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Equilibrium propagation is a learning framework that marks a step forward in the search

for a biologically-plausible implementation of deep learning, and could be implemented

efficiently in neuromorphic hardware. Previous applications of this framework to layered

networks encountered a vanishing gradient problem that has not yet been solved in

a simple, biologically-plausible way. In this paper, we demonstrate that the vanishing

gradient problem can be mitigated by replacing some of a layered network’s connections

with random layer-skipping connections in a manner inspired by small-world networks.

This approach would be convenient to implement in neuromorphic hardware, and is

biologically-plausible.

Keywords: equilibrium propagation, deep learning, small-world, layer-skipping connections, neuromorphic

computing, biologically-motivated

1. INTRODUCTION

As research into neural networks grows, there has been increased interest in designing biologically-
inspired training algorithms, as they may offer insight into biological learning processes and also
offer clues toward developing energy-efficient neuromorphic systems (Lillicrap et al., 2014; Bengio
et al., 2015; Bartunov et al., 2018; Wozniak et al., 2018; Crafton et al., 2019; Ernoult et al., 2020).
The equilibrium propagation learning framework introduced in Scellier and Bengio (2016) is one
such algorithm. It is a method for training a class of energy-based networks, the prototype for
which is the continuous Hopfield network (Hopfield, 1984). In particular, it addresses one of
the major issues that prevent other training algorithms (such as backpropagation) from being
biologically-plausible, which is the requirement for separate computation pathways for different
phases of training. This also makes the algorithm appealing for practical implementation into
neuromorphic hardware, because only a single computation circuit is required within each (non-
output) neuron, rather than multiple distinct circuits. However, current implementations of the
algorithm still have a defect that diminishes its biological plausibility: they require hand-tuned per-
layer hyperparameters to account for a vanishing gradient through the network. In addition to not
being biologically plausible, these multiplicative hyperparameters would be difficult to implement
in a neuromorphic hardware system with limited bit depth. In this work, we demonstrate that
the vanishing gradient problem can instead be addressed through topological means: by randomly
replacing some of a layered network’s connections with layer-skipping connections, we can generate
a network that trains each layer more evenly and does not need per-layer hyperparameters. This
solution is biologically-plausible and would be easier to implement in a neuromorphic system;
additionally, it entails hand-tuning only two new hyperparameters (the number of layer-skipping
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connections and their initial weights), whereas the original
solution adds a new hyperparameter for each pair of layers in
a network.

Implementation of equilibrium propagation in Scellier and
Bengio (2016) was hindered by a vanishing gradient problem
whereby networks with as few as three hidden layers trained
slowly on MNIST (LeCun and Cortes, 1998)—a serious issue
given that network depth is critical to performance on difficult
datasets (Simonyan and Zisserman, 2014; Srivastava et al., 2015b)
and that convergence to a low error rate on MNIST is a low bar
tomeet. The problemwas overcome in Scellier and Bengio (2016)
by independently tuning a unique learning rate for each layer in
the network. These learning rates were multiplicative factors that
proportionally scaled the signals communicated between layers.

In our work, we have modified the strictly-layered topology
of the original implementation by adding and removing
connections to create a small-world-like network (Watts and
Strogatz, 1998). Through this modification we have eliminated
the per-layer hyperparameters without substantially degrading
the algorithm’s performance—after 250 epochs the modified
network produces 0.0117% training error (out of 50,000
examples) and 2.55% test error (out of 10,000 examples) on
MNIST using a network with three hidden layers and no
regularization term in its cost function. These error rates are
comparable to those of other biologically-motivated networks
(Bartunov et al., 2018) and are approximately the same as
those of the layered network with unique, manually-tuned
learning rates in Scellier and Bengio (2016). Our method
could be implemented with relative ease in any system with
configurable connectivity, such as those already described in
several neuromorphic hardware platforms (Schemmel et al.,
2010; Davies et al., 2018; Shainline et al., 2019). Layer-skipping
connections have been observed in biological brains (Bullmore
and Sporns, 2009), so the approach is biologically-plausible.
Similar techniques have seen success in convolutional (He et al.,
2015; Srivastava et al., 2015a) andmultilayer feedforward (Xiaohu
et al., 2011; Krishnan et al., 2019) networks. Our findings
outlined in this paper suggest that layer-skipping connections
are effective-enough to be appealing in contexts where simplicity
and biological plausibility are important. While small-world
networks are not a novel concept, to our knowledge our work is
the first to train small-world-like networks using the Equilibrium
Propagation learning framework.

