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We derive a theoretical construct that allows for the characterisation of both scalable
and scale free systems within the dynamic causal modelling (DCM) framework. We
define a dynamical system to be “scalable” if the same equation of motion continues
to apply as the system changes in size. As an example of such a system, we simulate
planetary orbits varying in size and show that our proposed methodology can be used
to recover Kepler’s third law from the timeseries. In contrast, a “scale free” system is one
in which there is no characteristic length scale, meaning that images of such a system
are statistically unchanged at different levels of magnification. As an example of such a
system, we use calcium imaging collected in murine cortex and show that the dynamical
critical exponent, as defined in renormalization group theory, can be estimated in an
empirical biological setting. We find that a task-relevant region of the cortex is associated
with higher dynamical critical exponents in task vs. spontaneous states and vice versa
for a task-irrelevant region.

Keywords: scalable neural systems, scale free neural systems, mechanical similarity, dynamic causal modeling
(DCM), computational neuroscience, theoretical neuroscience, renormalisation group theory

INTRODUCTION

Scalable Dynamical Systems
Let us consider a dynamical system that is evolving in time and generating a certain series of
states. If we now change the size of the system, it will begin generating states that are different
from those of the original unscaled system. Note that by changing the “size” of a system,
we refer to a transformation that alters the spatial coordinate of the governing equation of
motion in question. For instance, when we speak of varying the size of a planetary orbit, we
do not allude to the size of the planet itself, but rather to the spatial coordinate of its centre
of mass as it orbits its host star. Upon making such a transformation, we refer to the system
as being “scalable” if the equations of motion describing both its scaled and unscaled versions
are identical in form – a system that Landau referred to as possessing “mechanical similarity”
(Landau and Lifshitz, 1976).
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As an example of a scalable system, we consider the trajectory
r (t) of a planet orbiting a sun, which is found via Newton’s
second law:

m
d2 [r (t)]

dt2
= −

GMm
r3 (t)

r(t), (1)

Where m is the mass of the planet, M is the mass of the sun, and
G is the universal gravitational constant.

We now transform the planet’s trajectory r (t) to a scaled
trajectory rscaled (t) as follows:

r (t) → rscaled (t) , br
(
bαt
)
, (2)

Where b is an arbitrary scale factor and α is a constant
to be determined.

In order to show that planetary motion is scalable, we must
demonstrate that if r (t) is a solution of the equation of motion
in Eq. (1), then rscaled (t) must be a different, but equally
valid, solution.

To find the equation of motion satisfied by the scaled
trajectory rscaled (t) we begin by replacing the independent
variable t with a scaled version of the independent variable bαt
in Eq. (1) such that:

m
d2 [r (bαt

)]
d
(
bαt
)2 = −

GMm
r3
(
bαt
) r (bαt

)
, (3)

or equivalently:

m
d2 [br (bαt

)]
dt2

= −b2α+3 GMm(
br
(
bαt
))3 br

(
bαt
)
, (4)

which, using Eq. (2) can be written as:

m
d2 [rscaled (t)]

dt2
= −b2α+3 GMm

r3
scaled (t)

rscaled (t) , (5)

where the b2α+3 factor on the right-hand side of Eq. (5) prevents
the scaled trajectory, rscaled (t), from satisfying Newton’s second
law in Eq. (1). Instead, the scaled trajectory describes the motion
of a planet orbiting a sun with a different mass:Mscaled = b2α+3M.
However, if we choose a value of α that allows for Mscaled = M,
which occurs when:

2α+ 3 = 0 ⇒ α = −3/2, (6)

then the equation of motion for the scaled trajectory rscaled (t)
becomes identical in form to the equation of motion for the
original trajectory r (t). The value of α in Eq. (6) shows us
that if r (t) is a solution, then so is rscaled (t) , br

(
b−3/2t

)
for any choice of scaling parameter b. This demonstrates that
Newton’s second law is scalable if the square of the period of
the orbit is proportional to the cube of its semi-major axis, i.e.,
Kepler’s third law.

