
ORIGINAL RESEARCH
published: 22 April 2021

doi: 10.3389/fncom.2021.627567

Frontiers in Computational Neuroscience | www.frontiersin.org 1 April 2021 | Volume 15 | Article 627567

Edited by:

Anthony N. Burkitt,

The University of Melbourne, Australia

Reviewed by:

Thomas Pfeil,

Bosch Center for Artificial

Intelligence, Germany

Aditya Gilra,

Institute of Science and Technology

Austria (IST Austria), Austria

*Correspondence:

Paolo G. Cachi

pcachi@vcu.edu

Received: 09 November 2020

Accepted: 22 March 2021

Published: 22 April 2021

Citation:

Cachi PG, Ventura S and Cios KJ

(2021) CRBA: A Competitive

Rate-Based Algorithm Based on

Competitive Spiking Neural Networks.

Front. Comput. Neurosci. 15:627567.

doi: 10.3389/fncom.2021.627567

CRBA: A Competitive Rate-Based
Algorithm Based on Competitive
Spiking Neural Networks

Paolo G. Cachi 1*, Sebastián Ventura 2 and Krzysztof J. Cios 1,3

1Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States, 2Department of

Computer Science, Universidad de Córdoba, Córdoba, Spain, 3 Polish Academy of Sciences, Gliwice, Poland

In this paper we present a Competitive Rate-Based Algorithm (CRBA) that approximates

operation of a Competitive Spiking Neural Network (CSNN). CRBA is based on modeling

of the competition between neurons during a sample presentation, which can be reduced

to ranking of the neurons based on a dot product operation and the use of a discrete

Expectation Maximization algorithm; the latter is equivalent to the spike time-dependent

plasticity rule. CRBA’s performance is compared with that of CSNN on the MNIST and

Fashion-MNIST datasets. The results show that CRBA performs on par with CSNN,

while using three orders of magnitude less computational time. Importantly, we show

that the weights and firing thresholds learned by CRBA can be used to initialize CSNN’s

parameters that results in its much more efficient operation.

Keywords: rate-based algorithm, competitive spiking neural networks, competitive learning, unsupervised image

classification, MNIST

1. INTRODUCTION

A Competitive Spiking Neural Network (CSNN), is a two-layer feedforward spiking network with
lateral inhibitory connections (Querlioz et al., 2011; Diehl and Cook, 2015; Cachi et al., 2020), that
uses spiking neurons with local Konorski/Hebb learning rule to implement a dynamic temporal
network that exhibits properties often missing in deep learning models. They are pattern selectivity
(spiking neurons learn to detect specific input patterns) (Masquelier and Thorpe, 2007; Nessler
et al., 2009; Lobov et al., 2020), short-/long- term memory (spiking neurons use self-regulatory
mechanism that processes information in different time scales) (Ermentrout, 1998; Brette and
Gerstner, 2005; Pfister and Gerstner, 2006; Zenke et al., 2015), synaptic plasticity (based on local
learning first observed by Konorski and then by Hebb) (Konorski, 1948; Hebb, 1949), modularity
(spiking neurons operate and learn independently) (Zylberberg et al., 2011; Diehl and Cook, 2015),
adaptability, and continuous learning (Brette and Gerstner, 2005; Wysoski et al., 2008).

In spite of these advantages, the performance of CSNN is still modest in comparison with
backpropagation networks (Ciregan et al., 2012; Wan et al., 2013; Diehl et al., 2015; Rueckauer
et al., 2017). Two main problems limit usage of CSNN: its very slow learning and testing time, and
the difficulty of making sense of its dynamic mechanisms. The latter problem is due to the fact that
while it is not easy to analyze just one dynamic mechanism, CSNN uses three types of dynamic
mechanisms in its operation: the spike generating process, the adaptable firing threshold, and the
spike time-dependent plasticity (STDP) learning rule. Importantly, in addition to the difficulty

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2021.627567
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2021.627567&domain=pdf&date_stamp=2021-04-22
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pcachi@vcu.edu
https://doi.org/10.3389/fncom.2021.627567
https://www.frontiersin.org/articles/10.3389/fncom.2021.627567/full

Cachi et al. CRBA-Competitive Rate-Based Algorithm

of concurrently tuning the three dynamic mechanisms,
CSNN has an order of magnitude more hyper-parameters
than backpropagation networks with similar number
of neurons.

CSNN’s slow learning and testing times are due to the fact
that spiking neurons implementation relies on the use of special
purpose hardware, such as a neuromorphic processor, that are
not yet freely available. Because of this, the current approach of
using CSNN is to implement them using time-step simulation
on regular computers, which translates into its very high
computational cost. For example, the CSNN implementation
used in Diehl and Cook (2015) requires more than 12 h to train
400 spiking neurons on MNIST dataset, and around 44 h to
train 1,600 spiking neurons (on Intel core i9 computer with 64
GB of RAM). These two facts make the use of CSNN network
very limited.

With the aim of facilitating wider use and understanding
of CSNN, in this paper we propose a rate-based algorithm
equivalent to CSNN but that is much simple and well-suited
to be run on regular computers. The proposed algorithm,
CRBA, approximates the temporal processing of inputs carried
out by CSNN using a 5-step heuristic (see section 2.3)
based on modeling of its operation. CRBA’s performance
is tested on the MNIST and Fashion-MNIST datasets and
the experiments show that it reduces computational cost
by up to three-orders of magnitude when compared with
CSNN and without reducing accuracy. Additionally, we show
that parameters learned by CRBA can be used to initialize
CSNN’s weights and firing thresholds to make its operation
much faster.

The technical contributions of this paper are summarized
as follows:

• Derivation. Modeling of CSNN operation is described in
section 2.2. It is based on the assumption that the network’s
input is constant during a presentation time, t, and that STDP
rule is accurately approximated by Expectation Maximization
(EM) algorithm (Nessler et al., 2009).
• Model. CRBA operation, equivalent to CSNN, is formulated in

section 2.3. It consists of a 5-step heuristic. First, all neurons
are ranked based on their calculated spiking frequency.
Second, a number of winner neurons are selected from
the ranking result. Third, a number of spikes each winner
neuron generates is calculated. Fourth, the winner neurons’
weights and firing thresholds are updated. Finally, its weights
are normalized.
• Performance. The performance of CRBA is tested on the

MNIST and Fashion-MNIST datasets. The results show that
CRBA performs on par with CSNN, while using three orders
of magnitude less computational time.
• Application. We show experimentally that the parameters

learned by CRBA can be directly used to initialize CSNN’s
parameters that makes it much more efficient at the cost of
a slight reduction of accuracy. This is important as it shows
that CRBA can be used for efficient deployment of CSNN on
neuromorphic computers, in particular those that do not allow
for on-chip learning.

2. METHODS

2.1. Background
We begin with a brief overview of spiking neurons that mimic
the spiking nature of biological neurons and then of the CSNN,
which is a two-layer feedforward spiking network that uses
STDP-like learning rule.

2.1.1. Spiking Neuron Model
In contrast to simple neuron models, which calculate nonlinear
transformation of real-valued inputs f :RP → R, spiking
neurons integrate time-dependent input signals f (t) :X(t) →
y(t), where X(t) = {x1(t), x2(t) . . . xp(t)} and y(t) is a train of
short pulses called spikes (Koch and Segev, 1998; Kandel et al.,
2013; Gerstner et al., 2014). Although different spiking neuron
models have been developed, to account for different levels of
biological similarity, here we focus on the Integrate and Fire
spiking neuron model (Gerstner et al., 2014), shown in Figure 1.

The input signals xi(t) are processed via three consecutive
transformations to produce an output signal y(t). First, the input
signals are linearly combined into a driving signal I(t). The linear
combination is accomplished using intermediate subsystems,
si(t), that scale the input signal, si(t) = wiδ(t), where wi defines
the scaling factor and δ(t) is the Dirac function, or transform it
via an exponentially decay system si(t) = wie

t/τs , where τs is a
time decay constant.