2. BACKGROUND

2.1. Equilibrium Propagation
Similarly to backpropagation, the equilibrium propagation
algorithm (Scellier and Bengio, 2016) trains networks by
approximating gradient descent on a cost function. Equilibrium
propagation is applicable to any network with dynamics
characterized by evolution to a fixed point of an associated energy
function; our implementation is a recreation of that in Scellier
and Bengio (2016), which applies it to a continuous Hopfield
network (Hopfield, 1984). The mathematical formulation of the
framework can be found in Scellier and Bengio (2016). We
discuss its appeal over backpropagation in section 4.2.

2.1.1. Implementation in a Continuous Hopfield

Network
Here we summarize the equations through which a continuous
Hopfield network is trained using equilibrium propagation; this
summary is based on the more-thorough and more-general
treatment in Scellier and Bengio (2016).

Consider a network with n neurons organized into an input
layer with p neurons, hidden layers with q neurons and an output
layer with r neurons. Let the activations of these neurons be
denoted, respectively by vectors x ∈ R

p, h ∈ R
q and y ∈ R

r ,
and let s = (hT , yT)T ∈ R

q+r and u = (xT , sT)T ∈ R
n

be vectors of, respectively, the activations of non-fixed (non-
input) neurons and of all neurons in the network. Let W ∈

R
n×n and b ∈ R

n denote the network’s weights and biases
where wij is the connection weight between neurons i and j
and bi is the bias for neuron i (∀i wii = 0 to prevent self-
connections), and let ρ denote its activation function; here and
in Scellier and Bengio (2016),

ρ(x) =











0 x < 0

x 0 ≤ x ≤ 1

1 x > 1

(1)

is a hard sigmoid function where ρ′(0) = ρ′(1)
is defined to be 1 to avoid neuron saturation. Let
ρ((x1, . . . , xn)

T) = (ρ(x1), . . . , ρ(xn))
T .

The behavior of the network is to perform gradient descent on
a total energy function F that is modified by a training example
(xd, yd). Consider energy function E :R

n → R,

E(u;W, b) =
1

2
uTu−

1

2
ρ(u)TWρ(u)− bTu (2)

and arbitrary cost function C :R
r → R+; here and in Scellier and

Bengio (2016) it is a quadratic cost function given by

C(y) =
1

2
||y− yd||

2
2, (3)

though the framework still works for cost functions
incorporating a regularization term dependent on W and
b. The total energy function F :R

n → R is given by

F(u;β ,W, b) = E(u;W, b)+ βC(y) (4)

where the clamping factor β is a small constant. s evolves over
time t as

ds

dt
∝ −

∂F

∂s
. (5)

Equilibrium has been reached when ∂F
∂s ≈ 0. This can be viewed

as solving the optimization problem

minimize
s∈Rq+r

F((xTd , s
T)T;β ,W, b) (6)

by using gradient descent to find a local minimum of F.
Parameters θ can then be updated using the rule

1θ ∝ −
1

β
(
∂F

∂θ
((xTd , s

T)T;β ,W, b)−
∂F

∂θ
((xTd , s

T)T; 0,W, b)).

(7)
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The procedure for training on a single input-output pair (xd, yd)
is as follows:

1. Clamp x to xd and perform the free-phase evolution: evolve to
equilibrium on the energy function F(u; 0,W, b) in a manner
dictated by Equation (5). Record the equilibrium state u0.

