
significant differences in their responses to stimulation and
susceptibility to entrainment. Narrower Arnold Tongues were
observed in the idling state compared to the active state,
indicating that the suppression of alpha power in the active
state facilitates phase locking of intrinsic dynamics with the
stimulation signal. Specifically, only high intensity stimulation
would provoke a shift in the peak frequency in the idling state.
In the active state, the prominent gamma oscillations were easily

suppressed and replaced by the frequency of the driving stimulus.
This is in line with converging evidence indicating that intrinsic
attractors limit the effect of perturbations, while irregular or high
frequency content is more malleable (Lefebvre et al., 2017).

3. DISCUSSION

The aim of the present study was to investigate the mechanisms
underlying state-dependent changes in oscillatory activity at
the whole-brain scale, as well as the influence of fluctuations
in spectral activity on functional connectivity. We have
presented a novel connectome-based neural mass model that
combines the two primary rhythmogenic mechanisms typically
studied in large-scale brain network modelling: intracolumnar
microcircuits and corticothalamic loops. This is an extension
of previous work, that studied the behaviour of the basic
corticothalamic motif in isolation (Griffiths and Lefebvre, 2019).
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FIGURE 3 | Influence of focal thalamic drive in a whole brain network. (A) Surface renderings of the regional change (1) in alpha and gamma power from baseline to

active state for all brain regions. Increased sensory thalamic drive in visual cortex results in suppression of alpha and enhancement of gamma band activity,

reminiscent of the patterns routinely observed in M/EEG studies of visual-evoked gamma. (B) Power spectra for baseline values of the tonic thalamic relay nucleus

driving term (Io=0), and for focal increase (Io=1.5) in left visual cortex (lV1). Red lines show power spectra for the lV1 node; black lines for the other 67 nodes. Note the

prominent increase in relative gamma power and decrease in relative alpha power in lV1 when that node’s Io value is increased.

Here we have embedded this corticothalamic unit into a
whole-brain network, with anatomical connectivity derived
from diffusion MRI tractography. Our model reproduces a
variety of known features of human M/EEG recordings,
including spectral peaks at canonical frequencies and functional
connectivity structure that is shaped by the underlying

anatomical connectivity. Using this model, we have studied
how thalamic drive mediates a shift in oscillatory regime,
provoking a transition between alpha and gamma dominance
in the power spectrum, and found that these oscillations have
a differential impact on functional connectivity patterns. We
found that spatially structured inter-area functional connectivity
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FIGURE 4 | AEC FC vs. Io. Upper panel: Alpha- and Gamma-frequency AEC matrices for 4 values of Io (Io=0./0.5/1.0/1.5), alongside the empirically-measured MEG

gamma-frequency AEC matrix.

FIGURE 5 | AEC FC vs. Frequency. Shown are AEC FC matrices at five different canonical frequency bands—δ (0.5–4 Hz), θ (4–8 Hz), α (8–12 Hz), β (13–30 Hz), and

γ (30–45 Hz)—from simulations (top row) and from empirical MEG data (bottom row). In both simulated and empirical data, lower frequencies (δ and θ ) show less

spatial specificity and more tendency toward random connectivity patterns. Note that the more compressed AEC range in empirical than simulated AEC data is due to

the application of orthogonal leakage correction (Colclough et al., 2015) in analyses of MEG data. Global parameters Io and g were 1.5 and 5, respectively—see

Supplementary Material, section 2 for further exploration of these values.

(as measured by band-limited power amplitude envelope
correlations), particularly at higher frequencies (gamma, beta,
and alpha to a lesser extent), are a hallmark of the active
state. To better understand how these state- and frequency-
specific dynamics are impacted by exogenous stimulation, we
applied cortical periodic stimulation of various amplitudes and
frequencies, eliciting endogenous resonances both across the
corticothalamic loop and within cortex. Our analysis confirms
that, as compared to the idling state, the active state is more
susceptible to entrainment by exogenous signals, as it shows
wider and shallower Arnold Tongues. In contrast, the idling
state’s deep and narrow Arnold Tongues indicate that the system
has a strong preference for its natural frequency when in this
regime, and will respond only to exogenous signals close to that
frequency or its harmonics.

