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Reinforcement learning is a paradigm that can account for how organisms learn to

adapt their behavior in complex environments with sparse rewards. To partition an

environment into discrete states, implementations in spiking neuronal networks typically

rely on input architectures involving place cells or receptive fields specified ad hoc

by the researcher. This is problematic as a model for how an organism can learn

appropriate behavioral sequences in unknown environments, as it fails to account for the

unsupervised and self-organized nature of the required representations. Additionally, this

approach presupposes knowledge on the part of the researcher on how the environment

should be partitioned and represented and scales poorly with the size or complexity of

the environment. To address these issues and gain insights into how the brain generates

its own task-relevant mappings, we propose a learning architecture that combines

unsupervised learning on the input projections with biologically motivated clustered

connectivity within the representation layer. This combination allows input features to be

mapped to clusters; thus the network self-organizes to produce clearly distinguishable

activity patterns that can serve as the basis for reinforcement learning on the output

projections. On the basis of the MNIST and Mountain Car tasks, we show that our

proposed model performs better than either a comparable unclustered network or a

clustered network with static input projections. We conclude that the combination of

unsupervised learning and clustered connectivity provides a generic representational

substrate suitable for further computation.

Keywords: unsupervised learning, reinforcement learning, spiking neural network, neural plasticity, clustered

connectivity

1. INTRODUCTION

Neural systems learn from past experience, gradually adapting their properties according to
processing requirements. Be it in amerely sensory-driven situation or in high-level decisionmaking
processes, a key component of learning is to develop adequate and usable internal representations,
allowing the system to assess, represent and use the current state of the environment in order to
take actions that optimize expected future outcomes (Sutton and Barto, 2018).
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While these principles have been extensively exploited in
the domain of machine learning, leading to highly proficient
information processing systems, the similarities with the
biophysical reality are often merely conceptual. The standard
approach to learning in artificial neural networks has been end-
to-end supervised training with error backpropagation (LeCun
et al., 2015; Kriegeskorte and Golan, 2019). However, despite the
proficiency of these algorithms, their plausibility under biological
constraints is highly questionable (Nikolić, 2017; Marcus, 2018,
but see e.g., Marblestone et al., 2016; Lillicrap and Santoro,
2019; Richards et al., 2019 for counterarguments). Whereas
a growing body of literature has focused on bridging this
divide by adjusting error backpropagation to make it more
biophysically compatible (e.g., Sacramento et al., 2018; Bellec
et al., 2019; Whittington and Bogacz, 2019), there remains a
disconnect between these approaches and real neuronal and
synaptic dynamics.

Biological neural networks operate with discrete pulses
(spikes) and learn without explicit supervision. Synaptic efficacies
are adjusted to task demands relying on local information,
i.e., the activity of pre- and post-synaptic neurons, as well as
unspecific neuromodulatory gating factors (Porr and Wörgötter,
2007; Frémaux and Gerstner, 2016). As such, any model of
the acquisition of internal representations ought to comply
with these (minimal) criteria, gradually shaping the system’s
properties to learn an adequate partitioning of the state space
in a manner that allows the system to operate under different
task constraints. Furthermore, these learning processes ought
to ensure generalizability, allowing the same circuit to be re-
used and operate on different input streams, extracting the
relevant information from them and acquiring the relevant
dynamical organization according to processing demands, in a
self-organized manner.

Modeling studies have employed a variety of strategies to allow
the system to internally represent the relevant input features
(also referred to as environmental states, in the context of
reinforcement learning). This can be done, for example, by
manually selecting neuronal receptive fields (Potjans et al., 2009,
2011; Jitsev et al., 2012; Frémaux et al., 2013; Friedrich et al.,
2014) according to a pre-specified partition of the environment
or by spreading the receptive fields uniformly, in order to
cover the entire input space (Frémaux et al., 2013; Jordan
et al., 2017). These example solutions have major conceptual
drawbacks. Manually partitioning the environmental state space
is by definition an ad hoc solution for each task; whereas
uniformly covering the whole input is a more generic solution,
it can only be achieved for relatively low-dimensional input
spaces. In both cases, the researcher imposes an assumption
about the appropriate resolution of partitioning for a given task,
and thereby implicitly also affects the learning performance of the
neural agent. Both approaches are thus inflexible and restricted in
their applicability.

It seems parsimonious to assume that the development
of adequate internal states capturing relevant environmental
features emerges from the way in which the input is projected
onto the circuit. In the reservoir computing paradigm, the input
projection acts as a non-linear temporal expansion (Schrauwen

et al., 2007; Lukoševičius and Jaeger, 2009). Relatively low-
dimensional input streams are thus non-linearly projected onto
the circuit’s high-dimensional representational space. Through
this expansive transformation, the neural substrate can develop
suitable dynamic representations (Duarte and Morrison, 2014;
Duarte et al., 2018) and resolve non-linearities such that classes
that are not linearly separable in the input space can be separated
in the system’s representational space. This property relies on
the characteristics of the neural substrate, acting as a non-linear
operator, and the ensuing input-driven dynamics (Maass et al.,
2002).

The output of reservoir computing models is commonly a
simple (typically linear) supervised readout mechanism, trained
on the circuit’s dynamics to find the pre-determined input-
output mappings. Naturally, such supervised readouts are not
intended to constitute realistic models of biological learning
(Schrauwen et al., 2007), but instead constitute a metric to
evaluate the system’s processing capabilities. In a biological
system, one would expect the output projections of a reservoir
to adapt in response to local information such as pre- and
post-synaptic activity, possibly incorporating a global, diffusive
neuromodulatory signal. A complication here is that synaptic
learning that largely depends on the spiking activity of a pair
of neurons is inevitably susceptible to the stochastic nature of
that activity.

In this manuscript, we address the above issues of partitioning
the input space and learning output projections in a biologically
plausible fashion. We introduce a novel class of spiking neural
network model, consisting of an input layer, a representation
layer based on a balanced random network of spiking neurons,
and an output layer. In contrast to classical reservoir computing
models (Jaeger, 2001; Maass et al., 2002, 2003), the input
projections are subject to unsupervised learning (Tetzlaff et al.,
2013), and the output projections are subject to a dopamine-
modulated reinforcement learning rule rather than supervised
learning. Furthermore, we introduce structure in the recurrent
connections within the representation layer, in the form of
clustered synaptic connectivity (Rost et al., 2018; Rostami et al.,
2020), which is a biologically well-motivated circuit motif (Song
et al., 2005; Perin et al., 2011). We demonstrate that this
feature, in combination with unsupervised learning of the input
projections, substantially boosts the computational performance
of the network. The clusters become specialized, in a self-
organized fashion, for features of the input space, thus allowing
stable representations of the input to emerge that support a
linear separation. The low-dimensional dynamics of the clustered
network (Litwin-Kumar and Doiron, 2014) provide a stable basis
for the three-factor plasticity rule implemented by the output
projections to learn appropriate input-output mappings using a
reinforcement learning strategy.

We first demonstrate, using the XOR task, the capacity
of the unsupervised learning rule to resolve non-linearities
in the input, allowing the representation layer to generate
linearly separable activity. We then investigate the performance
of the full model on a 3-digit MNIST task. We show that
unsupervised learning in the input projections allows the
output projections to learn the correct classifications with
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a high degree of accuracy even though the learning is
driven by a reinforcement signal (correct/incorrect) rather
than the supervisory signal (identification of correct class)
more commonly used for classification tasks. The presence of
the clusters in the representation layer cause the network to
converge more quickly, and to a higher performance, than the
corresponding unclustered network. The clustered network with
plastic input projections resolves the non-linearities, captures the
intra- and inter-class variance and elegantly deals with the highly
overlapping inputs of this challenging task.