2. Perform the weakly-clamped evolution: evolve to equilibrium
on the energy function F(u;β ,W, b) using u0 as a starting
point. Record the equilibrium state uβ .

3. Compute the correction to each weight in the network:

1Wij =
1

β
(ρ(u

β
i )ρ(u

β
j )− ρ(u0i )ρ(u

0
j )). (8)

Adjust the weights using Wij ← Wij + α1Wij where the
learning rate α is a positive constant.

4. Compute the correction to each bias in the network:

1bi =
1

β
(ρ(u

β
i )− ρ(u0i )) (9)

and adjust the biases using bi ← bi + α1bi.

This can be repeated on as many training examples as desired.
Training can be done on batches by computing 1Wij and 1bi
for each input-output pair in the batch, and correcting using the
averages of these values. Note that the correction to a weight
is computed using only the activations of neurons it directly
affects, and the correction to a bias is computed using only the
activation of the neuron it directly affects. This contrasts with
backpropagation, where to correct a weight or bias l layers from
the output it is necessary to know the activations, derivatives, and
weights of all neurons between 0 and l−1 layers from the output.

2.2. Vanishing Gradient Problem
Vanishing gradients are problematic because they reduce a
network’s rate of training and could be difficult to represent
in neuromorphic analog hardware due to limited bit depth.
For instance, in a neuromorphic hardware system with 8-bit
communications and weight storage, weight corrections near
the input layer of the network may be smaller than the least
significant bit (due to gradient attenuation) causing those small
weight changes to be lost entirely.

The vanishing gradient problem is familiar in the context of
conventional feedforward networks, where techniques, such as
the weight initialization scheme in Glorot and Bengio (2010),
the use of activation functions with derivatives that do not
lead to output saturation (Schmidhuber, 2015), and batch
normalization (Ioffe and Szegedy, 2015) have been effective at
overcoming it. However, in the context of the networks trained
in Scellier and Bengio (2016), the vanishing gradient problem
persists even when the former two techniques are used. To
our knowledge batch normalization has not been used in the
context of equilibrium propagation; however, it seems unlikely
to be biologically-plausible.

2.3. Small-World Networks
The topology presented in this paper is inspired by small-world
networks described in Watts and Strogatz (1998). In that paper

the authors consider ring lattice networks which are highly-
cliquish in the sense that the neighbors of a vertex, defined as the
set of vertices with which the vertex shares an edge, are very likely
to share edges with one-another. The typical distance between
a pair of vertices in such a network, defined as the minimum
number of edges that must be traversed in order to move between
them, tends to be large as well. The authors demonstrate that
when each edge in the network is randomly re-wired with some
probability p, the typical distance is reduced at a much higher
rate than the cliquishness as p increases, and one can thereby
create a network with a high degree of cliquishness yet a short
typical path length between vertices. They call such a network a
small-world network.

Since in our context networks with multilayer feedforward
topology have gradients that attenuate by a multiplicative factor
of distance from the output layer, it seems reasonable to
expect attenuation to be reduced when the typical number of
connections between a given neuron and the output layer is
reduced. Based on this we were motivated to explore the small-
world-inspired topology described in subsequent sections as a
way to reduce the typical number of connections between a pair
of neurons and therefore between a neuron and the output layer,
while largely preserving the layered structure of a network. It
is worth noting that multilayer feedforward topology is not a
perfect analogy for a circular lattice network because it lacks
connections within layers and is therefore not cliquish based on
the definition used in Watts and Strogatz (1998); nonetheless,
we have seen empirically that our small-world-inspired topology
does mitigate the vanishing gradient problem and generally
improve network performance.