3.1. Relation to Previous Work
The work presented here builds on previous work of several
authors in a number of ways. Most directly, the isolated
CTWC neural mass model (without the whole-brain white
matter connectivity introduced here) was recently introduced
in Griffiths and Lefebvre (2019). Previous to that we have also
studied resonance behaviour, response to stimulation, and state-
dependence in corticothalamic circuits and generic feedback
oscillators (Alagapan et al., 2016; Hutt et al., 2018a; Park et al.,
2018). We emphasize however that the core mathematical and
conceptual component of the CTWC model presented in the
present paper and in our earlier work—namely the generation
of slow M/EEG rhythms through a delayed inhibitory cortico-
thalamo-cortical recurrent circuit, has been used extensively by
multiple groups for several decades. One of the largest and most
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comprehensive bodies of work on this is due to P. Robinson
and colleagues, beginning with the introduction in Robinson
et al. (1997) of a PDE wave equation reformulation of the
integro-differential cortical neural field model of Wright and
Liley (1996), drawing on earlier work of Lopes da Silva et al.
(1974), Jirsa and Haken (1996), and others. This model was
then augmented with thalamic reticular and relay nuclei and
their recurrent connections with the cortex (Robinson et al.,
2001), and the resultant corticothalamic neural field model
has been studied extensively over the past two decades—both
analytically and numerically, and in partial differential, ordinary
differential, and linearized equation forms, as well as being
extended into the domains of epilepsy, Parkinson’s, sleep and
arousal, plasticity, and brain stimulation (e.g., Robinson et al.,
2001; Rowe et al., 2004; Breakspear et al., 2006; Van Albada
et al., 2010; Roberts and Robinson, 2012; Fung and Robinson,
2013; Abeysuriya et al., 2015; Abeysuriya and Robinson, 2016;
Müller et al., 2017; Mukta et al., 2019). Our approach in the
present paper differs from this family of models in two key
ways. First, rather than the second-order equations of motion
for the time-evolution of membrane voltage used by Robinson
and many others (Lopes da Silva et al., 1974; Jansen et al., 1993;
David and Friston, 2003), we began with the classic Wilson-
Cowan equations (Wilson and Cowan, 1972) to describe local
interactions between excitatory and inhibitory neural population
activity levels in a cortical region. In taking this route we are
building on the extensive body of work using Wilson-Cowan
equations as a model for cortically-generated gamma frequency
oscillations. Additionally, a notable advantage of our choice to
use Wilson-Cowan equations, rather than for example the neural
mass version of the Robinson neural field wave equations, is
that they are mathematically and computationally simpler. For
example, whereas the minimal system of coupled first-order
ODEs for a single corticothalamic motif with the Robinson
model would have eight state variables (because the original
equations are second-order), the CTWC model has only four
state variables per corticothalamic unit. Whilst second-order
dynamics may be important in neural mass models for capturing
specific aspects of damped evoked response waveforms, it is
unclear whether they are necessary for describing oscillatory
activity. The second key difference in our work from other
research to date using the Robinson model is that rather than
using an integro- or partial-differential equation formulation of a
continuum neural field to represent spatio-temporal propagation
of activity across the cortex (Jirsa and Haken, 1996; Robinson
et al., 1997, 2016; O’Connor and Robinson, 2004; Nunez
and Srinivasen, 2006; Gabay and Robinson, 2017), here we
chose to follow the connectome-based neural mass modelling
methodology (Honey et al., 2007; Ghosh et al., 2008; Deco
et al., 2009; Ritter et al., 2013; Sanz Leon et al., 2013; Sanz-
Leon et al., 2015; Cabral et al., 2014; Spiegler et al., 2016)
of defining a discrete network of point-process neural masses,
interconnected via long-range white matter fibers whose density
was estimated from non-invasive diffusion MRI tractography.
This combination of the cortico-thalamocortical circuit with
the large-scale anatomical connectivity bears some similarity
to the work of some other authors (e.g., Freyer et al., 2011;