Finally, we test the model in a closed loop scenario on a
task defined in continuous space and time with sparse rewards:
the Mountain Car problem provided by the OpenAI Gym
(Brockman et al., 2016). Once again, the clustered network with
plastic input projections learns the task more effectively than an
unclustered network or one with static input projections.

Notably, the network model is configured almost identically
for these two quite dissimilar tasks, differing only in the
mechanism by which the reinforcement learning signal is
generated. In particular, the number of clusters is not optimized
for the task, and the initial mapping of inputs to the
representation layer is random. We thus conclude that the
three components of our network model, namely, unsupervised
learning on the input projections, clustered connectivity in
the representation layer, and reinforcement learning on the
output projection, combine to create a system possessing
substantial generic learning capacity, requiring neither previous
knowledge on how to partition the input space, nor training with
biologically unrealistic supervised approaches. We anticipate
that the components of unsupervised learning and clustered
connectivity could also be employed to amplify the performance
of other learning network models.

2. METHODS

2.1. Network Architecture
The network model consists of three layers, as illustrated
schematically in Figure 1A. A complete tabular specification
of the network and its parameters can be found in the
Supplementary Materials.

Input Layer
The input layer is a population of rate modulated Poissonian
spiking neurons with a maximum firing rate of Fmax. It converts
the analog input data into spike trains for the representation
layer. For example, a grayscale image can be presented to the
network by stimulating each input neuron with the intensity gi of
a specific pixel in the image, resulting in Poissonian spike trains
with a rate fi = Fmax ·

gi
255 . See section 2.3 for details on the input

conversion of each task.

Representation Layer
The input layer projects to the representation layer, consisting of
5, 000 integrate-and-fire neurons of which 4, 000 are excitatory
and 1, 000 are inhibitory. The neuron types are largely identically
parameterized, except for the membrane time constant τm and
the applied bias current Ibias; see the Supplementary Materials

for a complete listing of the parameters. The structure of the
representation layer is a balanced random clustered network, as
described in Rost et al. (2018) and Rostami et al. (2020): the
connection probability is uniform, but synaptic weights within
a cluster (containing both excitatory and inhibitory neurons)
are scaled up while the weights between clusters are scaled
down, such that the total synaptic strength remains constant (see
Figure 1B for a visualization of the network). The membrane
dynamics follow the following equation:

dV

dt
=

−V(t)

τm
+

I(t)

C
(1)

The input current I is composed of the synaptic inputs from the
input layer and from recurrent connections, and a bias current
which is constant, and the same for all neurons of the same type
(excitatory/inhibitory)

I(t) =
∑

i∈Ninp

Ii(t)+
∑

j∈Nrep

Ij(t)+ Ibias (2)

where Ninp is the number of input neurons and Nrep the number
of neurons in the representation layer. Each spike arriving at a
synapse evokes an exponential-shaped post-synaptic current, so
the input current due to the activity of one pre-synaptic input i is
given by

dIi

dt
=

−Ii(t)

τs
+

∑

t
f
i <t

wi(t)δ(t − t
f
i ) (3)

where τs is the relaxation time of the exponential post-synaptic

current, t
f
i is the set of spike times of neuron i, wi the strength of

the connecting synapse, and δ the Dirac delta function.

Output Layer
The output layer consists of integrate-and-fire neurons which
follow the same dynamics as in Equation (1). The output neurons
form a winner-takes-all circuit with lateral inhibition.

I(t) =
∑

j∈Nrep

Ij(t)+
∑

k∈Nout

Ik(t)+ Ibg(t) (4)

where Nout is the number of output neurons, Ibg is background
input from a Poisson spiking process, with current dynamics for
individual synapses given by Equation (3). Analogously to the
neurons of the representation layer, the feed-forward connections
are plastic, with dynamics described below, while the recurrent
inhibitory connections and the connections from the Poisson
source are static. The number of output neurons corresponds to
the number of labels in the dataset (for classification tasks) or the
number of actions (for reinforcement learning tasks with discrete
actions). Due to the strong lateral inhibition, at any given point
in time, only one output neuron is strongly active, namely the
neuron with the highest weighted input.

To determine which label (or action) is to be selected, the
spikes of the neurons in the output layer are low-pass filtered with
an exponential kernel; the predicted label (or chosen action) is
then defined as that label (or action) associated with the output
neuron with the highest activity.
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FIGURE 1 | (A) Network schematic. Dashed lines represent plastic synapses. Synapses between the input layer and the representation layer are trained in an

unsupervised fashion, synapses to the critic and readout are trained with reinforcement learning. (B) Visualization of network connectivity of a subset of the clustered

balanced random network.

Actor-Critic Circuit
The actor-critic approach is commonly used in reinforcement
learning tasks where an immediate reinforcement signal is not
available (Sutton and Barto, 2018). In this framework, the actor
selects the actions, whilst the critic calculates the expected value
V(S) (i.e., the discounted total expected future rewards) of the
environment’s states. From the difference between the value of
the state before the action, and the sum of the reward received
for an action and the discounted value of the new state, a
reward prediction error (RPE) δt can be derived which expresses
whether the action selected produced better or worse results
than expected:

δt = rt+1 + γV(St+1)− V(St) (5)

where γ is the discounting factor. For values of γ close to
zero, the agent is short-sighted and prefers immediate reward to
rewards in the future. Values close to one correspond to a strong
weighting of future rewards. This RPE is then used to update the
expected value of the previous state and the policy of the agent,
such that actions leading to better states than expected become
more likely, and vice versa. In the context of neural activity,
Frémaux et al. (2013) showed that a continuous signal, associated
with the concentration of dopamine, can play the role of a reward
prediction error:

D(t) = v̇(t)+ r(t)−
1

τr
v(t) (6)

where v is the rate of a critic neuron (or population of neurons),
r is the reward received directly from the environment and τr is
the discounting time constant.

We implement the critic as a population of 20 Poissonian
spiking neurons. The rate of this population is determined
by which clusters are currently active, and the weights of
the synapses connecting the neurons of the clusters to the
critic neurons. For the purpose of establishing the necessary
relationship for Equation (6), we interpret higher rates ν of the
critic population as higher values V(S), in the sense of Equation
(5), for the state associated with the active cluster (or clusters).

The critic neurons project to a population of 1, 000 Poissonian
spiking neurons representing the RPE, which in turn produce
the dopaminergic concentration D(t) as described above. The
instantaneous change of v̇(t) is implemented (as in Jordan et al.
2017) as a double connection from the critic to the RPE where
one connection is excitatory with a small delay of 1 ms and
the second is inhibitory with a larger delay of 20 ms (Potjans
et al., 2009; Jitsev et al., 2012). Note that no claim is made for
the biological plausibility of this circuit; it is simply a minimal
circuit model that generates an adequate reward prediction error
to enable the investigation of the role of clustered structure
in generating useful representations for reinforcement learning
tasks. The RPE signal enters the plasticity of the synapses between
the representation layer and the output layer (i.e., the actor) as a
third factor, as described in the next section.

2.2. Plasticity
The recurrent synapses within the representation layer are static;
learning in this network model is carried out according to
an unsupervised rule at the input projections (i.e., between
the input layer and the representation layer) and according to
a reinforcement learning rule at the output projections (i.e.,
between the representation layer and the output layer). This
segregation between purely unsupervised learning in the input
projections vs. reinforcement learning in the output projections
is illustrated in Figure 1A.