Second, the driving signal I(t) is integrated into an
intermediate membrane potential signal u(t). The membrane
potential is built as:

du

dt
=

f (u)

τf
+

g(u)

τg
I(t) (1)

where f (u) and g(u) are linear/nonlinear functions of the
instantaneousmembrane potential value u, and τf and τg are time
decaying constants. f (u) can be a linear function f1(u), a quadratic
f2(u), or an exponential f3(u) function:

f1(u) = −(u− ur) (2)

f2(u) = −(u− ur)+1T exp
(u− ϑ)

1T
(3)

f3(u) = a0(u− ur)(u− uc) (4)

where ur represents a resting membrane potential value, 1T the
sharpness factor, ϑ the firing threshold variable/constant, and a0
and uc are constants with a0 > 0 and uc > ur . The term g(u) is
used to couple the driving signal I(t) into themembrane potential
function. It follows direct contribution g(u) = 1 (Querlioz et al.,
2011) or conductance-based contribution g(u) = (ui − u) (Diehl
and Cook, 2015), where ui is an input reversal potential constant.

Third, the membrane potential u(t) is pass-through a spike
generation mechanism, where spikes are produced every time tf

the membrane potential value crosses, from below, a fixed or an
adaptive firing threshold, ϑ . If the firing threshold is adaptive,
its value follows an exponential decay process with constant

Frontiers in Computational Neuroscience | www.frontiersin.org 2 April 2021 | Volume 15 | Article 627567

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Cachi et al. CRBA-Competitive Rate-Based Algorithm

FIGURE 1 | Integrate and fire spiking neuron model.

FIGURE 2 | Competitive spiking neural network topology.

increment of α after each spike:

dϑ

dt
=

ϑ0 − ϑ

τϑ0

+
∑

tf

αδ(t − t
f
i) (5)

where ϑ0 is a threshold offset value, and τϑ0 a time decay
constant. After each spike is generated, a reset signal is used to
reset the membrane potential to ureset and hold it fixed for time tr .

2.1.2. Competitive Spiking Neural Network
A CSNN is a two layer spiking neuron network that implements
the winner-takes-all learning mechanism, where spiking neurons
compete against each other for the right to represent an input
X which is closest to their synapse value (Rumelhart and Zipser,
1985; Shin et al., 2010; Querlioz et al., 2011; Diehl and Cook,
2015), where X ∈ R

p. Figure 2 shows CSNN’s topology.
The first layer, the input encoding layer, transforms the p-

dimensional input vector X into p spiking signals xi(t). Although
different encoding methods can be used, the most common
one uses the Poisson’s distribution for implementing spike
rate encoding.

After encoding, the resulted signals excite, in a fully connected
fashion, via normalized learnable synapse connections, m
threshold-adaptable spiking neurons. These synapses are used as
convolutional kernels, sij(t) = wijδ(t), in which the weight values
wij are adjusted/learned following a normalized version of the
STDP learning rule (Gerstner and Kistler, 2002; Morrison et al.,
2008), defined in Equation (6).

1wij =

{

α+ exp(−1ti/τ+) if 1tij > 0

−α− exp(1ti/τ−) if 1tij ≤ 0
(6)

The update of the synapse’s weight i for neuron j is calculated
based on the exponentially decaying function of time difference
between the pre- and post-synaptic spikes 1tij. The parameters
α+ and α− are constant learning rates, and τ+ and τ− are
exponential decay constants. The normalization is done at the
individual neuron level using Equation (7).

w′ij = wij
λ

∑

i wij
(7)

where w′ij is the resulting normalized weight for connection i

of neuron j, and λ is the per-neuron total connection constant
(Gerstner and Kistler, 2002; Liang et al., 2018).

In addition to the input connections, the spiking neurons
are connected to each other by fixed recurrent inhibitory
connections, known as lateral inhibition, with the purpose of
feedback regulation (Querlioz et al., 2013; Diehl and Cook, 2015).

CSNN’s output is the m-dimensional vector Y that shows the
number of spikes each neuron emits during presentation of a
given input.

2.2. Rate-Based Model of Competitive
Spiking Neural Networks
Here we perform analysis of the temporal operation of CSNN.
We start by describing operation of CSNN with only one spiking
neuron in its one only spiking layer. Next, we analyze a general
case with multiple spiking neurons in its layer. We finish with
discussion of the variable firing threshold mechanism and STDP
learning rule.

Frontiers in Computational Neuroscience | www.frontiersin.org 3 April 2021 | Volume 15 | Article 627567

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Cachi et al. CRBA-Competitive Rate-Based Algorithm

2.2.1. Operation of a Single Neuron
With only one neuron in the spiking layer, this neuron receives
excitatory input from time-dependent signals xi(t). Using a
neuron with linearly decaying term f (u) = −(u− ur) and direct
input connection g(u)/τg = 1, with p input signals xi(t) through
direct synapse connections si(t) = wiδ(t), we expand Equation
(1) to express change of the neuron’s membrane potential u(t) as:

du(t)

dt
=

(ur − u(t))

τu
+

p
∑

i=1

wixi(t) (8)

which represents a linear system with impulse response equal to
h(t) = e−t/τu (Gerstner et al., 2014). The solution for membrane
potential for time t, in absence of the firing threshold, resting
potential equal to zero and input signal xi(t) = 0 for t < 0, is
found by convolution of the driving signal, I(t) =

∑p
i=1 wixi(t),

and the neuron’s impulse response, h(t), expressed by u(t) =
I(t) ∗ h(t). This is solved as:

u(t) = I(t) ∗ h(t) =

p
∑

i=1

wi

∫ t

0
e−s/τuxi(t − s)ds (9)

We can approximate a solution for Equation (9) by considering
the input driven signal to be a spiking train signal with constant
frequency rate fi = βxi (instead of the Poisson distribution
resulting spiking signal). Then the product e−s/τuxi(t− s) reduces
to a exponential decaying function sampled with frequency rate fi
expressed as e−n/fiτu , for n = 0, 1, 2, . . ., and the integral reduces
to summation over the N number of spikes during time t, where
N is calculated as N = ⌊tfi⌋.

u(t) ≈

p
∑

i=1

wi

N−1
∑

n=0

e−n/fiτu (10)

Equation (10) can be approximated by expanding the exponential
summation

∑N−1
n=0 e−n/fiτu to (1− e−n/fiτu)/(1− e−n/fiτu) and by

using 1/(1− e−1/fiτu) ≈ fiτu, which was found experimentally by
analyzing the behavior of 1/(1− e−1/fiτu) as fiτu increases.

u(t) ≈

p
∑

i=1

wifiτu(1− e−t/τu) = τuβ(1− e−t/τu)

p
∑

i=1

wixi (11)

The resultant solution is an increasing function, with time
constant τu, toward a steady state value at τuβ

∑p
i=1 wixi. The

summation term represents dot product between the input
vector, X, and the synapse connection vector, W. Thus, the
solution for the membrane potential can be written as:

u(t) ≈ τuβ〈X,W〉(1− e−t/τu) (12)

where 〈X,W〉 represents dot product between vectors X and
W. With one spiking neuron, and without a firing threshold,
the increase of the membrane potential depends on the level of
similarity between the input and its current synaptic weights.
Note that without a firing threshold, the synaptic weight stays

constant during the interval of time t. Consequently, the
increase in the membrane potential remains constant for the
time interval t.

If a firing threshold, ϑ , in the range between ur and
τuβ〈X,W〉, is used, the time tf at which a neuron generates a
spike is given by:

tf = τu[log(τuβ〈x,w〉)− log(τuβ〈x,w〉 − ϑ)] (13)

which still depends on the level of similarity between the vectors
X andW, and the firing threshold value ϑ .