Cona et al., 2014; Saggar et al., 2015; Bensaid et al., 2019),
but the present study is the first to apply this directly to the
key questions of state-dependence, alpha suppression, functional
connectivity, stimulation, and their relation to empirical M/EEG
data. Notably, this network-based approach allowed us to
harmonize the analysis of functional connectivity in simulated
and empirical MEG data. In this we followed the approach
of Abeysuriya et al. (2018) and Hadida et al. (2018) in our
use of the bandpass-filtered amplitude envelope correlations
(Brookes et al., 2011; Hunt et al., 2016), and that line of
work is perhaps the closest of recent modelling studies to
the present one. Abeysuriya et al. (2018) studied the role of
inhibitory synaptic plasticity in a connectome-based network
of Wilson-Cowan equations. As in the present study, these
authors evaluated their model in terms of its ability to accurately
reproduce empirically measured MEG AEC matrices (although
they restricted their focus to only to alpha-frequency AECs).
The relatively simpler (as compared with our new CTWC)
model used by these authors consisted of a cortical Wilson-
Cowan ensemble, tuned to have a natural frequency in the
alpha range. This stands somewhat in contrast to our new
model, which features a gamma frequency-tuned Wilson-Cowan
ensemble, combined with an alpha frequency-tuned cortico-
thalamocortical motif. This additional two-component structure
allows our model to exhibit more complex behaviours, such
as alpha-mediated inhibition and state-switching, as well as a
rich repertoire of potential oscillation and frequency-specific
synchronization patterns. The question of whether and to
what extent human M/EEG alpha activity is generated by
corticothalamic (as in e.g., the present study and much of
the above-cited work by Robinson and colleagues), or within
intracortical microcircuits (as in e.g., Liley et al., 2002; David
and Friston, 2003; Moran et al., 2011; Abeysuriya et al., 2018)
remains a live and important one however. Recent years has
also seen growing interest in a third potential type of system-
level (low-frequency) rhythmogenic mechanism which can be
broadly described as network eigenmodes (Robinson et al., 1997,
2016; Nunez and Srinivasen, 2006; Cabral et al., 2014; Tewarie
et al., 2019). The proper evaluation and assessment of these
hypotheses around cortical rhythmogenesis shall most likely
require a close interaction between novel empirical work and
hypothesis-generating computational models to properly settle.
It is also important to bear in mind here that there is no a
priori reason (apart from explanatory parsimony) to suppose
a single mechanism for generation of rhythms (Nunez and
Srinivasen, 2006). Indeed, it may be functionally advantageous
for the brain to generate the same frequency through a variety
of mechanisms. If this were determined to be the case, then
interaction across different frequency-generating mechanisms
would be a key question for future work.

3.2. The Alpha Rhythm as a Suppression
Mechanism
The transition from idling to active state in our model is
initiated by the gradual increase of a tonic sensory drive term,
Io, that effectively hyperpolarizes the thalamic relay nucleus,
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and thereby destroys the slow 10 Hz alpha rhythm generated
by the cortico-thalamocortical loop. Once the alpha oscillation
is removed in this way, the gamma rhythm generated by
intracortical excitatory-inhibitory interactions comes to the fore.
One interpretation of this phenomenon is that alpha resonance,
mediated by corticothalamic loops, plays an inhibitory role
- through which slow oscillatory corticothalamic activity
suppresses and dominates higher frequency cortical activity.
This alpha-as-suppression-mechanism theory speaks to a major
question in the field of M/EEG cognitive neuroscience: what
is the functional role of alpha? Specifically, the enhancement
of alpha activity during disengagement of the cortical network
(such as during quiescence, sleep, anaesthesia, and withdrawal of
sensory stimulation) suggests that alpha oscillations implement
a functionally inhibitory signal, and represent a top-down shift
toward internal encoding through suppressing the activity of
task-irrelevant areas (Klimesch et al., 2007). In contrast, faster
frequencies, such as those found in the beta and gamma range,
are found in states of arousal and sensory recruitment, suggesting
a positive, excitatory role of faster neural oscillatory states. In
our model, the less spatially-resolved structure of functional
connectivity in the alpha vs. the gamma range—at all Io values,
but particularly for Io ≥1.4—does support this perspective.
From this point of view, a key feature of our model is its
characterization of the relationship between corticothalamically-
generated and cortically-generated rhythms. In particular, the
corticothalamic alpha dominates in the idling state, and can
be understood as suppressing the intrinsic rhythmic activity in
the cortical ensemble, which can be “released” with sufficient
sensory (or perhaps neuromodulatory) drive. This simple circuit
mechanism therefore captures a widely used theoretical concept
in M/EEG cognitive neuroscience concerning the functional role
of alpha activity. On this account, alpha acts as a mechanism for
selectively gating and attentionally biasing sensory inputs. This
phenomenon is also observed in EEG studies on the effects of
anaesthesia, where low frequency activity becomes increasingly
dominant with higher doses of propofol (Supp et al., 2011).
This effect is observed concurrently with apparent attenuation of
sensory inputs, for example in reduced amplitude and increased
latency of somatosensory evoked potentials (SEPs). Recent work
in mouse models has also shown that driving thalamic circuits
with alpha-frequency activity causes widespread depression of
cortical activity; whereas stimulating at higher frequencies (e.g.,
gamma) causes widespread increase in both baseline activity and
the spatial spread of the stimulation influence (Liu et al., 2015).