The projections from a pre-synaptic neuron i in the input layer
to a post-synaptic neuron j in the representation layer are subject
to an unsupervised, local plasticity rule, as proposed by Tetzlaff
et al. (2013):

1wji = µ

(

FiFj + κ(FT − Fj)w
2
ji

)

(7)

Here, the parameter µ sets the global learning rate, whereas
κ controls the ratio of synaptic scaling relative to Hebbian
modifications. The firing rates of the pre- and post-synaptic
neurons (Fi and Fj, respectively) are calculated by low-pass
filtering the spike trains with an exponential kernel with a fixed
time constant τ = 100 ms; FT constitutes the homeostatic set
point, i.e., the target firing rate.
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The learning rule comprises a Hebbian component,
dependent on pre- and post-synaptic activity, and a non-
Hebbian, homeostatic term with a quadratic weight dependence
(see Tetzlaff et al., 2013 and references therein). While the
Hebbian term establishes an appropriate, input-specific
mapping, the homeostatic term guarantees convergence and
stability in the resulting weights, while dynamically retaining
their integrity (relative weight distribution). The addition
of weight regularization as a homeostatic mechanism is a
biologically-compatible procedure to control weight growth and
the stability of learning and population activity (see e.g., Tetzlaff
et al., 2011, 2012; Yger and Gilson, 2015). Importantly, when
applied to simpler rate models, quadratic weight regularization
converges onto the eigenvectors of a neuron’s input covariance
matrix, transforming a simple rate neuron in a principal
component analyzer (see Oja, 1982).

For the synapses between a pre-synaptic neuron i in the
representation layer and a post-synaptic neuron j in the output
layer, we extend the rule given in Equation (7) to incorporate an
explicit reinforcement signal (making it a three-factor learning
rule). Specifically, the Hebbian term is complemented with
a multiplicative modulatory term. Learning in the output
projections thus takes the form:

1wji = µ

(

(D− bD)FiFj + κ(FT − Fj)w
2
ji

)

(8)

The reinforcement signal is modeled as the dopaminergic
concentration D relative to its baseline value bD, which in turn
is computed as a moving average over the last 10 s.

2.3. Tasks
2.3.1. Logical Operations Task
We chose four different logical operations (see Table 1) to test
our setup; OR, AND, XOR and “material implication” (IMPL).
Three of the operations are linearly separable (OR, AND, IMPL)
whereas XOR is not.

The input neurons (stim A and stim B) can either be “on” or
“off,” where “on”means that the neuron is highly active (1, 000Hz
firing rate) and “off” means nearly silent (10 Hz firing rate). Each
possible input combination is presented over a 500 millisecond
period, which is repeated for the entire simulation. We record
50 s of low-pass filtered neural activity (1, 000 Hz sampling
frequency) in the absence of plasticity, then apply the Tetzlaff rule
(Equation 7) to the input projections for the rest of the simulation
(500 s in total). The filtered spiking activity is once again recorded
between 450 and 500 s.

The recordings were used to train an ordinary least square
linear regressor (Table 1). Each stimulus contains 500 samples
which are trained against the values of the truth table. For
example, in the XOR task, each sample of input (1, 1) should
yield “0.” In order to determine the accuracy of the regressor,
we use a threshold of 0.5, i.e., values greater or equal to 0.5 are
considered correct if the target value is “1,” and values less than
0.5 are considered correct if the target value is “0.”

TABLE 1 | Truth table of the logical operations.

A B OR AND XOR IMPL

0 0 0 0 0 1

0 1 1 0 1 1

1 0 1 0 1 0

1 1 1 1 0 1

2.3.2. MNIST Task
MNIST1 is a dataset of handwritten digits from zero to nine. Each
digit is presented as 28× 28 pixel grayscale images and the whole
dataset contains 60, 000 training images and 10, 000 test images.
As the runtime of our network is too slow to present the complete
dataset, we use only the first three digits. We further reduce the
18, 000 training and 3, 000 test images to 1, 000 randomly picked
images for the training phase and 150 for the test phase.

For each trial during the training phase, one digit was
picked randomly and presented to the network. The images are
translated into spiking activity using one neuron per pixel as
described in section 2.1. The dopaminergic signalD, which enters
the plasticity equation Equation 8 as a third factor, is generated
using a neuron which doubles its base firing rate for 100 ms if
the label predicted by the network is correct (see Output Layer
in section 2.1), and becomes silent for 100 ms if it is incorrect.
As such, the dopaminergic signal is equivalent to an immediate
positive or negative reward r for success or failure. Note that the
correct/incorrect feedback, rather than the identification of the
correct class, renders this a reinforcement learning task rather
than a supervised task.

2.3.3. Mountain Car Task
Mountain Car2 is a reinforcement learning environment of the
OpenAI Gym. In this task, a car is randomly placed between two
hills. The goal is to reach the top of the right hand hill. This task
is difficult because the engine of the car is not strong enough
to just drive up the hill in one go; instead the agent must build
up momentum by swinging back and forth until the car finally
reaches the top (see Figure 2B).

The state space of the Mountain Car task is continuous,
consisting of the (real-valued) velocity and position of the car,
while the action space is discrete. The three discrete actions are
“left,” “right” and “nothing” which alter the velocity of the car.
If actions “left” or “right” are chosen, the velocity changes by
a fixed value in positive (“right”) or negative (“left”) direction.
Additionally, the velocity is also affected by gravity, meaning that
the car automatically rolls downhill if action “nothing” is chosen.
The position of the car changes in each timestep according to
its velocity.

The available information for the agent consists only of the
position and the velocity of the car and, in every timestep,
the agent receives a constant punishment of −1. The episode

1http://yann.lecun.com/exdb/mnist/
2https://github.com/openai/gym/wiki/MountainCar-v0
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terminates, and the environment resets, if the car reaches the goal
position or a limit of 200 timesteps is reached.

We adapted the environment in two minor ways. First, we
removed the time limit of 200 timesteps in order to enable our
agent to explore the environment. Second, we added a positive
reward of 1 when the car reached the goal position to give
the reinforcement learning algorithm a higher contrast to the
constant punishment during the trials.

The OpenAI Gym defines the task as solved if less than 110
timesteps are needed to reach the goal for 100 consecutively trials.
This is not easy to achieve as the car starts in a random position
between the hills and in some cases it is necessary to first swing
to the right, then to the left and finally to the right again. From
the worst starting position the timing must be perfect to solve the
task within 110 timesteps.

The OpenAI Gym defines the task with a position x ∈

[−1.2, 0.6] and velocity ẋ ∈ [−0.7, 0.7] (arbitrary units) which
we normalize to [−1, 1] for convenience. The real-valued, two-
dimensional signal is then converted into a spiking signal by
the input layer, consisting an array of 200 neurons for each
dimension, where the activation ai(t) of the ith neuron along each
dimension is determined by a Gaussian shaped receptive field of
mean µi = −1 + 2i

N and sigma σi = 0.05. On the basis of these
activations, the input layer neurons emit Poissonian spike trains
with firing rates given by 35ai(t), i.e., between 0 and 35 spks/s.

The readout consists of three neurons representing the three
different actions “left,” “right,” and “nothing.” As in the other
tasks, the readout neurons are in competition, ensuring that they
are not active at the same time.

2.4. Simulation Tools
All neural network simulations were performed using the Neural
Simulation Tool 2.16 (NEST) (Gewaltig and Diesmann, 2007;
Linssen et al., 2018). The interface between NEST and the
OpenAI Gym (Brockman et al., 2016) was implemented using the
ROS-MUSIC Toolchain (Weidel et al., 2016; Jordan et al., 2017).
Simulation scripts and model definitions are publicly available3.