2.4. Related Work
There is a variety of work exploring layer-skipping connections in
the context of deep neural networks. He et al. (2015) uses layer-
skipping identity mappings to train deep convolutional neural
networks through backpropagation and demonstrates that this
leads to substantial performance improvements. Srivastava et al.
(2015a) proposes a similar method where the transformation
applied by each layer is a superposition of a nonlinear activation
function and an identity mapping where the relative weights
of the two components can change based on how saturated a
layer’s activation functions are, and demonstrates that with this
method deep networks can be trained more-effectively using
stochastic gradient descent with momentum. These approaches
differ from ours in that they are not random and have not
been applied in the context of Equilibrium Propagation, but
might be effective for similar reasons as our approach. Xiaohu
et al. (2011) uses an approach similar to ours to convert a
multilayer feedforward network into one with a small-world-like
topology and finds that doing so improves performance on a
function approximation task using backpropagation. Krishnan
et al. (2019) demonstrates that deep neural networks can be
pruned by starting with a small-world-style network rather than
a network with an excessive number of parameters without
significant compromises to final model accuracy or sparsity,
thereby reducing the memory requirements of doing so. The
successes seen in these other works suggest that layer-skipping
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connections can make neural networks train more-effectively.
To our knowledge our work is the first that applies layer-
skipping connections to mitigate the vanishing gradient problem
in networks trained using Equilibrium Propagation.

There are various approaches to mitigating the vanishing
gradient problem that do not use layer-skipping connections.
Ioffe and Szegedy (2015) presents a practical method for
normalizing inputs to each layer of a network throughout
training so that the distribution of activation values from
layers is roughly uniform throughout the network, and finds
that this increases performance, providing regularization and
makes the weight initialization less-important. We do not use
this method in our experiments because it seems unlikely to
be biologically-plausible. Glorot and Bengio (2010) presents a
weight initialization scheme for deep neural networks which
makes train faster and more-uniformly across layers; we use this
initialization scheme in our experiments.

Bartunov et al. (2018) explores the present state of
biologically-motivated deep learning. This describes attempts
at biologically-plausible deep learning other than Equilibrium
Propagation, and contextualizes the classification error on
MNIST that we see with networks trained using Equilibrium
Propagation and the small-world-inspired topology we introduce
in this paper. Bengio et al. (2015) discusses the criteria
a biologically-plausible network would need to satisfy, and
provides context to our attempt to solve the vanishing gradient
problem in a biologically-plausible way.

Pedroni et al. (2019) discusses various means of storing
weights in memory in the context of neuromorphic
implementations of spike timing dependent plasticity, which is
similar to equilibrium propagation in that it is a biologically-
inspired learning algorithm that performs weight updates using
local information.

3. IMPLEMENTATION

We implemented1 the Equilibrium Propagation framework
described in Scellier and Bengio (2016) using Pytorch (Paszke
et al., 2019). Like the networks in Scellier and Bengio (2016), our
networks are continuous Hopfield networks with a hard sigmoid
activation function

σ (x) = Max{0,Min{x, 1}}

and squared-error cost function with no regularization term

C = ||y− yd||
2
2,

where y is the network’s output and yd is the target output.
As described in section 5.1 of Scellier and Bengio (2016), we
numerically approximate the dynamics described by Equation
(5) using a forward Euler approximation with step size ǫ,
Nfree iterations of the free phase of training and Nweakly−clamped

iterations of the weakly-clamped phase of training.
We use two performance-enhancing techniques that were

used in Scellier and Bengio (2016): we randomize the sign of β

1https://github.com/jgammell/equilibrium_propagation.

before training on each batch, which was found in the original
paper to have a regularization effect, and we use persistent
particles, where the state of the network after training on a
given batch during epoch n is used as the initial state for
that batch during epoch n + 1. Persistent particles are useful
when simulating equilibrium propagation on a digital computer
because they allow the network to start an epoch closer to the
equilibrium state, thereby reducing the number of iterations
of the forward Euler approximation that are necessary to get
sufficiently close to equilibrium. Note that this technique leads to
higher error rates early in training than would be present with
a more-thorough approximation of the differential equation.
For purposes of computational efficiency we compute training
error throughout training by recording the classification error on
each training batch prior to correcting the network’s parameters,
and we compute the test error by evolving to equilibrium and
evaluating classification error for each batch in the test dataset
after each full epoch of training. In some of our trials (e.g.,
Figure 4) this approach causes the training error to exceed the
test error early on in training because the network has undergone
only part of an epoch of training prior to evaluating error on each
training batch, but a full epoch prior to evaluating error on each
test batch.