Interestingly, in our analyses we observed that the active-
state model AEC patterns actually showed closer resemblance to
empirical resting-state MEG AEC patterns than the idling-state
AEC patterns. This is somewhat unexpected because resting-state
MEG power spectrum was unequivocally better fit by a CTWC
model in the idling, alpha-dominated regime. This result suggests
that in the brain, during the rest or idling state, alpha power is
strong and AEC functional connectivity is largely random. In
contrast, in the active state, alpha power is relatively weaker, and
AECs are more local and segregated. Functional connectivity is
thus facilitated in the high-drive state, when the alpha-generating
loop is inhibited, and dynamics are driven by cortico-cortical

E-I interactions. In the state of low-drive, the alpha rhythm is
highly prominent and neural activity is largely asynchronous
(i.e., low functional connectivity). In the state of high drive, the
alpha rhythm has been suppressed, and functional connectivity is
high. Together, these observations suggest that the alpha rhythm
plays a suppressing role in large-scale brain dynamics. We
hypothesize that this may be a general feature of alpha activity,
with regional communication facilitated by being in the active
state, and resting activity characterized by a constant interplay
and balance between the idling state and the active state. The
presence of regular intermittent switching between idling and
active states could also account for the fact that the perspective
outlined above is partly in contradiction with the empirical data
shown in Figures 4, 5—specifically that resting state MEG data
do show somewhat spatially structured connectivity patterns.
In this case, intermittent switching over the period of a 5–10
min resting state MEG recording would result in some spatially
structured correlations due to a mixing of the two regimes.
This picture is broadly consistent with related observations from
Schirner et al. (2018), who developed a “hybrid” neural mass
modelling approach aimed at integrating concurrently recorded
resting state fMRI and EEG data. These authors found, consistent
with the “gating by inhibition” hypothesis (Jensen and Mazaheri,
2010), that long-range input in whole-brain simulations was
decreased during states of high alpha power, and increased
again when alpha power decreased. Their brain network model
simulations provide a mechanistic explanation of gating by
inhibition, by demonstrating how increased alpha power leads
to increased feedback inhibition of excitatory populations. The
modulation of population firing resulting from this mechanism
was proposed to explain empirically observed alpha phase-
and power-dependent firing rate modulations, as well as the
well-known anticorrelation between alpha power and fMRI
BOLD signal.

3.3. Conclusions and Future Directions
To conclude: we have developed a novel whole-brain
connectome-based neural mass model that incorporates
corticothalamic and intracortical rhythmogenic mechanisms.
This model reproduces qualitatively multiple features of MEG-
measured neural activity. Importantly, our model also lends
some insight into the way that corticothalamically-generated
alpha rhythms could play a functional role in the organization
of brain dynamics, by suppressing high-frequency cortical
activity associated with cognitive engagement and information
processing. Future work shall investigate further questions of
subcortical parcellation and integration, model fitting, and
compare alternative rhythmogenic mechanisms directly against
each other. Importantly, future work should also investigate the
significance of intersubject variability in anatomical connectivity
on network dynamics. Although we demonstrated here our
model’s ability to fit individual subjects’ power spectra through
small variations in thalamic kinetic parameters, it was beyond
the scope of the present study to incorporate individualized
anatomical connectivities. One of the exciting and promising
aspects of connectome-based neural mass modelling is the
possibility of constructing individualized computational models
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using a subjects’ own diffusion MRI tractography. However at
this point in time the extent to which this does actually deliver
improvement in computational model accuracy remains an
open question for the field (for recent work relevant to this,
see Abeysuriya et al., 2018; Zimmermann et al., 2018). Finally,
we emphasize that neither our specific CTWC model, nor the
broader alpha-as-suppression-mechanism concept, constitute
a universal account of all alpha-frequency rhythms seen in the
M/EEG or other recording modalities. Indeed we consider the
most likely scenario to be that multiple, dissociable mechanisms
contribute independently a proportion of the information and
measured signal in that part of the frequency spectrum (Nunez
and Srinivasen, 2006). Here we have, building on previous work,
made we believe some progress in characterizing the dynamic
properties of one of these candidate mechanisms.