2.2.2. Operation With Multiple Neurons
In the case ofm neurons in the spiking layer, each neuron receives
input not only from the encoded signals, xi(t), but also from
recurrent connections—outputs of all other spiking neurons
yk(t). Assuming that the encoded signals are connected through
direct excitatory connections, si(t) = wex

i δ(t), and the recurrent
signals through the inhibitory connections, sk(t) = −w

in
k

δ(t), the
membrane potential change for neuron j is expressed as:

duj(t)

dt
=

(ur − uj(t))

τu
+

p
∑

i=1

wex
ij xi(t)−

m
∑

k 6=j

win
kjyk(t) (14)

This is similar to Equation (8), the difference being that now the
driving signal is processed as a linear combination of excitatory
and inhibitory terms. As the membrane potential is a linear
system, Equation (14) is solved by adding the individual solutions
of each contribution term.

uj(t) = uexj (t)+ uinj (t) (15)

where uexj (t) is the membrane potential when only the excitatory

signals are used, and uinj (t) for the inhibitory signals. The solution

for the excitatory term has been already shown in Equation (12).
To solve for the inhibitory term, we use the fact that the recurrent

signals, yk(t), are spiking signals of the form δ(t − t
f

k
), where t

f

k
is the firing time. As each impulse that passes throughout the

system h(t) transforms into e−(t−t
f

k
)/τuµ(t − t

f

k
), where µ(t − t

f

k
)

is the step function starting at the firing time t
f

k
, the solution for

the inhibitory term is calculated as:

uinj (t) =

m
∑

k 6=j

win
kj

∑

t
f

k

e−(t−t
f

k
)/τuµ(t − t

f

k
) (16)

where the first summation runs over all inhibitory synapses k and

the second over all the firing times, t
f

k
, of synapse k. The final

solution for the membrane potential of neuron j is expressed as:

uj(t) = τuβ〈X,W
ex
j 〉(1−e

−t/τu)−

m
∑

k 6=j

win
kj

∑

t
f

k

e−(t−t
f

k
)/τuµ(t− t

f

k
)

(17)
Two terms control the change of the membrane potential in
each neuron: a growing function (first term), that pulls the

Frontiers in Computational Neuroscience | www.frontiersin.org 4 April 2021 | Volume 15 | Article 627567

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Cachi et al. CRBA-Competitive Rate-Based Algorithm

membrane potential up, and a regulatory function (the second
term), that pulls the membrane potential down based on the
previous (historic) spiking record of the recurrent signals (output
spiking times). The spiking times are not given and are to be
found progressively. Assuming that the times of all past recurrent

spikes are known, t
fprev
j , the time at which each neuron j will

generate a spike is found by:

t
fnext
j : uj(t) = ϑj

∣

∣

∣

X,Wex
j ,Win

j ,tfprev
(18)

Since the firing of a neuron affects the membrane potential
of all other neurons, only the neuron that spiked first updates
the membrane potentials of all other neurons. After that, the
membrane potential of the neuron that fired is set to ur and its

recorded recurrent signals are emptied, t
fprev
j = 0.

2.2.3. Learning Mechanisms
As shown in section 2.1.2, CSNN uses two types of learning
mechanisms: adaptive firing threshold (Equation 5), and STDP
rule (Equation 6). The adaptive firing threshold is used to
establish the self-regulatory process that penalizes close firings
of neurons. It depends directly on elapsed time (it decreases
exponentially toward a resting value) and the neuron’s firing
events (it is increased by a constant value every time the neuron
fires). In order to include the dynamics of the adaptive firing
threshold into our model, we update Equation (18) by replacing
ϑj for a time-dependent implementation ϑj(t) = ϑ0e

−t/τϑ :

t
fnext
j : uj(t) = ϑ0e

−t/τϑ

∣

∣

∣

X,Wex
j ,Win

j ,tfprev
(19)

where ϑ0 is the initial firing threshold value, and τϑ is the
exponential decay constant. We also consider ϑ constant during
calculation of the firing times (since τϑ is normally much longer
than the input presentation time) and update it only during firing
events, which brings us back to Equation (18).

STDP enforces neuron affinity to similar input patterns. Every
time a neuron fires, its synaptic connections are updated so the
neuron will respond faster to similar future inputs. The synapse
updates are based on the relative time difference between the
receiving and the generated spikes. This mechanism was shown
to be equivalent to the Expected Maximization (EM) algorithm
(Nessler et al., 2009, 2013), which is an iterative procedure
used for density model estimation of unlabeled data. At each
iteration probability distribution functions are updated based on
the current distribution of the given samples (sum of the samples
weighted by its posterior probability). If normal distribution is
used, the mean and variance update for unknown source j are
calculated by:

µ′ =

n
∑

i=1

P(j | x(i),µ,6)

P(j)
x(i) (20)

6′j,k =

n
∑

i=1

P(j | x(i),µ,6)

P(j)
(x

(i)
j − µj)(x

(i)
k
− µk) (21)

where P(j | x(i)) is the posterior probability of the source j given
sample x(i) and current distribution parameters µ and 6. In
the framework of CSNN, each spiking neuron (characterized by
its weight vector W) represents one unknown source, and the
parameter’s update is based on the activity rate induced by the
input x weighted by its probability of belonging to the spiking
neuron. The EM algorithm can be simplified if the variance value
is fixed to 1 and the posterior probability is discretized (0 or 1).
Then, the update at each iteration is given by:

µ′j =
1

r

r
∑

i=1

x
(i)
j (22)

where the summation operates only on the r number of samples
that belong to neuron j. This is similar to the K-means algorithm.
One more simplification is achieved by considering a sequential
update process to accommodate for CSNN operation (sequential
processing of samples):

µ′j = µj + αx
(i)
j (23)

where α is an updating constant.

2.3. CRBA—A Competitive Rate-Based
Algorithm
As we have seen, CSNN’s operation can be modeled by a series of
phases in which the change of the neuron’s membrane potential,
firing threshold, and connection weights are increased/decreased
based on a neuron becoming, or not, a winner. Since the winner
neuron, and the firing threshold and weight update at each phase
are found by using Equations (18), (19), and (23), designing
CRBA is straightforward and consists of these steps:

Step 1. Rank all neurons depending on their firing time. From
Equations (17) and (18), we see that the ability of a
neuron to fire depends on two terms: the excitatory
term, controlled by the level of similarity between the
neuron connection weights and the input sample, and
the inhibitory term that is controlled by its record
of all previous firings. Assuming that the inhibitory
connections in CSNN are fixed and evenly distributed
across all neurons, and that the firing threshold and
weight updates can be neglected during a sample
presentation (t << τϑ and weight update << ϑ),
it is possible to approximate in CRBA the competition
process during each sample presentation using ranking
of the neurons based on their spiking frequency
calculated as the dot product between X and the neurons’
weightsW divided by the current firing threshold values.

Step 2. Select a winner neuron. Firing of neurons depends
on the balance between the inhibitory and excitatory
connections. If strong inhibition is used, only one neuron
fires. At the time it fires, the inhibitory signal it sends
to all other neurons strongly depresses their excitatory
input which prevents them from firing for the remaining
time of the sample presentation. On the other hand,
when inhibition is weaker (soft inhibition), more than

Frontiers in Computational Neuroscience | www.frontiersin.org 5 April 2021 | Volume 15 | Article 627567

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Cachi et al. CRBA-Competitive Rate-Based Algorithm

one neuron can fire (e.g., three fastest neurons) because
the first spike event does not produce strong enough
inhibition to completely shut down the other neurons.

Step 3. Calculate the number of spikes each winner neuron
generates. This number can be calculated by using its
frequency rate (from Step 1) scaled by a coefficient vector
C of the form [c1, c2, ..., cn] where c is a coefficient based
on the rank with c1 > c2 > ... > cn. For example,
the coefficient vector C for three winner neurons may
look like [1.0, 0.3, 0.1]. We select the coefficient values
ci for n number of winner neurons using ci = e−5i/n,
which simulates a typical distribution of neuron firings
observed in CSNN during a sample presentation.