We simulate orbits of increasing size and show that one can
recover Kepler’s third law from simulated data using Parametric
Empirical Bayes (PEB) (Friston et al., 2016). The latter is a
hierarchical statistical model that rests on the principles of
dynamic causal modelling (DCM) and uses variational Bayes
to estimate the strength of effective connectivity between the
orbiting bodies at different scales.

Scale Free Dynamical Systems
We defined a scalable system above as one in which a change
in size produces a new state (the scaled orbit) which is different
(larger/smaller with a longer/shorter orbital period), but one that
is an equally valid solution of the equation of motion. In contrast,
a scale free system is itself invariant under transformation of
scale. This means that zooming in or out leaves images of the
states statistically unchanged as observed, for example, in systems
exhibiting turbulent flow (Bohr, 1998).

Scale freeness is of considerable interest in neuroscience due
to increasing evidence that the brain exhibits scale freeness across
several orders of magnitude, ranging from single-cell recordings
(Beggs and Plenz, 2003), to meso-scale circuits (Scott et al.,
2014) and entire brain regions (He, 2011). Studies in this field
often address power law distributions of graph theoretic metrics
(Eguiluz et al., 2005) or of probability distributions of cascading
events (Tagliazucchi et al., 2012). However, these metrics are
often inadequate due to the limited spatiotemporal extent of the
techniques and are therefore unable to rigorously characterize
dynamics of different brain states. Scale free dynamics, in systems
with both long and short-range interactions, are associated
with a divergence in correlation length (Beggs and Timme,
2012) – a characteristic that is thought to provide functional
benefits within neural systems (Shew and Plenz, 2013). One
particularly prominent area of research lies in the study of
scale free properties of temporal fluctuations in neural activity,
which can be quantified by, for example, the Hurst exponent –
calculated via detrended fluctuation analysis (DFA) (Ros et al.,
2017; Dong et al., 2018).

We demonstrate a link between scalable and scale free systems,
as shown by a relationship between temporal rescaling (in
scalable systems) and the dynamical critical exponent (in scale
free systems). Using the same basic methodology employed for
systems varying in size, we then characterize scale freeness using
coarse graining – a recently active area of research in the context
of neural systems (Agrawal et al., 2019; Meshulam et al., 2019;
Nicoletti et al., 2020). We use calcium imaging data collected in a
murine model with high spatiotemporal resolution (∼40 µm, 50
ms) to show that dynamical critical exponents are higher in the
task state than in the spontaneous state in task-relevant regions
of the cortex and vice versa in task-irrelevant regions.

In summary, we derive a theoretical construct and
accompanying methodology that allows for the characterisation
of both scalable and scale free systems within the same
DCM-based framework.

MATERIALS AND METHODS

The DCM Recovery Model
The DCM recovery model is given by:

d [r (t)]
dt

= Ar (t)+ Cv (t)+ ω(r) (t) , (7)

where we refer the reader to the original DCM paper (Friston
et al., 2003) for a full derivation; r is a column vector representing
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the state of the system in question; A is the intrinsic coupling
matrix. The term “intrinsic” indicates that this coupling matrix
mediates system states that are intrinsic to the system. In linear
state space models this would be the system matrix that plays
the role of a Jacobian; C is the extrinsic connectivity matrix;
v = u+ ω(v), where ω(v) is a noise term describing random, non-
Markovian fluctuations on external perturbations u; and ω(r) is a
n-component column vector of noise terms describing random,
non-Markovian fluctuations on r (Li et al., 2011). If r has n
components and there are m perturbing inputs v, then A is a
n× n matrix and C is a n×m matrix. Note that, although all
numerical methods used here accommodate noise via ω(r), we
omit this term henceforth for the sake of clarity.

Using Eq. (7), we are able to model arbitrary dynamical
systems in a way that allows for an attended inversion procedure
which, given data, enables us to estimate the underlying model
parameters in the presence of noise in states and measurements.
This inverse scheme is a crucial aspect of the methodology, as it
enables an estimation of the ways in which an arbitrary dynamical
system is connected – both intrinsically and extrinsically.

Note that Eq. (7) is the form of the equation of motion we use
for all Bayesian model inversions in this paper and we provide
publicly available MATLAB code to allow for reproduction
of results, as well as for analyses of timeseries of arbitrary
dimensionality from any neuroimaging modality.