4. METHODS

Our modelling approach follows the now-standard whole-brain
connectome-based neural mass modelling paradigm (Honey
et al., 2007; Ghosh et al., 2008; Deco and Jirsa, 2012; Sanz-
Leon et al., 2015), where dynamic units are placed at node
locations as defined by a gray matter parcellation, and coupled
with an adjacency matrix (anatomical connectome) defining
the presence and associated strengths of long-range white
matter fibers interconnecting region pairs. The anatomical
connectome used in the present study, derived from group-
average tractography streamline counts, was constructed from
analyses of the human connectome project (HCP) WU-Minn
consortium diffusion-weightedMRI (DWI) corpus (Glasser et al.,
2013; Sotiropoulos et al., 2013). For details of this, see the
below section 4.2. In the model, activity at each node is driven
by background noise and/or exogeneous stimulation. Complete
mathematical formulation and implementation details are given
in the section 4.1. Simulated nodal time series from themodel can
be understood as approximations of regionally averaged source-
space MEG signals. To assess the performance of the model in
reproducing key features of empirically measured human brain
dynamics, we additionally conducted new analyses of the HCP
WU-Minn resting-state MEG corpus (Larson-Prior et al., 2013).
These are described in section 4.3.

4.1. Corticothalamic Model
Following other authors (Robinson et al., 2001; Breakspear
et al., 2006; Freyer et al., 2011), we employ a model for
neuronal dynamics at each node that incorporates both cortical
and thalamic neural populations. The model describes a
four-component cortico-thalamo-cortical motif, consisting of
excitatory (ue) and inhibitory (ui) cortical neuronal populations,
coupled to thalamic reticular (ur) and specific relay (us) nuclei
(Figure 7). Both relay and reticular nuclei receive inputs from
the cortical excitatory population, following a corticothalamic
conduction delay τct . However only the relay nucleus sends
excitatory input back to the cortex; again received following a
delay τct=τtc. The reticular nucleus, which is widely known to
have an inhibitory influence on other thalamic regions (Zhang
and Jones, 2004), plays a similar role to the cortical inhibitory

population, inhibiting the relay nucleus and thereby generating
oscillatory dynamics. Note that thalamic relay nuclei in this and
similar corticothalamic models may be either First- or Higher-
Order (Sherman, 2006), depending on the part of cortex in
question. Our model does not distinguish between First- and
Higher-Order relay nuclei, or recapitulate the details of their
specific circuitry. It simply assumes that every cortical region has
reciprocal excitatory projections from one or other thalamic relay
nucleus, which in turn receives inhibitory projections from the
thalamic reticular nucleus.

As defined, our node-level model consists of a Wilson-Cowan
oscillatory neural population, embedded in a delayed inhibitory
feedback loop mediated by corticothalamic and thalamocortical
connections. The full network-level model thus consists of a set
of N such local units of this kind, coupled using the connectivity
matrix W (anatomical connectome). The system of stochastic
delay-differential equations governing the time-evolution of
neural activity within the network can be summarized as follows:

Dpu
j
p = G[u

j
p]

︸ ︷︷ ︸

neural
interactions

+ SpP
j + SiI

j
o

︸ ︷︷ ︸

static and time-
varying stimulation

+
√
2Dξ

j
p

︸ ︷︷ ︸

background
noise

(1)

where the temporal differential operator Dp = (1 + α−1
p

d
dt
)

incorporates population time constants αp, and u
j
p refers to

the mean somatic membrane activity of the neural population
p ∈ {e, i, r, s} within one cortico-thalamic module j across the
brain-scale network of N=68 nodes. Irregular and independent
fluctuations are also present in the network, modeled by the zero-

mean Gaussian white noise processes ξ
j
p with standard deviation

D. The neural interaction term G[u
j
p] in Equation (1) can be

further broken down into

G[uj(t)] = AF
[

uj(t)
]

︸ ︷︷ ︸

intra-
cortical

+BF
[

uj(t − τct)
]

︸ ︷︷ ︸

cortico-
thalamic

+CF
[

uj(t − τtt)
]

︸ ︷︷ ︸

intra-
thalamic

+ KQ
︸︷︷︸

cortico-
cortical

(2)

where the matrices

A =







gee gei 0 0
gei gie 0 0
0 0 0 0
0 0 0 0






,B =







0 0 0 ges
0 0 0 gis
gre 0 0 0
gse 0 0 0






,C =







0 0 0 0
0 0 0 0
0 0 0 grs
0 0 gsr 0







(3)
respectively specify the gains (connection strengths)
of intracortical, corticothalamic, and intrathalamic
interactions within a node. Intrathalamic and
corticothalamic/thalamocortical connections are retarded
by conduction delays τct=20ms and τtt=5ms, respectively.
The matrix