Step 4. Update neuron’s firing thresholds and weights. In this
step the firing threshold and connection weights are
updated for all winner neurons. This is done by first
calculating the number of spikes the winner neurons
may generate based on their ranking scores (Step 1).
After that, the firing thresholds and weights of the
winner neurons are updated using a constant increase
(Equation 23), scaled by the predicted number of spikes.
The non-winner neurons’ firing thresholds are decreased
based on an exponential decay function (specified before
Equation 19).

Step 5. Weight normalization. The neurons’ weights are
normalized using Equation (7) (see section 2.1.2). This
operation is done to limit the excitatory input each
neuron receives. It also spreads the update through all its
weights as the individual increases are averaged across
all connections.

The pseudo-code for CRBA is shown as Algorithm 1.

Algorithm 1: Competitive Rate-based Algorithm (CRBA)

1: Input: D,W0,m, n, t, λ,αs,αw,αϑ ,ϑ0,ϑr , τϑ ,C
2: Output:W,ϑ
3: W ←W0, ϑ ← ϑ0 · ones(m)
4: for X in D do

5: freq← 〈X,W〉
ϑ

6: winners← argsort(freq)[: n]
7: spikes← αs · t · freq[winners] · C
8: W[winner]←W[winner]+ αw · spikes · X
9: W[winner]← λ

W[winner].sum()
·W[winner]

10: ϑ[winner]← ϑ[winner]+ αϑ · spikes
11: ϑ ← ϑ +

ϑr−ϑ
τϑ

12: end for

The dataset, D = {X1,X2, ...Xp}, initial weight matrix, W0,
and eleven hyper-parameters: m (number of spiking neurons), n
(number of winner neurons per sample presentation), T (sample
running time), λ (total input weight), αs/w/ϑ (scaling factors for
number of spikes, weight update and firing threshold update), ϑ0

(initial firing threshold value), ϑr (firing threshold resting value),
τϑ (firing threshold time decay constant), and C (scaling vector)
are the inputs to the algorithm.

In line 3 the neuron’s weight and firing threshold values
are initialized as the p × m dimensional matrix W and m-
dimensional vector ϑ , respectively. The FOR loop presents each
input sample X. First, winner neurons are found based on the
spiking frequency rate (lines 5 and 6). Then the frequency is
scaled by vector C and the coefficient αs to compute the number
of spikes each winner neuron generates during the presentation
time t (line 7). After that, the estimated number of spikes is used
to update the weight of the winner neuron (line 8 and 9) and
its firing threshold value (line 10). Line 11 implements the firing
threshold’s exponential decay.

2.3.1. Parameter Selection
We use CSNN operation as guidance for choosing CRBA’s hyper-
parameters. At initialization, CRBA internal parameters (t, ur , λ,
ϑ0, and ϑr and τϑ) are set with values that are the same as the ones
used in CSNN, and the scaling factors (αs, αw, and αϑ) are chosen
in such a way that the predicted number of spikes and the weight
and firing threshold updates for the winner neurons match the
ones in CSNN (around 30 spikes for the winner neuron, and 0.3
and 2 mV for weight and firing threshold increases, respectively,
per sample presentation).

Regarding selection of the number of winner neurons, it has
been shown that the stronger the inhibition in CSNN the better it
performs (1–3 winner neurons during each sample presentation)
(Diehl and Cook, 2015). Our experiments have shown that CRBA
mimics this characteristic and that it performs best when only
one winner neuron is selected (see section 3.5).

To initialize the weights, W, we use sample-based
initialization that was shown to reduce the number of samples
needed for learning (Cachi et al., 2020).

2.3.2. Operation
CRBA approximation of CSNN operation is based on the
interplay of three mechanisms: neuron competition, variable
firing threshold, and weights update. The difference is that CRBA
uses only one loop iteration (five steps) per sample instead of
the dynamic operation used in CSNN. The details of how these
mechanisms interplay are as follows. First, at initialization, every
neuron is assigned a weight vector W and a firing threshold
value ϑ to be used during sample presentations. The closer
the sample input vector, X, is to a neuron’s weight vector, W,
the stronger is its calculated spiking frequency (line 5) and it
has higher chance to be selected as a winner neuron (line 6).
Note that at initialization the division operation to calculate the
spiking frequency (line 6) is irrelevant since all neurons start
with the same firing threshold value, ϑ (from section 2.3.1). After
ranking, only the winner neurons’ weights and firing thresholds
are updated. The weight update (line 8) modifies the W so it
moves closer to the presented input sample X. This makes the
neuron more selective to the class X belongs to (its spiking
frequency for a sample of the same class will be also high), since it
is assumed that samples from the same class come from the same
distribution, in the P dimensional space. The firing threshold
update has the opposite effect (line 10). Higher firing thresholds
reduce the calculated spiking frequency. This process counteracts
the weight update and has the effect of controlling that the

Frontiers in Computational Neuroscience | www.frontiersin.org 6 April 2021 | Volume 15 | Article 627567

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Cachi et al. CRBA-Competitive Rate-Based Algorithm

same neurons are not continuously becoming winners. This
controlling effect is further strengthened by using the number
of spikes to scale the firing threshold update (line 10) and by
reducing the non-winning neurons’ firing thresholds (line 11).
The interplay between weights and firing thresholds defines a
convergence behavior of the system (time at which the positive
effect of the weight update and negative effect of the firing
threshold update cancel each other). After a number of samples
are presented, it is expected that the mean firing threshold of all
neurons increases and the calculated number of spikes decreases.
Regarding the neuron’s weights, they learn class patterns as they
move toward the centroid of a cluster of the samples in the P
dimensional space.

2.3.3. Usage
CRBA, similarly to CSNN, can be used for unsupervised
classification. It is done in two phases: learning and testing. The
learning phase uses input data to, first, tune the competitive
neurons in a completely unsupervised way (i.e., find weights and
firing thresholds using Algorithm 1) and, second, assign labels to
the already tuned neurons based on the per-class neuron activity
(using labeled samples). In the testing phase, the already labeled
neurons are used to predict the labels for new unseen samples
using a maximum-voting scheme (Querlioz et al., 2011; Diehl
and Cook, 2015; Hazan et al., 2018; Cachi et al., 2020), or using
an add-on classifier, such as a fully connected feedfoward neural
network (Demin and Nekhaev, 2018; Kheradpisheh et al., 2018;
Krotov and Hopfield, 2019).

After CRBA final parameters (the weights and firing
thresholds) are found they can be used to initialize the
corresponding parameters of CSNN. The weights are transferred
to CSNN without any modification because both networks
use the same normalization operation. A re-scaling operation,
however, is required for transferring the firing threshold since
CRBA generates higher threshold values than CSNN (see
section 3.1.2). Additionally, it was found that the stability of
CSNN+CRBA depends on the values of the firing thresholds.
Small firing threshold values allow for generation of more
spikes during sample presentations, which results in considerable
changes of the weights and lower accuracy. High firing threshold
values have the opposite effect: they reduce the number of spikes
and small changes of the weights, which makes the network
stable. Specifically, the thresholds found by CRBA were re-scaled
tomatch the thresholds of CSNN trained with 200 K samples (i.e.,
threshold were re-scaled to the range of 35–60 mV).

3. RESULTS

The performance of CRBA is tested on the MNIST (LeCun and
Cortes, 2010) and Fashion-MNIST (Xiao et al., 2017) datasets
(each dataset contains 60 K training and 10 K testing samples
of size 28 × 28 pixels). The experiments are divided into five
parts. First, we analyze learning performance of CRBA (in terms
of accuracy, and firing threshold and weight evolution) and
compare it with performance of CSNN’s implementation that
uses sample-based initialization of weights (Cachi et al., 2020)
(details are provided in the Supplementary Material). Second,

TABLE 1 | CRBA’s hyper-parameters.

m 100, 400, 1,600

n 1

T 350

λ 1

αs 10

αw 0.00005

αϑ 0.05

ϑ0 20

ϑr −10

τϑ 10^5, 10^6, 10^7

we analyze usage of weights and firing thresholds found by
CRBA to initialize CSNN (CSNN+CRBA). Third, we compare
testing accuracy of CRBA, CSNN, and CSNN+CRBA. Fourth,
we compare the algorithms’ running times and, lastly, CRBA is
compared with unsupervised spiking neural networks. To select
the hyper-parameters the process described in section 2.3.1 is
used and they are listed in Table 1.