In all networks we use the weight initialization scheme
in Glorot and Bengio (2010) for the weights of interlayer
connections; weights connecting a pair of layers with n1
and n2 neurons are taken from the uniform distribution

U[−
√

6
n1+n2

,
√

6
n1+n2

]. We have found empirically that for new

connections added in our topology, for a network withN layers it
works reasonably well to draw all initial weights from U[−a, a]

where a = 1
N

∑N−1
i=1

√

6
ni+ni+1

and ni denotes the number of

neurons in layer i.

3.1. Multilayer Feedforward (MLFF)
Topology
The purpose of this paper is to address the vanishing gradient
problem that is present in networks with amultilayer feedforward
(MLFF) topology in Scellier and Bengio (2016). Therefore, we
have done a variety of trials on networks with MLFF topology
to provide points of reference. The MLFF topology is illustrated
to the left in Figure 1; it consists of layers of neurons with
connections between every pair of neurons in adjacent layers, no
connections within layers, and no connections between neurons
in non-adjacent layers.

In some trials we use a single global learning rate α, and in
other trials we use per-layer rates individually tuned to counter
the vanishing gradient problem. The latter case entails N + 1
unique learning rates αi, i = 1, . . . ,N + 1 for a network with
N hidden layers, where the weights connecting layers i and i + 1
and the biases in layer i have learning rate αi.

3.2. Small-World Inspired (SW) Topology
We generate a network with small-world inspired (SW) topology
by first starting with a MLFF topology as described above in
section 3.1, then applying an algorithm similar to the one
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FIGURE 1 | Illustration of our topological modifications to mitigate the vanishing gradient problem while using a global learning rate. (Left) A network with MLFF

topology as tested in Scellier and Bengio (2016). Observe that the learning rate increases by a factor of 4 each time the distance from the output increases by one

layer. (Right) A network with SW topology, where a subset of connections have been replaced by random layer-skipping connections and per-layer learning rates

have been replaced by a single global learning rate. Red dotted lines denote removed connections and solid black lines denote the layer-skipping connections

replacing them.

Algorithm 1: Algorithm to generate SW topology starting
with a network with MLFF topology.

Input: Network with MLFF topology to modify
Parameter: Probability p with which to replace a given

preexisting connection
Output: Modified network with SW topology

network← input network with MLFF topology
potentialConns←

{pairs of distinct neurons in distinct layers that do not share
a connection}

for existing connection ec in network do

pp←value drawn from uniform distribution U[0, 1]
if pp < p then

remove connection ec in network

randomly draw connection pc from potentialConns

make connection pc in network

remove pc from potentialConns

add ec to potentialConns

described in Watts and Strogatz (1998) to randomly replace2

existing connections by random layer-skipping connections with
some probability p. This is done using Algorithm 1, and the
resulting SW topology is illustrated to the right in Figure 1. In
all of our trials networks with SW topology are trained using a
single global learning rate α.

2We have done a small number of trials in which layer skipping connections are

added without removing an equal number of preexisting connections, and have

observed behavior similar to that resulting from using Algorithm 1.

4. RESULTS

4.1. Evaluation on MNIST Dataset
Here we compare the behavior of networks with the SW topology
presented here to those with the MLFF topology used in Scellier
and Bengio (2016) when training on the MNIST dataset. We are
using this dataset because it allows us to reproduce and extend the
trials in Scellier and Bengio (2016), and because it is non-trivial
to effectively train on yet small enough to allow trials to complete
in a reasonably-short amount of time.