K =







gcc 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







(4)
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FIGURE 6 | Effects of periodic brain stimulation on corticothalamic loop dynamics (A) Maximum frequencies displayed by the cortical excitatory population of an

isolated cortico-thalamocortical loop (CTWC model, single node) in response to periodic (sine wave) stimulation of varying amplitudes (y axes) and frequencies (x

axes). In the idling regime, an Arnold Tongue structure is clearly seen centered on the natural frequency (approximately 10 Hz): As the stimulation frequency moves

away from the natural frequency, greater stimulation amplitude is required to achieve entrainment at the stimulation frequency. In the active regime, a broader and

shallower Arnold Tongue structure is again seen, centered on the natural frequency (this time approximately 30 Hz). Compared to the idling state, entrainment at the

stimulation frequency is easier to achieve (requires lower amplitude stimulus) in the active than the idling regime. (B) Maximum amplitudes displayed by cortical

excitatory populations. Here again the amplitude response patterns match quite closely the Arnold Tongues seen in the maximum frequency responses.

specifies the global gain applied to all afferent activity Q arriving
from other cortical neural populations. The four rows and
columns of A, B, C, and K correspond to the four neuronal
populations p ∈ {e, i, r, s}, respectively, in the cortico-thalamic
unit motif. In the present model we assume for simplicity
that afferent activity only impacts on the cortical excitatory
population ue; and so only the upper left entry in K is nonzero.
The afferent activity inQ is a time-delayed summation of ue at all
other nodes in the network

Qj(t) =
N

∑

k=1

WjkF[uke (t − Tjk)] (5)

where W and T are cortical white matter connectivity
and conduction delay matrices, both of which are derived
from empirical diffusion-MRI tractography reconstructions (see
below). For the latter, the cortico-cortical conduction delay
matrix T = L/cv is calculated from a matrix of measured
(average) fiber tract lengths L, assuming a fixed conduction

velocity cv=4 m/s. The sigmoidal response function F in
Equations (2) and (5) specifies the nonlinear response of a neural
population to incoming inputs as follows

h F[u] = (1+ exp(−β(u− σ )))−1 (6)

The matrices

Sp =







1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






, Si =







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1







(7)

in Equation (1) parameterize the impact on the four sub-
populations e, i, r, s within a node of the time-varying exogenous
input P (representing periodic brain stimulation such as rTMS
or TACS) and static input Io (representing here state-dependent
sensory drive). Again, in the present study we only consider
exogeneous inputs to impact the cortical excitatory populations,
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FIGURE 7 | Corticothalamic model. Schematic of the corticothalamic model structure. Cortical (ue, ui ) and thalamic (us, ur ) populations interact through a delayed

feedback loop. Entrainment of the network activity through electromagnetic stimulation P applied to ue depends on the amplitude and frequency of the stimulation

pulse, as well as the network state, controlled by Io.

and so only the upper left entry in Sp is nonzero. Similarly, Io
is for present purposes only considered to impact the thalamic
relay nucleus, and so only the lower right entry of Si is nonzero.
The exogeneous periodic signal P here is given by the simple
sinusoidal function

Pj = Mj sin(2πωt) (8)

with frequency ω and intensityM. The constant state-dependent

drive I
j
o to thalamic relay populations serves as a control

parameter indexing idling vs active states (see below). This
static input current can be thought of as a tonic level of
sensory (e.g., visual) drive, although it could also reflect a static
influence of ascending (e.g., noradrenergic) neuromodulatory
drive, reflecting the level of engagement in a perceptual or
cognitive task. Irrespective of its cause, the idling or rest-like

state is defined as the dynamics resulting from setting I
j
o=0;

i.e., in the absence of this constant thalamic input. The active
state, in contrast, is defined by a greater engagement of thalamic

nodes, and hence I
j
o ≥0 for active nodes. In both of these cases,

nodes within the network may be differentially recruited by a
given task, thus being activated while others remain inactivated.
This represents an intermediate point between the extreme cases
where all nodes are either active or inactive.

With the described structure, and right choice of parameters,
our system generates alpha (8–12 Hz) oscillations due to the
presence of delayed inhibition, as well as gamma (30–120 Hz)
oscillations resulting from the cortical activity and interactions,
and also in a limited domain of parameter space shows
coexistence of both of these features. As has been demonstrated
previously (Griffiths and Lefebvre, 2019), increasing the thalamic
drive parameter past a critical point triggers suppression
of resting state alpha oscillations, and results in a greater
susceptibility of cortical neural populations to entrainment by
exogenous inputs or noninvasive stimulation. In addition, this
transition to the active state is accompanied by an increase in
high-frequency (i.e., gamma) activity. As such, the thalamic drive
can be seen as a control parameter, controlling the power of
alpha and gamma oscillations, as well as tuning the response to
exogenous inputs.