All the presented results are the average of 10 runs using 100,
400, and 1,600 neurons, with maximum-voting inference method
(Diehl and Cook, 2015), for both CRBA and CSNN (on an Intel
Core i9-9900K machine with 64 GB RAM). All the code is posted
at GitHub1.

3.1. CRBA
3.1.1. Accuracy on Validation Data During Learning
We use a 10 K validation set, drawn from the learning dataset,
to show the evolution of learning accuracy after 10 K sample
presentations, in the range from 0 to 200 K (i.e., 10 K, second
10 K, third 10 K, etc.). Figure 3 plots validation results for CRBA
and CSNNusing (A) 100 neurons, (B) 400 neurons, and (C) 1,600
neurons on MNIST data. Figure 4 shows the same experiments
for Fashion-MNIST data.

Figures 3, 4 show that CRBA performs on par or slightly
better than CSNN, for all configurations, on both datasets. At
the beginning, it starts with lower accuracy than CSNN, however,
the difference quickly decreases and at after around 15 K sample
presentations it achieves a higher accuracy. After 50 K samples
both curves reach a plateau. Note that both algorithms achieve
better accuracy as more neurons are used, however the gain when
using 1,600 neurons instead of 400 neurons is smaller than the
ones observed when switching from 100 to 400 neurons.

3.1.2. Network Dynamics
We compare the evolution of CRBA’s number of spikes of the
winner neuron, firing threshold and connection weights during
learning with that of CSNN’s. Figures 5, 6 show the number of
spikes and firing threshold, respectively, for CRBA and CSNN
using 100 (A), 400 (B), and 1,600 (C) neurons on MNIST data.
Note that Figure 6 plots the average firing threshold for all
neurons (bold line) and the area surrounding the minimum and
maximum firing threshold is shown in colors; it also uses two

1https://github.com/PaoloGCD/Rate-based-CSNN

Frontiers in Computational Neuroscience | www.frontiersin.org 7 April 2021 | Volume 15 | Article 627567

https://github.com/PaoloGCD/Rate-based-CSNN
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Cachi et al. CRBA-Competitive Rate-Based Algorithm

FIGURE 3 | CRBA and CSNN accuracy on MNIST data vs. number of samples using (A) 100 neurons, (B) 400 neurons, and (C) 1600 neurons.

FIGURE 4 | CRBA and CSNN accuracy on Fashion-MNIST data vs. number of samples using (A) 100 neurons, (B) 400 neurons, and (C) 1600 neurons.

FIGURE 5 | Number of spikes vs. number of samples on MNIST data using (A) 100 neurons, (B) 400 neurons, and (C) 1600 neurons.

FIGURE 6 | Firing threshold (mV) vs. number of samples on MNIST data using (A) 100 neurons, (B) 400 neurons, and (C) 1600 neurons.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 April 2021 | Volume 15 | Article 627567

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Cachi et al. CRBA-Competitive Rate-Based Algorithm

FIGURE 7 | CRBA and CSNN weights comparison after presenting 0 through 200 K input samples; each window is constructed by displaying the weight vectors.

FIGURE 8 | CSNN+CRBA, CSNN and CRBA (dashed lines) accuracies vs. number of input samples on MNIST dataset using (A) 100 neurons, (B) 400 neurons, and

(C) 1600 neurons.

different y-ax scales: on the left-hand side for CRBA and on the
right-hand side for CSNN.

We see that the evolution of the number of spikes and firing
threshold for both CSNN and CRBA follow a similar pattern:
exponential decrease in the number of spikes and increase of
the firing threshold. Specifically, we observe that the number of

spikes after presentation of 200 K samples in CRBA is about 2.5,
3, and 6 for 100, 400, and 1,600 spiking neurons while in CSNN

it is 11, 7, and 2. Regarding the firing threshold, the average for

CRBA increases to around 300mV for 100 and 400 neurons used,
and to 150 mV for 1,600 neurons while CSNN’s firing threshold
stays below 50 mV. The explanation for CRBA reaching higher

firing threshold is that CRBA uses a simple linear equation to
determine the number of spikes, while CSNN uses an exponential
membrane potential function.

Figure 7 compares the weight vector, W, of 25 neurons (the
first 25 out of 400) initialized with sample values at 0, 50, 100, and
200 K sample presentations on MNIST data, for both CRBA and
CSNN. To visualize the weights in a visual way, all 25 W vectors
(one for each neuron) are displayed as windows of 28× 28 pixels,
each corresponding to part of the image where a digit is displayed
(e.g., in red boxes).

We see that the evolution of weights is similar for CRBA and
CSNN. After 50 K sample presentations, weights in CRBA and

CSNN show a considerable difference from their initial weights
(e.g., see the red boxed weights that most changed). This happens
because at initialization the neurons are just beginning to learn
to represent different classes. There are no major changes in the
weights from 50 to 200 K (only the first neuron in CRBA changed
from an 8 to a 1). However, with more sample presentations we
see that the values are more pronounced; see the green framed
weight that changed from a blurred “2” to a better defined one
for CRBA, and “3” for CSNN.

3.2. CSNN+CRBA
Here we test performance of using parameters found by CRBA
(weights and firing thresholds) when they are used to initialize
CSNN parameters; we call this configuration CSNN+CRBA.
Figures 8, 9 show accuracies during 4 epochs of training for
CSNN+CRBA (we used parameters found by CRBA using 200
K learning samples), for 100 (A), 400 (B), and 1,600 (C) neurons
at different moments of training on MNIST and Fashion-MNIST
datasets. CSNN results of training with 200 to 400 K samples and
CRBA accuracy after using 200K training samples (dashed lines)
are also shown for comparison.

We see that CSNN+CRBA immediately starts with high
accuracy and remains stable (does not increase nor decrease)
with further training. CSNN+CRBA shows a slight reduction

Frontiers in Computational Neuroscience | www.frontiersin.org 9 April 2021 | Volume 15 | Article 627567

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Cachi et al. CRBA-Competitive Rate-Based Algorithm

FIGURE 9 | CSNN+CRBA, CSNN and CRBA (dashed lines) accuracies vs. number of input samples on Fashion-MNIST dataset using (A) 100 neurons, (B) 400

neurons, and (C) 1600 neurons.

TABLE 2 | Testing accuracy on MNIST data.

Number of samples

Neurons Method 0 2 K 5 K 10 K 20 K 50 K 100 K 200 K

100

CSNN 74.52 82.97 84.96 85.17 85.38 86.17 86.93 86.19

CRBA 60.92 82.01 83.83 85.83 87.31 88.49 88.96 89.29

CSNN+CRBA 72.92 83.10 84.23 85.30 86.27 86.96 87.20 87.49

400

CSNN 82.44 88.37 89.42 90.42 90.97 91.87 91.99 92.11

CRBA 70.35 84.92 89.06 89.76 91.65 92.77 93.35 93.95

CSNN+CRBA 79.87 87.02 88.81 89.90 90.93 91.86 92.45 92.91

1,600

CSNN 83.19 86.23 88.89 91.36 92.75 93.38 93.50 93.84

CRBA 74.22 87.39 89.90 91.47 93.02 94.41 95.04 95.44

CSNN+CRBA 78.30 86.76 89.42 90.86 92.76 94.00 95.01 95.48

Bold values denote the highest accuracies achieved at the specified number of training samples for each configuration (100, 400 and 1600 neurons).

of accuracy, when compared with CRBA, but it is still
higher than normally trained CSNN. These two observations
show that by initializing CSNN with parameters learned by
CRBA we avoid very long learning time of CSNN and still
achieve better accuracy. This approach will become very useful
in the near future when CSNN can be implemented on
neuromorphic processors that do not have the ability to perform
on-chip learning.