4.1.1. Classification Error
Figure 2 shows the results of comparing the classification error
on MNIST of a network with SW topology to that of a MLFF
network with individually-tuned per-layer learning rates, as in
Scellier and Bengio (2016), and to that of a MLFF network with a
single global learning rate. For all networks we use 3 500-neuron
hidden layers, ǫ = 0.5, β = 1.0, 500 free-phase iterations,
eight weakly-clamped-phase iterations, and train for 250 epochs.
For the SW network we use p = 10% and a global learning
rate α = 0.02. For the MLFF network with per-layer rates we
use learning rates α1 = 0.128, α2 = 0.032, α3 = 0.008, and
α4 = 0.002. For the MLFF network with a single global learning
rate, we use learning rate α = 0.02.

We find that both the SW network and the MLFF network
with per-layer rates significantly outperform the MLFF network
with a single global learning rate during the first 250 epochs of
training. The SW network achieves training and test error rates
similar to those of the MLFF network with per-layer rates, albeit
after around 100 additional epochs of training.

4.1.2. Training Rates of Individual Pairs of Layers
Here we consider the first 100 epochs of the trials described in
section 4.1.1 above and track the root-mean-square correction to
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FIGURE 2 | Performance on MNIST of networks with 3 500-neuron hidden layers. Dashed lines show the test error and solid lines show the training error. In black is a

MLFF network with per-layer rates individually tuned to counter the vanishing gradient problem. In green is the same MLFF network but with a single global learning

rate. In orange is a network with SW topology, p = 10%. Observe that the network with our topology trains almost as quickly as a network with per-layer rates, and

significantly more-quickly than a network with a single learning rate.

FIGURE 3 | Root mean square corrections to weights in different layers while training on MNIST, for networks with 3 500-neuron hidden layers. (Left) A MLFF

network with a single global learning rate. (Center) A MLFF network with per-layer rates individually tuned to counter the vanishing gradient problem. (Right) A

network with SW topology, p = 10%. Observe that the correction magnitudes attenuate significantly with depth in the MLFF network with a single global learning rate,

and that a network with SW topology reduces the severity of the issue, albeit less-effectively than individually tuning a learning rate for each layer. It can be seen that

the RMS correction of H3-OUTPUT differs significantly from that of deeper weights; we have observed more-generally that when we transition to a SW topology the

weights closest to the output train significantly faster than other weights while the training rates of deeper weights cluster together (this can also be seen in Figure 4).

weights connecting each pair of adjacent layers. Figure 3 shows
these values for the three network topologies, recorded after each
batch and averaged over each epoch.

We can clearly see the vanishing gradient problem for
the MLFF network with a single global learning rate (left),
manifesting as attenuation with depth of the root-mean-square
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FIGURE 4 | Behavior during the first 10 epochs of training on MNIST for a SW network with 5 100-neuron hidden layers for various values of p. (Top) In solid and

dashed blue are the training and test error rates after 10 epochs and in red is the log-spread (Equation 10) averaged over the 10 epochs. As expected, both values

decrease as p increases. There appears to be a strong linear correlation between the two, with coefficient of determination r2 = 0.970. This is consistent with our

suspicion that mitigation of the vanishing gradient problem is the reason our topology tends to increase the rate at which layered networks train. (Bottom) Root mean

square corrections to weights in different layers, averaged over the 10 epochs. As expected, the spread of these values decreases as p increases.

corrections to weights. The problem is addressed very-effectively
by the use of manually-tuned per-layer learning rates (center),
and is mitigated to a more-modest extent when we use SW
topology with a global learning rate. It is noteworthy that the
speed of training of these networks as shown in Figure 2 is
commensurate with the uniformity with which their layers train
as shown in Figure 3.