Nominal parameter values and definitions from the above-
specified system of equations are summarized in Table 1.
Parameter values were chosen based on a combination of
parameter sets found in the literature (Jadi and Sejnowski, 2014)
as well as in our previous work (Lefebvre et al., 2017; Hutt et al.,
2018b; Griffiths and Lefebvre, 2019), where oscillatory activity is
spontaneously and simultaneously observed in both the gamma
and alpha band.
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TABLE 1 | Model parameters.

Name Unit Nominal

value

Description

ae ms 0.3 Cortical excitatory population time constant

ai ms 0.5 Cortical inhibitory population time constant

as ms 0.2 Thalamic relay nucleus time constant

ar ms 0.2 Thalamic reticular nucleus time constant

ie mV −0.35 Cortical excitatory population constant input

ii mV −0.3 Cortical inhibitory population constant input

is mV 0.5 Thalamic relay nucleus constant input

ir mV −0.8 Thalamic reticular nucleus constant input

τ(ct/tc) ms 20 Corticothalamic / Thalamocortical conduction

delay

τtt ms 5 Thalamo-thalamic conduction delay

Io mV 0. Static sensory/neuromodulatory drive

dt ms 0.1 Integration step size

wee 0.5 Excitatory-excitatory gain

wei 1 Excitatory-inhibitory gain

wie −2 Inhibitory-excitatory gain

wii −0.5 Inhibitory-inhibitory gain

wer 0.6 Excitatory-reticular gain

wes 0.6 Excitatory-relay gain

wsi 0.2 Relay-inhibitory gain

wse 1.65 Relay-excitatory gain

wrs −2 Reticular-relay gain

wsr 2 Relay-reticular gain

D(e,i,r,s) 0.0001 Noise standard deviation for all populations

g 5 Global connectivity scaling factor

β 20 Activation function gain parameter

σ 0 Activation function threshold parameter

The system was numerically integrated using a stochastic
Euler-Maruyama scheme, implemented in Python. Simulations
were carried out on an 8-core Ubuntu 14.04 machine. Run
time scaled approximately linearly: each 4-s simulation ran
in approximately 4 s real time. The single-node simulations
in Figure 1 were run for 4 s simulated time each. The
whole-brain simulations in Figures 4, 5 were run for 5 min
each, corresponding to the duration of the resting-state MEG
data recordings. Subsequent parameter space explorations in
Figure 6, Supplementary Figures 3, 4 were run for 20 s each.
Supplementary Material, section 3 examines the dependence of
simulation features on simulation length, and serves to justify
the use of 20 s for the PSE sweeps (which reduces by an order
of magnitude the computation time as compared to the full
5 min runs). All code and processed data used in this study
is freely available at https://github.com/GriffithsLab/ctwc-model,
along with additional notes and comments. A version of the
model has also been developed for direct use within The Virtual
Brain modelling and neuroinformatics platform (TVB; www.
thevirtualbrain.org, Ritter et al., 2013; Sanz Leon et al., 2013;
Woodman et al., 2014). Our model produces regional time
series for each network node, as specified by the anatomical
parcellation. These represent the collective activity of neural

populations within that region, and as such correspond to signals
estimated from MEG source reconstruction. Subsequent power
spectrum and functional connectivity analyses of simulated
activity time series therefore proceeded identically to that for
MEG data, and are described in section 4.3.