3.3. Accuracy on Test Data
Tables 2, 3 compare accuracy of CSNN, CRBA, and
CSNN+CRBA for MNIST and Fashion-MNIST test datasets,
after training with 0, 2, 5, 10, 20, 50, 100, and 200 K samples.
CSNN+CRBA was initialized using parameters found by
CRBA using the just mentioned number of samples (no
additional training of CSNN+CRBA). We did it because
additional training does not significantly improve accuracy
(see section 3.2).

We can draw two conclusions from these results. First, similar
to validation accuracy shown above, CRBA performs better (1–
8%) than CSNNwhen trained with 20K ormore samples. Second,
CSNN+CRBA has slightly lower accuracy (0.5–2%) than CRBA,
but higher (0.5–6%) than pure CSNN, in all configurations.
The former phenomenon has been also observed by others, for
instance when deep learning algorithms are used to find weights
for networks of spiking neurons (Diehl et al., 2015; Rueckauer
et al., 2017).

3.4. Running Time
CRBA was designed with the goal of significantly improving
the run time of CSNN. Table 4 shows comparison of running
times of CRBA with CSNN implementations using 100, 400, and
1,600 neurons at one epoch of learning (using 50 K samples) on
MNIST dataset.

Note that CRBA requires only about 4, 13, and 60 s while
CSNN implementations require more than 7, 8, and 49 h for
the three different numbers of neurons used. This result was
expected since CRBA processes each input in just one iteration,
while CSNN runs each sample using 3,500 time steps (350 ms
with 0.1 ms time step).

Using CRBA-found weights in CSNN avoids entirely its
learning phase, which means that CSNN can be used directly
for making predictions. Recall, as described above and shown
in Table 4, that both CRBA and CSNN operations consist of
two phases: learning (tuning the network parameters and neuron
labeling) and testing. Obviously, the testing time in CSNN cannot
be avoided but major saving comes from no need of tuning its
parameters during learning, especially when larger size of the
network is used, such as 1,600 neurons. CSNN+CRBA testing still
requires orders of magnitude more time than CRBA.

3.5. CRBA With Different Number of Winner
Neurons
A general method for constructing multi-layer CSNN
architectures is yet to be developed. However, since the

Frontiers in Computational Neuroscience | www.frontiersin.org 10 April 2021 | Volume 15 | Article 627567

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Cachi et al. CRBA-Competitive Rate-Based Algorithm

TABLE 3 | Testing accuracy on Fashion-MNIST data.

Number of samples

Neurons Method 0 2 K 5 K 10 K 20 K 50 K 100 K 200 K

100

CSNN 65.16 67.66 65.37 65.89 64.47 65.59 65.54 65.63

CRBA 51.58 69.82 70.69 71.39 71.98 72.42 73.45 73.95

CSNN+CRBA 52.51 70.02 70.44 71.27 71.57 71.96 71.91 71.54

400

CSNN 71.04 74.95 75.35 75.61 75.68 76.05 76.66 77.25

CRBA 53.56 72.71 75.02 76.22 77.67 78.90 79.23 79.54

CSNN+CRBA 51.62 70.63 74.73 75.92 77.62 78.71 79.03 79.11

1,600

CSNN 69.35 73.14 75.04 77.10 78.49 78.96 78.58 78.56

CRBA 57.63 73.62 76.97 77.78 78.93 80.71 81.43 82.13

CSNN+CRBA 36.82 54.65 61.26 65.41 70.39 76.79 80.56 81.49

Bold values denote the highest accuracies achieved at the specified number of training samples for each configuration (100, 400 and 1600 neurons).

TABLE 4 | Running time comparisons.

Time (sec)

Neurons Method
Learning

Testing

Parameter tuning Neuron labeling

100

CSNN 14,785.9 9,865.4 1,647.9

CRBA 3.9 0.3 0.1

CSNN+CRBA 3.9 0.3 1,628.0

400

CSNN 18,134.5 10,150.6 1,725.5

CRBA 11.8 0.9 0.2

CSNN+CRBA 11.8 0.9 1,745.1

1,600

CSNN 161,148.9 13,710.7 2,124.7

CRBA 56.4 5.1 0.9

CSNN+CRBA 56.4 5.1 2,140.3

Bold values denote the fastest running times for the parameter tunning, neuron labeling,

or testing phase for each network configuration (100, 400 and 1600 neurons).

proposed CRBA is a very fast approximation of CSNN that can
be run on regular computers, one can ask a question if it can
be used in a multi-layer architecture. Note that the output of
the competitive spiking layer is very sparse (only few neurons
fire) which basically prohibits stacking additional layers (e.g.,
in a CSNN with 400 spiking neurons, only a couple of neurons
fire during each sample presentation). One way to address this
sparsity is to decrease inhibition to allow more neurons to fire,
which in CRBA means increasing the number of winner neurons
per sample presentation (all presented so far results used only
one winner neuron). Table 5 shows testing accuracy of CRBA
on MNIST data while experimenting with different number of
winner neurons.

It shows that in general the accuracy decreases as the number
of winner neurons is increased. This effect might be due to the
fact that, as discussed in section 2.3.2, the update at each sample
presentation moves the weight vector of the winner neurons
closer to the input sample vector. Thus, if more than one neuron
is updated, all of themmove toward the same input pattern which
impacts their ability to learn variations of patterns within the
same class (like different ways of writing digit “2”). This means

TABLE 5 | CRBA accuracy with different number of winner neurons.

Number of winner neurons

Neurons 1
% of the total

1% 2.5% 5% 10% 25%

100 89.29 89.29 89.43 87.04 80.92 65.13

400 93.95 93.75 92.58 90.00 81.16 66.58

1,600 95.44 95.06 93.42 89.97 81.55 66.71

Bold values denote the highest accuracies achieved for each network configuration (100,

400 and 1600).

that reducing the inhibition is not a sufficient mechanism for
constructing multi-layer architectures.

3.6. Comparison With Other Spiking Neural
Networks
Since CRBA is rate-based approximation of CSNN it can be
compared directly only with other unsupervised spiking neural
networks, which use STDP learning rule or a variation of it.
As explained in section 2.3.3, these networks require a learning
phase that consist of (a) unsupervised learning of weights, and
(b) labeling of the spiking neurons. It is followed by a testing
phase that uses some add-on inference method to predict labels
for new data samples. Table 6 shows comparison of CRBA with
some current unsupervised spiking neural networks. It also
shows results for spiking neural networks which are trained
with a supervised, reward-modulated STDP rule. The results are
shown for two CRBA configurations and for CSNN+CRBA. One
CRBA configuration uses 1,600 neurons and maximum-voting
inference method. The other uses 2,000 neurons using an add-
on fully supervised neural network with two hidden layers (of
2,000 and 200 neurons), 0.2 dropout for CRBA, no hidden layers
for CSNN+CRBA, softmax classifier, and Adam Optimizer as the
inference method.

We notice that CRBA performs better than networks using
voting inference, and it is third best among networks that
use add-on classifiers. Note that the network that achieves the
highest accuracy (Krotov and Hopfield, 2019) is also a rate-
based algorithm similar to ours but that uses a general form of

Frontiers in Computational Neuroscience | www.frontiersin.org 11 April 2021 | Volume 15 | Article 627567

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Cachi et al. CRBA-Competitive Rate-Based Algorithm

TABLE 6 | Comparison of accuracy on MNIST dataset.