3. RESULTS

3.1. Learning Input Representations and
Resolving Non-linearities
The computational benefits conferred by the ability to learn
suitable input representations are clearly demonstrated by the
simple example shown in Figure 3, employing the logical
operations “or” (OR), “and” (AND), “exclusive-or” (XOR) and
“material implication” (IMPL), of which XOR is the most
fundamental non-linear task. Whereas the XOR task can be
trivially solved by trained artificial neural networks (Gelenbe,
1989) and even by untrained recurrent networks of varying
degrees of complexity (using the reservoir computing approach,
e.g., Haeusler and Maass 2007; Verstraeten et al. 2010; Zajzon
et al. 2019), the combination of a small network size and random
input projections can result in an inadequate transformation
that doesn’t allow the non-linear task to be resolved. On the

3https://fz-juelich.sciebo.de/s/iSAZ7be2prtCCXS

FIGURE 2 | Visualization of the tasks. (A) 36 example images of the 3-digit

subset of the MNIST database. (B) Visualization of the Mountain Car

environment of the OpenAI Gym.

FIGURE 3 | Solving logical tasks with unsupervised learning. (A) Network

schematic of a two-layered network comprising two stimulation neurons (A

and B) and three representation neurons implementing a k-winners-take-all

architecture. (B) Accuracy (%) of linear regression on 50 s of low-pass filtered

activity of the representation neurons before (blue) and after (red) unsupervised

learning was applied to the input projections. Four different logical tasks were

used; OR, AND, XOR and implication (IMPL). The result was averaged over 30

trials with different random seeds, the error bars indicate the 95% confidence

interval. (C) Low-pass filtered neural activity before unsupervised learning was

applied. The gray bars indicate when the logical XOR task should yield “1.” (D)

as in (C), but after 440 s of unsupervised learning.

other hand, randomness in the input projections can give
rise to heterogeneity in response selectivity, which may suffice
to resolve the non-linear separability problem, provided no
additional sources of response variability are introduced in
the representation neurons (Rigotti et al., 2010). However, the
application of an appropriate unsupervised learning rule allows
even a very small and simple network of spiking neurons to
resolve non-linearities in the input, by adapting the projection
of the input signal onto the neuronal representational space to
develop clear stimulus representations.
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To demonstrate, we define an input layer comprising two
neurons (A and B) which represent “1” and “0” by being either
highly active or nearly silent, respectively. The activity of these
input neurons is randomly projected to a higher-dimensional
space spanned by three integrate-and-fire (IAF) neurons forming
a weak winner-take-all network, the representation layer. The
projections from the input to the representation layer (weights
initialized randomly from a uniform distribution between 33.33
and 66.66) are subject to an unsupervised, local plasticity rule
with Hebbian and homeostatic components (see Equation 7 and
Tetzlaff et al., 2013). The Hebbian part of the plasticity rule
strengthens the weights between stimuli and active neurons and
increases the probability that the same input evokes the activation
of the same neurons. The scaling part introduces competition
between the neurons and ensures that an active neuron does not
become active for all stimuli. Linear regressors are trained on the
activity of the representation neurons to approximate the four
logical operations. This simple setup is illustrated in Figure 3A

and described in greater detail in section 2.3.1).
As Figure 3B shows, the presence of the unsupervised

plasticity supports the reliable formation of stimulus-tuned
neurons. A linear regressor trained on the first 50 s of the activity
of the representation neurons, before plasticity is switched on, is
able to learn the simple linear tasks (OR and AND), but shows
significantly worse performance in the case of IMPL and the non-
linear task XOR. This is due to the activity of the representation
layer (Figure 3C), which is irregular and lacks adequate input
specificity to resolve the non-linear task—none of the neurons
are reliably “on” or “off” for either the case where XOR should
resolve to “1,” or where it should resolve to “0.”

In contrast, after the input projections have been adapted
by the unsupervised learning rule, the representation neurons
exhibit a reproducible and input-specific response, as shown in
Figure 3D: neurons 1 and 2 have a high rate, and neuron 0 a
low rate, when XOR should resolve to “1,” and vice versa when it
should resolve to “0.” Consequently, the linear regressor trained
on the last 50 s of neural activity, shows a good performance for
all four logical operations. Unsupervised learning on the input
projections thus yields significant gains by enforcing response
specificity in the representation layer.

As discussed in section 2.2, the use of weight regularization
as a homeostatic mechanism (Equation 7) has long been known
to play an important role in feature acquisition (Oja, 1982;
Tetzlaff et al., 2011, 2012, 2013; Yger and Gilson, 2015). Thus,
these results are unsurprising in themselves, but serve as a
demonstration that unsupervised learning introduces important
specificities into the population dynamics that allow it to be used
as a substrate for further computation, as we will show in the
following sections.

3.2. Feature Extraction in a Classification
Task
In the previous section, we demonstrated that the unsupervised
learning rule we implement is capable of learning input
representations that enable a simple system to resolve non-
linearities in the input signal. To further examine its capabilities,

we now explore a more challenging task and a more complex
system. The task we explore in this section is handwritten
digit recognition (the MNIST dataset), most commonly used
for image classification, for which the algorithm has to detect
handwritten digits in grayscale images of size 28 × 28. Due
to the high computational load for the numerical simulations,
we reduce the full dataset to a three digit subset. Moreover,
we limit the training set to 1, 000 images and the test
set to 150 images, which is just a small fraction of the
available data. Details of the experimental set-up are given in
section 2.3.2.

The network structure is illustrated schematically in
Figure 1A and described in detail in section 2.1. As for the
previous task, the network we implement consists of an input
and representation layer, but is now supplemented with an
output layer, which is realized by a soft winner-takes-all circuit
of three integrate-and-fire neurons, one for each label in the
dataset; the most active neuron is interpreted as the network’s
decision on which label corresponds to its current input.

As the input dimensionality is much larger in the MNIST
task than in the logical XOR task, a larger representation layer
is needed, which we implement as a clustered balanced network
as described by Rost et al. (2018) and Rostami et al. (2020). In this
model, all pairs of neurons have the same connection probability,
but for neurons defined as belonging to the same cluster, the
connection weight is increased (with respect to the reference
weight of the corresponding unclustered network). All other
weights are decreased to compensate, so each neuron receives
the same total weighted synaptic input. This is visualized in
Figure 1B. Unlike the clustered network architecture investigated
by Litwin-Kumar and Doiron (2012), we cluster both excitatory
and inhibitory connectivity. Rost et al. (2018) showed that
networks comprising purely excitatory clusters tend to fire at
saturation in the active clusters, with very low activity elsewhere,
resulting in only infrequent switches between active clusters. By
introducing inhibitory clusters, the firing rate of the active cluster
does not saturate, which facilitates cluster switching.

For the purposes of comparison, we consider both a network
parameterized to have eight clusters, such that the competition
between the clusters is very strong and a switch between the
winning clusters is rare, and an equivalent balanced network
with random connectivity, i.e., no clusters. The total amount of
excitation and inhibition in both networks are identical, which
is reflected in their identical average firing-rate of ∼ 27 spikes
per second. Dynamically, the difference can be measured using
the coefficient of variation (CV) of the inter-spike-intervals. The
average CV of the unclustered network is 0.92, which is close to
the expected value of a Poisson process. In contrast, the neuronal
activity in the clustered network varies muchmore (CV 4.61) due
to the fluctuating activity of the clusters.

The synapses between the input and representation layers
evolve according to an unsupervised local learning rule as for
the XOR task, and the synapses between the representation and
output layers adapt according to an unsupervised rule with an
additional neuromodulatory multiplicative term, see Equations
7 and 8. Thus, as illustrated in Figure 1A, the input projections
are subject to purely unsupervised learning, whereas the output
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projections, due to the neuromodulatory third factor, are subject
to reinforcement learning.