Scalability in the DCM Recovery Model
Here, we derive the conditions that allow for the DCM recovery
model in Eq. (7) to be scalable. As with Newton’s second law, we
would like to transform Eq. (7) according to Eq. (2), and to this
end we begin by replacing t with bαt in Eq. (7), such that:

d
[
r
(
bαt
)]

d
(
bαt
) = Ar

(
bαt
)
+ Cv

(
bαt
)
, (8)

or equivalently:

d
[
br
(
bαt
)]

dt
= bαAbr

(
bαt
)
+ bα+1Cv

(
bαt
)
, (9)

which, using Eq. (2), can be written as:

d [rscaled (t)]
dt

= bαArscaled (t)+ bα+1Cv
(
bαt
)
, (10)

which differs from Eq. (7) for all values of α. Therefore, as
opposed to Newton’s second law, it is not possible to render
the original Eq. (7) identical in form to the scaled Eq. (10)
simply by specifying a value of α. Instead, scalability [such that
rscaled(t) , br

(
bαt
)

becomes a possible solution] requires that the
parameters of the DCM recovery model in Eq. (7) also change
relative to system size.

Specifically, we require that the frequency of external
perturbations transform as follows:

v (t)→ vscaled (t) = v
(
bαt
)
, (11)

which allows us to write Eq. (10) as:

d [rscaled (t)]
dt

= bαArscaled (t)+ bα+1Cvscaled (t) . (12)

Furthermore, the elements of the connectivity matrices must
transform as follows:

aij →
bα+1
i
bj

aij,

cij →
bα+2
i
bj

cij, (13)

where aij is the intrinsic coupling between the ith and jth regions;
bi is the factor by which the ith node is scaled; bj is the factor
by which the jth node is scaled; and cij is the extrinsic coupling
between the ith and jth regions.

However, for the cases discussed in this paper (in terms
of intrinsic connectivity only), all nodes are scaled by equal
amounts, which means that we use the following simplified
versions of Eq. (13):

A → Ascaled = bαA,

C → Cscaled = bα+1C. (14)

We then use Eq. (14) to write Eq. (12) as:

d [rscaled (t)]
dt

= Ascaledrscaled (t)+ Cscaledvscaled (t) , (15)

which we see is now identical in form to Eq. (7), thus achieving
scalability in the DCM recovery model.

Orbital Mechanics Simulation
We simulate three bodies (one sun and two planets) orbiting a
common centre of gravity, using a modified version of a freely
available n-body physics simulator, as part of the Unity3D gaming
engine (version 2017.3.1f1) (Unity Technologies, 2017). The mass
of the star is 105 times greater than that of the two planets. This is
sufficiently massive so that the wobble of the sun about the centre
of gravity of the three-body system is zero to within-software
precision. We begin with a simulation in which the semi-major
axes of the orbits of the two planets differ by 10%. We run this
simulation a total of ten times with the same initial conditions,
except that in each new simulation we increase the sizes of
both semi-major axes by 10%. This allows us, using first-level
DCM models, to obtain estimates of the intrinsic connectivity
(gravitational attraction) in the system for each of the ten orbital
sizes (see Appendix 1).

We then perform second-level hierarchical modelling (PEB)
(see Appendix 2) in order to characterise the change in intrinsic
connectivity from data collected in orbits of different sizes. This
allows us to recover the value of α in Eq. (2) with the highest
model evidence by assuming that the planetary trajectories: (a)
can be approximated by solutions of the DCM recovery model
in Eq. (7); and (b) are known a priori to be scalable. In this
way, we are able to test whether the highest model evidence
for the theoretically predicted relationships between intrinsic
connectivity and scale in Eq. (14) is obtained when α lies close
to the value known a priori from Kepler’s third law in Eq. (6).

Coarse Graining Neuroimaging Data
So far, we have considered scaling operations in terms of changes
to the physical size of a system, using the example of orbital
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motion. However, in neuroimaging we face a different situation,
in which data is collected at a single scale. Therefore, rather than
changing physical size, we now perform scaling operations in
terms of coarse graining, i.e., we change the resolution at which
neuroimaging data is observed.