Architecture/Learning rule Operation Learning Inference Neurons Accuracy (%)

CSNN/discrete STDP (Querlioz et al., 2013) Spike-based Unsupervised Maximum voting 300 93.5

CSNN/triplet STDP (Diehl and Cook, 2015) Spike-based Unsupervised Maximum voting 6,400 95.0

Self organizing CSNN / STDP (Hazan et al., 2018) Spike-based Unsupervised N-gram voting 1,600 94.1

Six layer conv-CSNN + SVM / STDP (Kheradpisheh et al., 2018) Spike-based Unsupervised Add-on classifier – 98.4

CSNN/maximization neural activity (Demin and Nekhaev, 2018) Rate-based Supervised – 400 96.2

CSNN + Fully Con. NN / EM (Krotov and Hopfield, 2019) Rate-based Unsupervised Add-on classifier 2,000 98.6

Six layer conv-CSNN + / reward modulated STDP (Mozafari et al., 2019) Spike-based Supervised – – 97.2

Two layer SNN / alpha synaptic function (Comsa et al., 2020) Spike-based Supervised – 340 98.0

CSNN (Cachi et al., 2020) Spike-based Unsupervised Max-voting 1,600 93.8

CRBA Rate-based Unsupervised Max-voting 1,600 95.4

CRBA + Fully Con. NN Rate-based Unsupervised Add-on classifier 2,000 98.0

CSNN + CRBA Rate-based Unsupervised Max-voting 1,600 95.5

CSNN + CRBA + Fully Con. NN Rate-based Unsupervised Add-on classifier 2,000 96.3

EM algorithm while we use a discrete version of it. The general
EM algorithm used in Krotov and Hopfield (2019) produces
negative weights that are impossible to use in CSNN architecture.
We chose the discrete implementation of EM algorithm because
our aim was to develop a rate-based approximation of CSNN. As
shown by the experiments, CRBA is fully compatible with CSNN,
meaning that CRBA-learned weights and firing thresholds can be
directly used to initialize CSNN: CSNN+CRBA.

The second-best network (Kheradpisheh et al., 2018) is a
spiking architecture consisting of six-layer convolutional CSNN
(3 feed-forward convolutional-competitive layers plus 3 max
pooling layers). Although CRBA cannot be used to approximate
the multilayer architecture used in Kheradpisheh et al. (2018), it
can serve as a building block for future investigations.

Regarding CSNN+CRBA, we notice that in spite transfer
of weights and firing thresholds, it performs better than the
other normally trained spiking networks shown in Table 6.
Importantly, in CSNN+CRBA, using CRBA learned weights and
firing thresholds we skip performing CSNN’s learning phase that
requires very long computational time.

4. DISCUSSION

In this paper we introduced a new algorithm, CRBA, that
implements the rate-based operation of CSNN. CRBA uses
similarity between the input and synapse vectors to predict the
network’s firing output, without the need of running temporal
simulations carried out by spiking neural networks. It also uses
discrete implementation of the EM algorithm as the learning
mechanism. The result of doing it was a significant reduction
of computational time by more than three orders of magnitude,
and a slight improvement of accuracy while also maintaining its
compatibility with CSNN.

Using CRBA on the MNIST and Fashion-MNIST datasets
reduced the total learning and testing time from around 7, 8, and
49 h to mere seconds: 4.3, 12.9, and 62.4 s, when using 100, 400,
and 1,600 neurons, respectively. At the same time it had slightly
higher accuracies on both MNIST (1–3%) and Fashion-MNIST
(2–8%) datasets.

It is important to stress that CRBA is fully compatible
with CSNN, meaning that the synaptic weights and firing
thresholds learned by CRBA can be used, without any changes,
in CSNN. This is a major advantage of CRBA over other models.
Experimentally, we found that transferring CRBA parameters
to CSNN resulted in accuracy slightly lower than CBRA’s but
better than those obtained with normal CSNN learning. The
major benefit of avoiding CSNN learning is that it can be directly
used for testing (without further learning). This result will play
significant role in a near future when CSNN can be deployed on
the low-energy neuromorphic computers.

CRBA may inspire a wider use of competitive spiking
neural networks since it greatly simplifies their operation while
maintaining accuracy. Importantly, CRBA retains key advantage
of competitive spiking neural networks, namely, it performs
unsupervised selection of the most important input features for
classification tasks on real-valued data. The ideas presented in
this paper provide background for CRBA’s extensions like its
possible use in the framework of spiking convolutional neural
networks (Tavanaei and Maida, 2017).

DATA AVAILABILITY STATEMENT

The original contributions generated for the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

PC, SV, and KC contributed to conception and design of the
study. PC organized the database, performed the statistical
analysis, and wrote the first draft of the manuscript. PC and
KC wrote sections of the manuscript. All authors contributed to
manuscript revision, read, and approved the submitted version.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2021.627567/full#supplementary-material

Frontiers in Computational Neuroscience | www.frontiersin.org 12 April 2021 | Volume 15 | Article 627567

https://www.frontiersin.org/articles/10.3389/fncom.2021.627567/full#supplementary-material
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Cachi et al. CRBA-Competitive Rate-Based Algorithm

REFERENCES

Brette, R., and Gerstner, W. (2005). Adaptive exponential integrate-and-fire model

as an effective description of neuronal activity. J. Neurophysiol. 94, 3637–3642.

doi: 10.1152/jn.00686.2005

Cachi, P. G., Ventura, S., and Cios, K. J. (2020). “Fast convergence of

competitive spiking neural networks with sample-based weight initialization,”

in Information Processing and Management of Uncertainty in Knowledge-Based

Systems, eds M.-J. Lesot, S. Vieira, M. Z. Reformat, J. P. Carvalho, A. Wilbik, B.

Bouchon-Meunier, and R. R. Yager (Cham: Springer International Publishing),

773–786. doi: 10.1007/978-3-030-50153-2_57

Ciregan, D., Meier, U., and Schmidhuber, J. (2012). “Multi-column deep

neural networks for image classification,” in 2012 IEEE Conference on

Computer Vision and Pattern Recognition (Providence, RI), 3642–3649.

doi: 10.1109/CVPR.2012.6248110

Comsa, I. M., Potempa, K., Versari, L., Fischbacher, T., Gesmundo, A., and

Alakuijala, J. (2020). “Temporal coding in spiking neural networks with alpha

synaptic function,” in ICASSP 2020 - 2020 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP) (Barcelona), 8529–8533.

doi: 10.1109/ICASSP40776.2020.9053856

Demin, V., and Nekhaev, D. (2018). Recurrent spiking neural network learning

based on a competitive maximization of neuronal activity. Front. Neuroinform.

12:79. doi: 10.3389/fninf.2018.00079

Diehl, P., and Cook, M. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S., and Pfeiffer, M. (2015). “Fast-

classifying, high-accuracy spiking deep networks through weight and threshold

balancing,” in 2015 International Joint Conference on Neural Networks (IJCNN)

(Killarney), 1–8. doi: 10.1109/IJCNN.2015.7280696

Ermentrout, B. (1998). Linearization of F-I curves by adaptation. Neural Comput.

10, 1721–1729. doi: 10.1162/089976698300017106

Gerstner, W., and Kistler, W. M. (2002). Mathematical formulations of Hebbian

learning. Biol. Cybern. 87, 404–415. doi: 10.1007/s00422-002-0353-y

Gerstner,W., Kistler,W.M., Naud, R., and Paninski, L. (2014).Neuronal Dynamics:

From Single Neurons to Networks and Models of Cognition. New York, NY:

Cambridge University Press. doi: 10.1017/CBO9781107447615

Hazan, H., Saunders, D., Sanghavi, D. T., Siegelmann, H., and Kozma, R. (2018).

“Unsupervised learning with self-organizing spiking neural networks,” in 2018

International Joint Conference on Neural Networks (IJCNN) (Rio de Janeiro).

1–6. doi: 10.1109/IJCNN.2018.8489673

Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory.

New York, NY: John Wiley; Chapman & Hall.

Kandel, E. R., Schwartz, J. H., Jessell, T. M., Jessell, M. B. T., Siegelbaum, S.,

and Hudspeth, A. (2013). Principles of Neural Science, Vol. 5. New York, NY:

McGraw-Hill.

Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J., and Masquelier, T. (2018).