It can be seen that in the network with SW topology the
weights connecting to the output layer train significantly faster
than deeper weights, which cluster together; we have observed

similar behavior in a variety of datasets and network dimensions.
We suspect it has to do with the fact that output neurons connect
directly to the target output, whereas because layer-skipping
connections are not attached to the target output the other layers
must connect indirectly through at least two connections.

4.1.3. Behavior for Varying p

Figure 4 shows the behavior during the first 10 epochs of training
onMNIST for a network with SW topology as p is increased from
0 to 0.727. The network being tested has 5 100-neuron hidden

Frontiers in Computational Neuroscience | www.frontiersin.org 7 May 2021 | Volume 15 | Article 627357

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Gammell et al. Skip Connections for Equilibrium Propagation

layers and is trained with α = 0.015, ǫ = 0.5, β = 1.0, 1,000
free-phase iterations and 12 weakly-clamped-phase iterations.

We see in the top graph that the training and test error rates
after 10 epochs decay exponentially as p increases. The bottom
graph indicates that the RMS corrections to weights become
more-uniform with depth as p increases. Corrections to layers
that do not connect directly to the output layer cluster closer
together as p increases, but it appears that the corrections to

weights connecting directly to the output layer train faster than
deeper weights with a gap that does not appear to decrease with
p; this is similar to the behavior seen in section 4.1.2.

To quantify the spread of the RMS corrections as a single
scalar, we introduce the statistic

log-spread = Std. dev{log10(wl), l = 1, . . . ,N + 1} (10)

FIGURE 5 | Mean absolute value correction matrix over 100 epochs for networks with 5 100-neuron hidden layers. A pixel at position (i, j) corresponds to the

magnitude of the correction to the connection weight between neurons i and j. (Left) A network with MLFF topology and a single global learning rate. (Right) A

network with SW topology, p = 10%. Observe that attenuation of these values with depth is less-significant in the latter than in the former.

TABLE 1 | Comparison of MLFF and SW topologies with various datasets and network architectures.

Dataset Layer sizes Topology L.R. Iterations Error (train/test) Log-spread

Diabetes 10-10-10-10-10-10-1 MLFF 0.01 1000/12 0.0326/0.0441 1.085

Diabetes 10-10-10-10-10-10-1 SW, p = 10% 0.01 1000/12 0.0302/0.0394 0.557

Diabetes 10-10-10-10-10-10-10-10-10-1 MLFF 0.01 5000/18 0.0318/0.0425 2.490

Diabetes 10-10-10-10-10-10-10-10-10-1 SW, p = 10% 0.01 5000/18 0.0230/0.0339 0.442

Wine 13-10-10-10-10-10-3 MLFF 0.01 1000/12 0.680/0.760 1.216

Wine 13-10-10-10-10-10-3 SW, p = 10% 0.01 1000/12 0.467/0.280 0.689

Wine 13-10-10-10-10-10-10-10-10-3 MLFF 0.01 5000/18 0.653/0.720 1.734

Wine 13-10-10-10-10-10-10-10-10-3 SW, p = 10% 0.01 5000/18 0.253/0.560 0.471

MNIST 784-500-500-500-10 MLFF 0.02 500/8 0.0170/0.0310 0.689

MNIST 784-500-500-500-10 SW, p = 10% 0.02 500/8 0.00675/0.0272 0.545

MNIST 784-100-100-100-100-100-10 MLFF 0.015 1000/12 0.156/0.131 0.867

MNIST 784-100-100-100-100-100-10 SW, p = 10% 0.015 1000/12 0.0407/0.0540 0.450

FMNIST 784-100-100-100-100-100-10 MLFF 0.015 1000/12 0.266/0.255 0.862

FMNIST 784-100-100-100-100-100-10 SW, p = 10% 0.015 1000/12 0.152/0.164 0.484

Trials were run for 100 epochs with batch size 20 on MNIST and FMNIST and for 10 epochs with batch size 5 on Diabetes and Wine. Observe that the vanishing gradient problem,

quantified by the log-spread (Equation 10), is significantly improved when using the SW topology over the MLFF topology. Error is given as proportion of classes incorrectly identified for