4.2. DWI Data Analyses
The anatomical connectivity matrices used in this paper were
constructed using diffusion- and T1-weightedMRI data from the
HCP WU-Minn consortium (Glasser et al., 2013; Sotiropoulos
et al., 2013; Van Essen et al., 2013). For detailed descriptions
of the MR acquisition parameters and processing pipeline (see
Glasser et al., 2013; Sotiropoulos et al., 2013). The HCP WU-
Minn corpus consists of multimodal imaging and behavioural
data from 1,200 healthy, young (ages 20–40) subjects. The
tractography analysis described below was applied to a 700-
subject subset of the full sample; and the connectivity matrix
used for simulations in the present paper was calculated from an
average over these 700 subjects. The HCP WU-Minn minimal
diffusion pipeline (Glasser et al., 2013) consists of gradient
nonlinearity correction, eddy current correction, boundary-
based registration, and reorientation of diffusion data to the
T1 image, and gradient vector rotation. The outputs of this
preprocessing pipeline were the starting point for our diffusion
data analyses. Using the minimally preprocessed diffusion
data, we performed whole brain deterministic tractography
reconstructions using the Dipy software library (Garyfallidis
et al., 2014), following a methodology modeled closely on
that of Hagmann et al. (2008) and Cammoun et al. (2012).
ODFs were computed at each white matter voxel using a DSI
tissue model. Streamlines were initiated from 60 regularly-
spaced grid points within each voxel on the gray-white matter
interface (as determined from coregistered freesurfer surfaces),
and propagated using the EuDX algorithm (Garyfallidis, 2012).
Streamlines not terminating at the gray-white matter interface,
or having lengths >250 mm or <10 mm, were discarded.
Subjects’ streamline sets were segmented using the Lausanne
scale-1 parcellation (Hagmann et al., 2008; Daducci et al., 2012),
computed individually for every subject from their freesurfer
reconstructions using algorithms from the connectome mapping
toolkit (Daducci et al., 2012). All surface-based parcellations
were then converted to image volumes and resliced to diffusion
space for streamline segmentations. For each parcellation, the
interconnecting streamlines for every ROI combination were
determined using a logical AND operation. Each segmented
streamline set was counted and its average length computed,
resulting in streamline count and length matrices for each
subject. The simulations described in the present paper were
computed using group-average tract length matrices (divided by
conduction velocity to convert to conduction delay), and group-
average streamline count matrices, with the latter first being log-
transformed to adjust for the DWI tractography over-estimation
bias (Abeysuriya et al., 2018).

4.3. MEG Data Analyses
MEG analyses were performed using 10 randomly selected
subjects from the HCP WU-Minn corpus (Larson-Prior et al.,
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2013), using the MNE software library (Gramfort et al., 2013,
2014). The specific analyses done were based on a modified
version of the analysis pipeline developed by Engemann
and colleagues (https://github.com/mne-tools/mne-hcp), which
implements a full source space analysis, beginning with the HCP
preprocessed sensor-space data. Key outcome variables from
this pipeline for the present study were whole-brain functional
connectivity matrices and spectral power maps, derived from
regional source time series estimates. We opted to implement
a complete analysis here rather than use the high-level pipeline
outputs provided with the HCP WU-Minn corpus, as we
needed complete control over the process. In particular, we
needed to (a) use the same parcellation in the MEG as in the
tractography analyses, and (b) ensure identical analyses were
done on empirical and simulated MEG regional time series.
Regarding the first of these: as in the tractography analyses,
the parcellation used for MEG analyses was the Lausanne2008
scale 1—but with subcortical nodes (brainstem, basal ganglia,
thalamus) excluded. Note this is in fact identical to the freesurfer
aparc parcellation (but reordered and renamed).

Source time series were extracted for all vertices within
a parcel using an L2 minimum-norm inverse solution and
averaged, yielding one representative time series per parcel. To
maximize robustness of these signals, this was operation was
repeated five times, with 30-second windows each (Larson-Prior
et al., 2013). Subsequent analysis of these regional time series
proceeded identically (except for leakage artifact corrections;
see below) for both the empirical and simulated MEG data.
We first computed power spectra for each region using Welch’s
method (as implemented in the scipy.signal library; 256-sample
windows, with 128-sample overlap). We then studied functional
connectivity within the system using the band-limited power
amplitude envelope correlation (AEC) method (de Pasquale
et al., 2012; Hunt et al., 2016). For this, regional time series
from each of the 5 windows were bandpass-filtered into six
canonical frequency bands: delta (0.5–4 Hz), theta (4–8 Hz),
alpha (8–12 Hz), beta (12–30 Hz), and low gamma (30–45 Hz)
(Hunt et al., 2016). For the empirical MEG data, the symmetric
orthogonalization method (Colclough et al., 2015) was applied to
the bandpass-filtered time series to remove potentially spurious
correlations due to source leakage; this step was omitted for
simulated time series as they are by construction free of leakage
artifacts. Amplitude envelopes were then computed as the real
part of the analytic signal obtained from the Hilbert transform
of the band-limited time series. Pearson correlations between
these regional bandpass-filtered amplitude envelope time series
were computed, and averaged over the 5 windows. Finally, the

resultant region-to-region AEC matrices at each frequency band
were averaged over subjects. Because our simulations used a
normative (rather than subject-specific) anatomical connectivity,
these analyses were conducted only once on the simulated
MEG data, and this was compared to the group-averaged MEG
data using Pearson correlations to evaluate the performance of
the model.
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