Stdp-based spiking deep convolutional neural networks for object recognition.

Neural Netw. 99, 56–67. doi: 10.1016/j.neunet.2017.12.005

Koch, C., and Segev, I. (1998). Methods in Neuronal Modeling: From Ions to

Networks. Cambridge, MA: MIT Press.

Konorski, J. (1948). Conditioned Reflexes and Neuron Organization. Cambridge:

Cambridge University Press.

Krotov, D., and Hopfield, J. J. (2019). Unsupervised learning by

competing hidden units. Proc. Natl. Acad. Sci. U.S.A. 116, 7723–7731.

doi: 10.1073/pnas.1820458116

LeCun, Y., and Cortes, C. (2010). MNIST handwritten digit database. Available

online at: http://yann.lecun.com/exdb/mnist/

Liang, Z., Schwartz, D., Ditzler, G., and Koyluoglu, O. O. (2018). The impact

of encoding-decoding schemes and weight normalization in spiking neural

networks. Neural Netw. 108, 365–378. doi: 10.1016/j.neunet.2018.08.024

Lobov, S. A., Chernyshov, A. V., Krilova, N. P., Shamshin, M. O., and Kazantsev,

V. B. (2020). Competitive learning in a spiking neural network: towards an

intelligent pattern classifier. Sensors 20:500. doi: 10.3390/s20020500

Masquelier, T., and Thorpe, S. J. (2007). Unsupervised learning of visual features

through spike timing dependent plasticity. PLoS Comput. Biol. 3:e30031.

doi: 10.1371/journal.pcbi.0030031

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models

of synaptic plasticity based on spike timing. Biol. Cybern. 98, 459–478.

doi: 10.1007/s00422-008-0233-1

Mozafari, M., Ganjtabesh, M., Nowzari-Dalini, A., Thorpe, S. J., andMasquelier, T.

(2019). Bio-inspired digit recognition using reward-modulated spike-timing-

dependent plasticity in deep convolutional networks. Pattern Recogn. 94, 87–95.

doi: 10.1016/j.patcog.2019.05.015

Nessler, B., Pfeiffer, M., Buesing, L., and Maass, W. (2013). Bayesian computation

emerges in generic cortical microcircuits through spike-timing-dependent

plasticity. PLoS Comput. Biol. 9:e1003037. doi: 10.1371/journal.pcbi.1003037

Nessler, B., Pfeiffer, M., and Maass, W. (2009). “STDP enables spiking neurons

to detect hidden causes of their inputs,” in Advances in Neural Information

Processing Systems 22, eds Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I.

Williams, and A. Culotta (Red Hook: Curran Associates, Inc.), 1357–1365.

Pfister, J.-P., and Gerstner, W. (2006). Triplets of spikes in a model

of spike timing-dependent plasticity. J. Neurosci. 26, 9673–9682.

doi: 10.1523/JNEUROSCI.1425-06.2006

Querlioz, D., Bichler, O., Dollfus, P., and Gamrat, C. (2013). Immunity to device

variations in a spiking neural network with memristive nanodevices. IEEE

Trans. Nanotechnol. 12, 288–295. doi: 10.1109/TNANO.2013.2250995

Querlioz, D., Bichler, O., and Gamrat, C. (2011). “Simulation of a memristor-

based spiking neural network immune to device variations,” in The 2011

International Joint Conference on Neural Networks (San Jose, CA), 1775–1781.

doi: 10.1109/IJCNN.2011.6033439

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for

image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Rumelhart, D. E., and Zipser, D. (1985). Feature discovery by competitive learning.

Cogn. Sci. 9, 75–112. doi: 10.1207/s15516709cog0901_5

Shin, J., Smith, D., Swiercz, W., Staley, K., Rickard, J. T., Montero, J.,

et al. (2010). Recognition of partially occluded and rotated images with

a network of spiking neurons. IEEE Trans. Neural Netw. 21, 1697–1709.

doi: 10.1109/TNN.2010.2050600

Tavanaei, A., and Maida, A. S. (2017). “Multi-layer unsupervised

learning in a spiking convolutional neural network,” in 2017

International Joint Conference on Neural Networks (IJCNN)

(Anchorage, AK), 2023–2030. doi: 10.1109/IJCNN.2017.79

66099

Wan, L., Zeiler, M., Zhang, S., Cun, Y. L., and Fergus, R. (2013). “Regularization of

neural networks using dropconnect,” in Proceedings of the 30th International

Conference on Machine Learning, Volume 28 of Proceedings of Machine

Learning Research, eds S. Dasgupta and D. McAllester (Atlanta, GA: PMLR),

1058–1066.

Wysoski, S. G., Benuskova, L., and Kasabov, N. (2008). Fast and adaptive network

of spiking neurons for multi-view visual pattern recognition. Neurocomputing

71, 2563–2575. doi: 10.1016/j.neucom.2007.12.038

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a novel image

dataset for benchmarking machine learning algorithms. arXiv [Preprint]

arXiv:1708.07747.

Zenke, F., Agnes, E. J., and Gerstner, W. (2015). Diverse synaptic plasticity

mechanisms orchestrated to form and retrieve memories in spiking neural

networks. Nat. Commun. 6:6922. doi: 10.1038/ncomms7922

Zylberberg, J., Murphy, J. T., and DeWeese, M. R. (2011). A sparse coding model

with synaptically local plasticity and spiking neurons can account for the

diverse shapes of v1 simple cell receptive fields. PLoS Comput. Biol. 7:e1002250.

doi: 10.1371/journal.pcbi.1002250

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Cachi, Ventura and Cios. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 13 April 2021 | Volume 15 | Article 627567

https://doi.org/10.1152/jn.00686.2005
https://doi.org/10.1007/978-3-030-50153-2_57
https://doi.org/10.1109/CVPR.2012.6248110
https://doi.org/10.1109/ICASSP40776.2020.9053856
https://doi.org/10.3389/fninf.2018.00079
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.1162/089976698300017106
https://doi.org/10.1007/s00422-002-0353-y
https://doi.org/10.1017/CBO9781107447615
https://doi.org/10.1109/IJCNN.2018.8489673
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.1073/pnas.1820458116
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1016/j.neunet.2018.08.024
https://doi.org/10.3390/s20020500
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.1007/s00422-008-0233-1
https://doi.org/10.1016/j.patcog.2019.05.015
https://doi.org/10.1371/journal.pcbi.1003037
https://doi.org/10.1523/JNEUROSCI.1425-06.2006
https://doi.org/10.1109/TNANO.2013.2250995
https://doi.org/10.1109/IJCNN.2011.6033439
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1207/s15516709cog0901_5
https://doi.org/10.1109/TNN.2010.2050600
https://doi.org/10.1109/IJCNN.2017.7966099
https://doi.org/10.1016/j.neucom.2007.12.038
https://doi.org/10.1038/ncomms7922
https://doi.org/10.1371/journal.pcbi.1002250
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	CRBA: A Competitive Rate-Based Algorithm Based on Competitive Spiking Neural Networks
	1. Introduction
	2. Methods
	2.1. Background
	2.1.1. Spiking Neuron Model
	2.1.2. Competitive Spiking Neural Network

	2.2. Rate-Based Model of Competitive Spiking Neural Networks
	2.2.1. Operation of a Single Neuron
	2.2.2. Operation With Multiple Neurons
	2.2.3. Learning Mechanisms

	2.3. CRBA—A Competitive Rate-Based Algorithm
	2.3.1. Parameter Selection
	2.3.2. Operation
	2.3.3. Usage

	3. Results
	3.1. CRBA
	3.1.1. Accuracy on Validation Data During Learning
	3.1.2. Network Dynamics

	3.2. CSNN+CRBA
	3.3. Accuracy on Test Data
	3.4. Running Time
	3.5. CRBA With Different Number of Winner Neurons
	3.6. Comparison With Other Spiking Neural Networks

	4. Discussion
	Data Availability Statement
	Author Contributions
	Supplementary Material
	References