MNIST, FMNIST, and Wine (classification problems) and as mean absolute value of error for Diabetes (regression problem). Values are bold for emphasis. We are trying to draw attention

to the fact that the log-spread for networks with SW topology are smaller than those for equivalent networks with MLFF topology.
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where N denotes the number of hidden layers in a network
and wl denotes the root mean square magnitude of
corrections to weights connecting the lth and l + 1th
layers from the input, averaged over all epochs of training.
In an ideal scenario, the values of wl would tend to be
approximately the same, leading to log-spread close to 0.
Large disparities in values of wl, leading to a large log-
spread, indicate that some layers in the network are being
trained much more thoroughly than others. The log-spread
is plotted in the top graph alongside the error rate, and
these values can be seen to have a strong linear correlation.
The training error and the log-spread have a coefficient of
determination r2 = 0.970.

4.1.4. Weight Correction Matrix
In Figure 5 we visualize the mean weight correction matrices
resulting from training a MLFF network and a SW network with
5 100-neuron hidden layers as described in section 4.1.3. Training
on a batch yields a correction matrix dW where element dWij

denotes the change to the connection weight between neurons
i and j; here we have recorded a matrix with element (i, j)
containing the average of |dWij| over 100 epochs of training
and displayed it as an image with the color of a pixel at
position (i, j) encoding the magnitude of |dWij| as indicated by
the legend.

As expected, there is attenuation with depth to weight
correction magnitudes in a MLFF network with a single global
learning rate, and transitioning to a network with SW topology
reduces the severity of the problem. An interesting feature of
the SW matrix that is visible upon close inspection is that
layer-skipping connections tend to receive larger correction
magnitudes when they are closer to the output of the network.
Striations can be seen in correction magnitudes, which we
believe correspond to sections of images in the MNIST dataset
that contain varying amounts of information; for example,
for corrections connecting to the input layer, there are 28
striations which likely correspond to the 28 rows of pixels in
an image of a digit, with pixels closer to the edges of the
images typically blank and pixels closer to the centers of the
images typically containing most of the variation that encodes
a digit.

4.2. Evaluation on Various Datasets and
Topologies
Here we evaluate the presence of the vanishing gradient
problem and the effectiveness of our topology at addressing
it on MNIST (LeCun and Cortes, 1998), Fashion MNIST
(FMNIST) (Xiao et al., 2017), and the diabetes and wine
toy datasets distributed in scikit-learn (Pedregosa et al., 2011)
with various network architectures. Our results are shown
in Table 1. For all of these trials we use β = 1.0 and
ǫ = 0.5. While hyperparameters in these trials have not
been thoroughly optimized, the trials serve to illustrate that

the trends we saw on the MNIST dataset in section 4.1
hold for deeper networks and for networks training on 4
different datasets.

We report the training and test error after 100 epochs, as well
as the log-spread (Equation 10). We see that networks with SW
topology, p = 10%, have a consistently smaller log-spread than
networks with a MLFF topology and a single global learning
rate. Here this associated with smaller training and test error
rates, though we have seen for some less-optimized combinations
of hyperparameters that the error rates do not significantly
change. We have observed that all of these networks behave
in ways that are qualitatively similar to the networks explored
in section 4.1.

5. DIRECTIONS FOR FUTURE RESEARCH

There are several directions in which future research could
be taken:

• Evaluating the effectiveness of this approach on hard datasets,
such as CIFAR and ImageNet.
• Evaluating the effect of p on a network’s test error in the

long term.
• Exploring the effectiveness of a network when layer-skipping

connections are used during training and removed afterwards.
• Devise and mathematically justify a weight initialization

scheme for layer-skipping connections.
• Mathematically justify the empirical results we have seen when

using SW topology.
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