Note, firstly, that the reinforcement learning signal presented
to the output projections denotes only success or failure
(see section 2.3.2) and is therefore less informative than the
supervisory learning signal usually used for this task (which
would denote the correct choice in case of failure), and secondly,
that there is no error back-propagation from the output layer
to the representation layer to help solve the credit assignment
problem. Thus, the classification performance depends on a
stable and consistent representation of the input.

3.2.1. Self-Organization of Feature Extracting

Representations
Figure 4A shows the evolution of spiking activity in the
unclustered network for one trial of theMNIST task. The neurons
are ordered by their maximal response to the three different input
classes; the excitatory neurons most responsive to stimuli of class
“zero” are at the bottom of the plot, then those most responsive
to digit “one,” followed by digit “two.” This ordering is repeated
at the top of the plot for the inhibitory neurons. In the first 5 s
(left panel), no clear distinction can be made between the activity
of the network on the basis of the input digit, although some
overall changes in firing rate can sometimes be observed between
two input stimuli. The white horizontal bar in the plot is due
to neurons that do not fire at all during the recording period.
However, by the last 5 s (right panel), there are easily discernible
differences in the spiking activity corresponding to the individual
input digits.

Through the action of unsupervised learning in the input
projections, the network has self-organized into effective
clusters—effective in the sense that only the input weights
have adjusted, not the recurrent weights—that represent the
digits “zero,” “one,” and “two.” Whereas, the modifications
introduced by this learning rule when applied to recurrent
synapses have been shown to lead to the acquisition and
formation of stable cell assemblies (Auth et al., 2020), our results
demonstrate that applying it to the input projections alone
can yield the development of feature specialization. Coincident
input and representation neurons’ activations, elicited by the
pattern of external stimuli, leads to the strengthening of specific
pathways. Learning is stabilized and distributed such that the
input projections “compete” to establish sub-population specific
responses in the representation layer, ensuring the formation of
lasting input traces. These results are in line with Tetzlaff et al.
(2012), where a similar learning rule lead to the formation of
input-specific pathways in a simple feed-forward architecture,
through a stable sequence of fixed points.

The effect of this self-organization on the network dynamics
is most evident in the coefficient of variation of the spike trains,
which increases from 0.9 at the beginning of the trial to 2.7 at
the end of the trial. The average firing rate is hardly changed,
dropping from 27 to 26 spikes per second.

In contrast to the unclustered network, the activity in the
clustered network is already strongly differentiated in the first
5 s (see Figure 4B, left panel). The clusters switch on and off at
the transition points between stimuli. At this point, it is hard

to discern stimulus-specific patterns—for example, cluster 0 is
sometimes on for a presentation of the digit “two,” and sometimes
off. By the end of the trial (right panel), the activity has coalesced
into clear stereotypical patterns: as an example, stimuli from the
class “one” always evoke activity in clusters 4 or 7. The change
in the network response to stimuli is less visible on the level of
spike train statistics than that of the unclustered network; the
CV increases from 4.6 to 5.2 and the average firing rate decreases
from 27 to 25 spikes per second.

The detailed response profiles for each stimulus class can
be seen in Figures 4C,D. Notably, while each stimulus can be
represented bymore than one cluster, there is no overlap between
the profiles—each cluster responds to only one stimulus class.

The performances of the two network configurations are
shown in Figure 4E. In the absence of unsupervised plasticity at
the synapses between the input and the representation layer, both
the unclustered and the clustered network perform at chance
level. In the presence of plasticity, both networks reach a good
performance, clearly demonstrating the importance of learning
input projections for this task. Of the two networks, the clustered
network performs consistently better—it learns faster, reaching
an accuracy level of 80% after 181 trials and 90% after 268
trials, compared to 786 and 1, 014 for the unclustered network.
The performance of the clustered network is also better after
saturation than that of the unclustered network. Over the last
100 trials, the clustered network has an average of 96%, compared
with 92% for the unclustered network.

To acquire some insight into why the clustered network
performs better, we consider the features of the input data and
their representation in the network. The three digits selected
from MNIST have a large overlap and are not linearly separable,
similar to the XOR task examined in section 3.1. However, in
contrast to XOR, the classes in MNIST have a large intra-class
variance: there are sub-classes of different styles of writing the
digits. To give some examples, there is a sub-class of the digit
“zero” written close to circular while other sub-classes are more
tilted or oval; the digit “one” is often written as vertical line, but
sometimes also tilted; the digit “two” may be written with or
without a loop. A sample of these varying styles can be seen in
Figure 2A. This intra-class variability is part of what makes the
MNIST task challenging. In order to solve the task, a classifier
needs to learn a category that is broad enough to detect all
the instances of a particular digit, whilst simultaneously being
narrow enough to exclude all the instances of other digits.

The mean synaptic weights between the input neurons and
the neurons in each (effective) cluster of the representation
layer correspond to the receptive field of each cluster, and thus
the specialization learned in an unsupervised fashion by that
cluster. These can be visually compared as in Figure 5. The
receptive fields of the effective clusters that self-organize in the
unclustered network are generic for each digit (Figure 5A). This
results in a blurred appearance, because they contain traces of
all the sub-classes of a particular digit. In contrast, the receptive
fields of the clustered network have a less blurred appearance
and reveal that each cluster has typically specialized itself for a
specific sub-class. Thus, there are different clusters representing
a round or oval “zero,” a straight or tilted “one,” and a looped
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FIGURE 4 | Dynamics and performance of the model during the MNIST task. (A) Raster plot of an unclustered balanced random network model during the first and

the last 5 s of the simulation while solving the MNIST task. The identity of the stimulus digit is shown above the plots. The first 4, 000 neurons are excitatory, and the

last 1, 000 are inhibitory. Some neurons are silent in the beginning of the simulation. (B) As in (A), but for a network with eight clusters. (C) Activation of the three

emergent clusters in the initially unclustered network during the presentation of the last 100 stimuli (indicated above the panels). The boxes cover the interquartile

range (IQR) of the corresponding cluster activations. The whiskers extend to the values within 1.5 times the IQR. (D) As in (C) but for the network with eight clusters.

(E) Classification performance of the unclustered (pale colors) and clustered (dark colors) networks (one instance each). Red traces indicate the performance of the

corresponding networks without unsupervised plasticity on the input projections, whereas blue traces correspond to networks with plastic input synapses.

Performance is calculated using a sliding average over a window of 30 trials.

or unlooped “two.” This specialization explains the pattern of
activity observed in Figure 4B, right panel: different sub-classes
of a digit evoke activity in different clusters. In addition, this
explains the wide variance of the response profiles shown in
Figure 4D and the performance shown in Figure 4E: the more
specific receptive fields learned by the clustered network allow

a stronger differentiation of a cluster’s response to its preferred
digit over non-preferred digits than the generic receptive fields of
the unclustered network, leading to a higher accuracy.

Whereas these results show that unsupervised cluster
specialization allows different neuronal sub-populations to
become tuned not only to the different classes, but also
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FIGURE 5 | Features extracted by unsupervised learning. (A) Mean synaptic weights between the 28× 28 input neurons and the three effective clusters of the initially

unclustered network, see Figure 4A for the corresponding activity. (B) As in (A), but for the eight clusters of the clustered network (cf. Figure 4B).

FIGURE 6 | Dependence of performance and specialization on the number of clusters. (A) Classification accuracy (%) of linear regression on the low-pass filtered

population activity for a random network (0 clusters) and networks composed of 4, 8, and 20 clusters on the MNIST task. Results were averaged over 10 network

instantiations per condition; error bars indicate the 95% confidence intervals. (B) Distribution of mean (blue), minimal (red), and maximal (orange) cluster specificity

across 10 network instantiations for networks with different numbers of clusters. The box plots cover the interquartile range (IQR), with whiskers extending to the

values within 1.5 times the IQR. (C) Example of the extracted feature of a cluster with low specificity (0.34). (D) Example of the extracted feature of a cluster with high

specificity (0.86).
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to intra-class variations in the MNIST digits, the number
of internal clusters required to achieve this remains to be
determined. To investigate this relationship, we systematically
varied the network’s internal structure and evaluated the impact
of having smaller and larger numbers of clusters on the overall
classification performance and the maximum, average and
minimum specificity of the clusters, measured as the sharpness
of the output projections, i.e., how much stronger (in relative
magnitude) is the strongest output projection. This is calculated
as Sc = W∗

o /
∑

o(Woc), where Woc is the average synaptic
strength from all neurons in cluster c to output neuron o and
W∗

o is the maximum of Woc over all output neurons, i.e., W
∗
o =

max
o

{Woc}. The results are shown in Figure 6.

We find that the peak performance is achieved by eight
clusters (97.3%), which also exhibits the smallest 95% confidence
interval. If the number of clusters is too small (four cluster
condition in Figures 6A,B), feature specialization is insufficient
to accurately discriminate the classes, dramatically reducing
overall classification accuracy below that achieved by a random,
unclustered network (zero cluster condition). Interestingly, the
maximum specificity is highest for four clusters, indicating
that some clusters become highly specific for specific classes.
However, the average specificity across the network is smaller
than in a network composed of eight clusters. This has a
significant impact on the ability to distinguish the different
digits and accounts for the substantial reduction in classification
accuracy. For illustration, the receptive fields of two clusters with
high and low specificity are given in Figures 6C,D.

On the other hand, if the representation layer is endowed
with more clusters than are needed to solve the task (20 cluster
condition in Figure 6), representations become redundant and
the degree to which each cluster is tuned to particular digits
is greatly reduced (Figure 6B) leading to multiple clusters
specializing for the same features. Nevertheless, given that
all classes and intra-class variants can be represented when
distributed across the twenty clusters, the classification accuracy
is still high, but the benefits of modular recurrent connectivity
in the representation layer are lost, as its performance is closer
to that of an unclustered network than to that of a network with
eight clusters (Figure 6A).

3.3. Continuous Time and Space and
Delayed and Sparse Reward
So far we have shown that our model can resolve non-linearities
in the input and extract and represent complex features in
images using the XOR and the MNIST classification tasks. In
both cases, to train the readout weights with reinforcement
learning, the reward or punishment is applied directly after the
end of the stimulation period. This is not a very representative
scenario for real-world tasks, where it is necessary to make a
sequence of decisions which typically involve a substantial delay
period until the reward is received (Schultz, 2016; Tervo et al.,
2016). Moreover, unlike XOR and MNIST, which constitute toy
examples, real-world stimuli unfold continuously in both time
and space. Foraging is a prime example of a real world task which
has the properties of continuous state-space and delayed reward.

We therefore investigate the performance of our model in
a more challenging task, continuous in time and space and
providing only sparse and delayed reward at the end of a
successful trial: the “Mountain Car” reinforcement learning
environment provided by the OpenAI Gym. In this task, at the
start of each trial the car is placed in the valley between two hills
(see schematic example in Figure 2B). The trial ends when the
task is solved, i.e., the agent reaches the top of the right-hand
hill by swinging back and forth to gain momentum, or when a
timeout of 200 timesteps has been reached (see section 2.3.3). The
only information available to the learning agent is the continuous
position and velocity of the car.

As the reward is only presented at the end of a trial, we include
an actor-critic architecture in our network structure which
generates a reward prediction error (RPE). This is illustrated
schematically in Figure 1A and described in detail in section 2.1.
The availability of a RPE allows a learning agent to project a
sparse reward back to earlier (non-rewarded) states. However,
doing so requires a stable representation of environmental states.
Whereas, previous demonstrations that networks of neurons
can solve this task relied on hard-coded “place cell”-type
representations of the environment (Frémaux et al., 2013; Jordan
et al., 2017), our model self-organizes a representation of the
environment that is adequate for learning the task.

Figure 7 illustrates the evolution of the representation of
the environment (in a network with eight clusters and plastic
input projections) as the agent learns the task. Before training
(first panel), a single cluster is active, independent of the
agent’s location in position-velocity space. Early in the learning
process (after 50 s, second panel), other clusters are gradually
activated and after 500 s (third panel), all neuronal clusters are
actively firing. Some degree of specialization begins to emerge,
whereby specific clusters are predominantly activated for specific
regions of the task space. This differentiation gets sharpened as
learning progresses, with some clusters substantially changing
their preferred area of input space over time. For example, the
black cluster is activated by a broad region of input space at
t = 500 s, coalesces to the middle by t = 1, 000 s and then
moves out to occupy the central upper region by t = 2000 s.
The final partition exhibits a clear mapping from input space
to cluster activation (3, 000 s; final panel). The final mapping
demonstrates that, after exploring the environment for long
enough, the clusters in the network become active for those parts
of the state space which are frequently visited and therefore form
a task-oriented, rather than comprehensive, discretization of the
state space.

An example of such an acquired environmental representation
is illustrated in Figure 8A for a single trial after convergence
of performance. The mapping of clusters to portions of the
two dimensional task space can be clearly seen. Due to this
mapping, the clusters are activated in a stereotypical sequence,
as is visualized as a directed graph for a specific instantiation
in Figure 8B and is also readily apparent in the spiking activity
displayed in Figure 8C. For this instantiation, clusters 6 or 2
represent the starting positions and are therefore activated first
in the sequence. Cluster 4 represents the goal position and is
activated last in the sequence.
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FIGURE 7 | Learning functional partitions of the state space. Each panel depicts the cluster activations over a 10 s window at the time shown on the figure axis,

color-coded by cluster identity. Each dot represents the reconstructed position (panel horizontal axis) and velocity (vertical axis) of the car in the input space for 1 ms.

The reconstruction is calculated on the basis of the spike trains filtered with an exponential kernel (τ = 30 ms); the neuron with the highest activity is assumed to

reflect the current position/velocity of the car. Likewise, the most active cluster is defined to be the one with highest (filtered) activity in a given bin.

FIGURE 8 | Dynamics and performance of the model during the Mountain Car task. (A) Each dot represents the reconstructed position and velocity of the car in the

input space during one trial (corresponding to the last trial of D). The color of the dots correspond to the most active cluster during this velocity-position pair. (B) Most

common sequence of active clusters after training. The sequence of each trial usually starts with cluster 6 or 2 and ends on cluster 4. (C) Raster plot of the last

seconds of the simulation of the Mountain Car task. Arrows indicate the approximate start of a new trial. (D) Performance of unclustered (pale) and clustered (dark)

networks. Curves give the running median over 10 trials, shaded areas indicate the corresponding standard deviation. Blue and red curves indicate plastic and static

input projections, respectively.

The emergent representation of the environment in the
representation layer provides a basis for the actor-critic
architecture to evaluate states and learn an effective policy, (see
Figure 8D). By comparing with Figure 7, it is clear that a mutual
bootstrapping of environmental representation and performance
is taking place. The better the performance, the more time
the agent spend in advantageous dynamical states, causing

the representation layer to map these states more effectively
to clusters. Complementarily, the sharper the partition of the
environment into useful states, the easier it is for the agent to
learn appropriate actions, causing an increase in performance.

OpenAI Gym describes the task as solved if the agent needs
less than 110 timesteps to find the goal in 100 consecutive
episodes. Our model approaches this threshold within 1, 000
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episodes (see Figure 8D) but for two reasons we can not claim
to have solved the task. First, we adapted the environment in
two minor ways as described in section 2.3.3 in order to give our
agent more time to explore the environment. Second, although
our model frequently finds the goal in less than 110 timesteps, it
does not do this consistently. The model is constantly exploring,
learning and changing its policy which results in a substantially
sub-optimal result in a few trials. Over the last 100 trials, it found
the goal in under 110 timesteps on 59 trials, with a median
of 108 and an average of 164 timesteps, respectively. As a side
remark, humans cannot solve the task easily either, as reaching
the goal 100 times in a row and consistently, under 110 timesteps
is challenging and tiring.

As with the MNIST task, it is the combination of a clustered
network and plastic input synapses that yields the best results.
As shown in Figure 8D, an unclustered network with plastic
synapses shows initial improvement on the task but saturates
early at just over 200 timesteps, and then becomes gradually
worse (median 329, average 416 timesteps over the last 100
episodes). An unclustered network with static input synapses
does not show appreciable change in performance even after
many iterations (median 437, average 541). Unlike the MNIST
task, for the Mountain Car task the worst performance is
demonstrated by the clustered network with static synapses
(median 844, average 1, 086). In this configuration, cluster
switching becomes rare, and so the network takes longer to reach
the goal.

Also in common with the MNIST task, response variability,
as measured by the change in coefficient of variation is the best
indicator of performance. For the networks with plastic input
synapses, the CV of the clustered network increases during the
simulation from 0.43 to 3.99 (whilst the firing rate increases
mildly from 15.5 to 18.8 spikes per second); the CV of the
unclustered network increases from 0.93 to 2.08 (whilst the firing
rate increases substantially from 8.8 to 22.8 spikes per second).
For the networks with static input synapses, the CV of the
unclustered network stays constant at 0.78 whereas the CV of the
clustered network decreases from 0.69 to 0.55.

4. DISCUSSION

In this work, we present a spiking neural network model
for unsupervised feature extraction and reinforcement learning
using clustered spiking networks and Hebbian plasticity with
synaptic scaling. We demonstrate that this combination is able
to extract complex features and resolve non-linearities in the
input elegantly. The XOR task (section 2.1) demonstrated that the
presence of unsupervised plasticity on the input projections can
boost the performance of a reservoir computing system, even in a
very small and simplified network. Whereas this simple network
with static input projections was unable to transform the input
into a linearly separable projection required to resolve the task,
simply adding a local and entirely unsupervised learning rule,
compatible with biological findings, allows it to adequately do so.

Using the full version of the model, with a random
balanced network as the representation layer, we showed

that the combination of unsupervised learning on the input
projections with clustered connectivity boosts the performance
of a reinforcement learning approach. On the reduced MNIST
task (section 3.2), the clustered network with unsupervised
plasticity learns faster and achieves a better performance than
an unclustered network. Networks without input plasticity
performed at chance level. Examining the structure of the
input projections revealed that the clusters had specialized for
particular sub-categories of the input space (e.g., two’s with
and without a loop, see Figure 5). For all cases analyzed, this
projection specificity remains stable after learning as the synaptic
weights converge to a stationary state.

We conclude that, for this task, the pre-existence of
clusters supports the self-organization of representation by
permitting feature specialization to develop, i.e., if the input
is adequately projected onto clusters of strongly connected
neurons, competition between the clusters allows them to
become tuned to the relevant input features driving them, such
that the system learns task-relevant mappings faster and in
a more robust manner. In addition, subtle variations in the
input feature space can be discerned, if the representation layer
comprises a sufficient number of internal clusters, which become
specialized for class membership as well as intra-class variance.
These specialized classifiers learned by the clusters thus allow
a faster and more robust learning performance. Note that this
specialization is an emergent property of the combination of the
clusters and the synaptic plasticity between the input and the
representation layers, and doesn’t stem from explicit class labels,
as none were provided.

Overall, based on the results obtained on the XOR and the
MNIST tasks, we can differentiate the contributions of the
features that give the system its functionality. Unsupervised
learning in the input projections appears to sharpen
representational specificity, generating linearly separable
embeddings of the input data. Complementarily, clustered
connectivity in the representation layer results in a reduction
of the system’s effective dimensionality, thus circumventing the
variation introduced due to spiking dynamics. By partitioning
the representation layer into several homogeneous clusters, the
activation of a cluster can be seen as a coarse approximation of a
single firing rate unit, thus reducing the effective dimensionality
in the representation layer and operating as a mechanism to
reduce variability in the responses of individual neurons. In
fact, if the representation layer were composed of uncoupled
rate neurons, random input projections would suffice to resolve
non-linear separability problems, by generating neurons with
mixed selectivity to the input features (see e.g., Rigotti et al.,
2010; Fusi et al., 2016). However, our results show that the effects
introduced by clustered structure are insufficient; unsupervised
learning is required to sharpen the selectivity of single units and
clusters, resulting in representations that go beyond a simple
linear separation of the input data, to enable specialization for
minor variations in the input features, as demonstrated by the
MNIST task (see Figure 5).

A spiking implementation of an actor-critic reinforcement
learning architecture enables our model to solve tasks with
sparse and delayed feedback, exemplified by the time- and
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space-continuous Mountain Car problem. On this task, the
clusters became specialized for particular regions of the two
dimensional input space, for which the appropriate action could
easily be learned. This specialization develops independently of
the task feedback that drives learning (RPE), relying only on the
statistical structure of the input data. However, in contrast to
MNIST, the stream of input data is influenced by the actions
selected by the agent. As the agent learns the task, certain
regions of the state space are visited more often, and the order
in which they are visited becomes more predictable. Cluster
activations after learning reflect the frequency and temporal
order with which different regions in the input space are visited,
thereby reflecting a task-oriented, rather than comprehensive
(grid-like), discretization of the state-space. This self-organized,
task-driven discretization is efficient in its use of the available
resources in that only task-relevant partitions are learned and
no representational dimensions are wasted in covering irrelevant
regions of state-space. In contrast, the commonly used ad hoc
grid-like partitioning would entail that a proportion of neurons
were assigned to cover regions of the input space that are not
relevant for the task and may never be visited at all.

Thus, the network model simultaneously learns an
appropriate partition of the task structure, the value of
each partition and the optimal action to take in it, and it does
so in a resource-efficient manner. Once learning has converged,
the model cycles through a stereotypical sequence of cluster
activations in order to solve the task, and achieves a much better
performance than the corresponding unclustered network,
frequently (but not consistently) finding the goal within the time
limit set by OpenAI Gym to consider the task solved.

We emphasize that themotivation for the network exploration
in this study is not to achieve optimal performance on the
considered tasks, but rather to gain new insights into how the
brain might develop adequate representational spaces, under
known biophysical constraints and without a priori knowledge
of the task format. There certainly exist alternative spiking
network models that can outperform ours (for MNIST, see,
for example, Habenschuss et al., 2012; Diehl and Cook, 2015),
typically by introducing non-biological model assumptions on
architecture, dynamics, or learning rules. Similarly, one could
consider variants of our model that use fewer neurons, such
as by replacing the clusters in the representational layer with
efficient WTA-circuits or individual firing rate units that would
correspond to the activity within the cluster. However, such
variants would detract from the key finding of our study, which
is that the computational properties of the balanced random
network are enhanced by the introduction of the biologically
motivated features of unsupervised plasticity and clustered
connectivity. Of greater interest would be variants that take
further steps toward biological verisimilitude (for instance, with
respect to the generation of the reward prediction error) without
notable loss of performance, or those that increase performance
at the same level of biological plausibility.

The representation layer is left untrained. This has two
important ramifications. First, the representation layer does
not reflect any previous knowledge or assumptions about an
appropriate partitioning of the input space on the part of the

modeler, unlike previous approaches with hard-wired place cells
or radial basis functions. Second, the network can be re-used to
represent different patterns and data sets. As long as the input
projections are adapted to the properties of the data, no further
modifications are required within our set-up; the exact same
network is used for both the MNIST and Mountain Car tasks
requiring no modifications of its internal architecture.

The ability to adequately represent data is a critical step
for any learning system to be able to detect statistically
repeating patterns. Depending on the task and data set
considered, it might be important, for example, to extract
features that allow a scale- or rotation-invariant representation
or to reduce the input dimensionality making it simpler to
process. The most commonly known method for dimensionality
reduction and feature extraction is principal component analysis
(PCA), but many others exist, such as linear discriminant
analysis (LDA, Mika et al., 1999), independent component
analysis (ICA, Comon, 1994; Hyvärinen and Oja, 2000) or
scale-invariant feature transform (SIFT Lowe, 1999). Modern
techniques based on convolutional deep networks (CNN,
e.g., Mnih et al., 2015) have also proven valuable for
feature extraction, particularly in the domain of computer
vision, whereby complex, hierarchical feature dependencies are
gradually extracted through error back-propagation.

All these methods are powerful tools, but their biological
plausibility is limited or non-existent. As such, they are not
appropriate models for studying learning in the mammalian
brain. A more plausible approach is based on “competitive
learning” as described in Hertz et al. (1991), which employs
Oja’s rule (modified Hebbian learning with multiplicative
normalization). This model was shown to perform PCA,
constituting a powerful, biologically-plausible alternative for
feature extraction and dimensionality reduction (Oja, 1982), see
also Qiu et al. (2012) for a detailed review on neural networks
implementing PCA or non-linear extensions of PCA. In a recent
study, competitive unsupervised learning applied to the lower
layers of a feedforward neural network was shown to successfully
lead to good generalization performance on the MNIST dataset
(Krotov and Hopfield, 2019). However, despite providing further
validation to the claim that biological compatibility need not
be sacrificed for adequate computational performance, these
studies still rely on implausible mechanisms, such as decoupled
processing layers (i.e. purely feedforward connectivity) and
simplified processing units (sigmoid or rectified linear units).

Alternative, related instantiations have been proposed in the
literature. Employing Hebbian learning with synaptic scaling
to the internal, recurrent connections was shown to be
mathematically equivalent to non-negative matrix factorization
(Carlson et al., 2013) and to allow for the development
and maintenance of multiple internal memories, without
catastrophic interference effects (Auth et al., 2020). On the other
hand, applying similar learning rules exclusively to the input
projections (as we have), leads to systems that perform operations
similar to ICA (Jonke et al., 2017). These examples employ a
conceptually similar learning rule in small network architectures
(8, 500, and 900 neurons, respectively). In such small networks,
single neurons can become highly tuned and influential enough
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to reliably implement the competition needed by inhibiting the
rest of the network. For larger networks, however, a coordinated
activation of relatively large sub-populations is necessary to
achieve this internal competition. The combination of Hebbian
learning with lateral inhibition, as introduced by Diehl and
Cook (2015) and Querlioz et al. (2013), can comply with
this requirement, leading to highly accurate representations, as
demonstrated by the remarkably high accuracy achieved by this
model on the MNIST dataset. Competition is, in that case,
instantiated by inhibitory projections, which actively silence the
unstimulated excitatory neurons. Homeostasis, in the form of
a neuron-intrinsic property (adaptive threshold), then ensures
that all neurons have a fair chance to compete. Our model, on
the other hand, achieves this competition effect as a result of
the clustered connectivity (see section 3.2), without sacrificing
the biological compatibility of the network’s architecture (namely
sparse recurrent interactions and distributed, population-level
representations) and thus highlights the functional relevance of
structurally constrained recurrent connections.

The existence of the clustered synaptic connectivity
investigated in our study is an important feature of cortical
circuits (Song et al., 2005; Perin et al., 2011), reflecting either
evolutionary constraints or life-long learning and synaptic
plasticity (Litwin-Kumar and Doiron, 2014; Zenke et al., 2015).
It has been shown that it can account for pervasive phenomena
in cortical microcircuits, such as a modulation of the timescales
of intrinsic firing fluctuations and their variability (Litwin-
Kumar and Doiron, 2012), a drop in effective dimensionality
of population responses during active processing, as well as the
emergence and modulation of stimulus-specific metastable states
and structured transitions among them (Mazzucato et al., 2016).

Cortical microcircuits are known to rapidly switch among
different active states, characterized by markedly different
dynamical properties and critically modulating stimulus
processing and the fidelity of stimulus representations (Duarte,
2015; Gutnisky et al., 2017). While the majority of the studies on
the matter focus on the relation between ongoing and evoked
activity and/or trial-to-trial variability (see, e.g., Churchland
et al., 2010, and references therein), much less is known about
learning-induced changes in circuit responsiveness and cortical
states (Kwon, 2018). A common observation is that the onset
of a stimulus reduces the variability of the elicited responses
(Churchland et al., 2010) by coalescing population activity
onto a low-dimensional manifold (Jazayeri and Afraz, 2017;
Remington et al., 2018). One would thus expect that during
learning, these representational structures become sharper
and this specialization would be reflected in a reduction in
response variability.

Our results demonstrate an increase in spike-train variability
across the population, but, in this situation, this is clearly
a result of modular specialization. Tuned sub-populations of
neurons (within a cluster) fire strongly for short periods of
time and sparsely when the cluster they belong to is inactive.
This skews the distributions of inter-spike intervals, greatly
increasing its variance and reducing its mean, resulting in a
larger CV. However, trial-to-trial variability is clearly decreased
after learning (as can be seen in Figure 4B). The observed

increase in population-level variability in this set-up thus reflects
a more constrained dynamical space and is a consequence
of switching between highly active, specialized clusters. Thus,
based on these observations from our model, we can expect
that learning-induced modulations of population dynamics
would result in an increase in population-level variability
(as measured, for example by the CV). Having experimental
access to a large enough population of responsive neurons
would allow us to observe the formation of an increasingly
restrictive dynamical space, whereby task-relevant variations
would be imprinted in firing co-variation among strongly
connected neuronal clusters (in line with Jazayeri and Afraz,
2017).

Our model constitutes an important step forward
in the domain of unsupervised feature extraction,
potentially leading to flexible learning algorithms,
which can be used on large computational domains
without requiring task-specific adjustments to the
structure of the system. Because of its biological
inspiration and plausibility, both in the learning rules
and internal architecture, the model allows us to make
predictions about the dynamic properties of internal
representations and thus has the potential to lead to a better
understanding of the principles underlying learning in the
mammalian brain.

Capitalizing on these features, further work is required
to clarify the extent of the model’s functional and biological
relevance. For example, in this study we showed that the presence
of clusters improved the performance of the network, but the
cluster size relative to network size and cluster membership were
arbitrarily assigned. We have demonstrated that the number
of internal clusters that specialize the representation layer are
related to task constraints (see Figure 6) and should be sufficient
to capture intrinsic variation in the input data and enforce the
necessary competition. However, beyond an optimum value,
adding more clusters leads to redundant representations and
decreases overall performance. It is thus reasonable to expect that
the optimal parameter configuration depends on the demands of
the task. Future work should thus establish systematic relations
between the number and size of internal network clusters, their
functional impact relative to task demands as well as their
effects on the observed dynamics. Furthermore, as we could
use the same representational layer for different tasks, this
suggests that this type of architecture may be suitable for multi-
task learning. It remains to be seen how quickly the network
can be re-trained on a different task, and whether such a re-
mapping induces catastrophic forgetting of the first task, or
permits a palimpsest of functionally relevant cluster mappings to
be established.
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