Throughout the analyses presented, we perform coarse
graining by repeating the following two steps as many times as an
image will allow: (a) We combine 2 × 2 neighbouring “regions”
of an image into “blocks”. The timecourse of a given block is
defined as the mean of the timecourses of its constituent regions;
(b) We then redefine regions such that each one now occupies the
same spatial extent of the image as a block occupied in step (a).
Similarly, we redefine blocks such that each one now consists of
the newly defined (larger) 2× 2 regions.

Scale Freeness in Neuroimaging Data
In the orbital mechanics example, we used the dependent variable
r to refer to the position of a given planet. In dealing with
neuroimaging data, we now instead use x and X to refer to
the measured signal intensities of a given region and block,
respectively. We have no reason to assume a linear change in
measured signal intensity between averaged timecourses from
progressively larger portions of an image. We must therefore alter
Eq. (2) to include a new scaling exponent β, such that:

x (t) → xscaled (t) , bβx
(
bαt
)
. (16)

However, in all subsequent analyses we deal with timecourses that
have zero mean and unit variance, meaning that we can use the
following simplified version of Eq. (16):

x (t) → xscaled (t) , x
(
bαt
)
. (17)

Therefore, the dynamics of a system are scale free if (on average)
the following relationship between timecourses of regions x (t)
and blocks X (t) holds:

X (t) = x
(
bαt
)
. (18)

It is this relationship that we test using the DCM recovery
model in Eq. (7).

Scaling and Renormalization in DCM
We now examine the way in which coarse graining affects
characteristic relaxation times in blocks and their constituent
regions. This relationship is encoded in the dynamical
critical exponent z.

We begin by summing over a total of N regions and
normalizing to define the region-wise characteristic decay time
tr as the time taken for the time correlation function Cr (t):

Cr (t) =
1
N

N∑
i=1

xi (t) xi (0) , (19)

to decay to 1/e of its initial value:

Cr (tr) =
Cr (0)
e

. (20)

Similarly, we sum over a total of N
b2 blocks, as each block

consists of 2 × 2 regions, and normalize to define the block-
wise characteristic decay time tb as the time taken for the time
correlation function Cb (t):

Cb (t) =
b2

N

N
b2∑
I=1

XI (t)XI (0) , (21)

to decay to 1/e of its initial value:

Cb (tb) =
Cb (0)

e
. (22)

Note that we assume that the correlation functions in Eqs (19)
and (20) decay over time due to the fact that the intrinsic
coupling matrix A in the governing equation of motion (7) is
given negative priors along its main diagonal. The eigenvalues
of A therefore have negative real components, which means
that the resulting dynamics are situated in the stable top-left
quadrant of the trace-determinant plane, in which timeseries
decay following perturbation.

If the system is scale free, then using Eqs (18), (19), and (21)
we see that:

Cb (t) = Cr
(
bαt
)
. (23)

If we then choose t = b−αtr then using Eqs (20), (22), and (23)
we see that:

Cb
(
b−αtr

)
= Cr (tr ) =

Cr (0)
e
=

Cb (0)
e

, (24)

where Cb(0)
e is the definition of the block time scale tb from Eq.

(22) and hence:
tb = b−αtr. (25)

In Renormalization Group (RG) theory, the dynamical critical
exponent z is defined as follows:

tb = bztr, (26)

which, together with Eq. (25), shows us that:

α = −z. (27)

Therefore, in the context of coarse graining, by estimating α, we
are in fact estimating the negative dynamical critical exponent,
such that the transformation of connectivities in Eq. (14) can be
re-formulated as:

A → Ascaled = b−zA,

C → Cscaled = b1−zC, (28)

thereby creating a link, via Eq. (27), between scalable [see Eq.
(14)] and scale free [see Eq. (28)] systems via the connectivities
in the system. Note that the term “connectivity” here is not to be
confused with the way in which the term is used in in RG theory.
Rather, the connectivities here describe interaction strengths (i.e.,
effective connectivity) between either: (a) elements that vary in
distance between one another in scalable systems; or (b) regions
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within blocks of increasing size within an image. Note also that
the DCM in Eq. (7) is a linear approximation of a generic non-
linear dynamical system, which could in principle be extended
using a Taylor series expansion (Stephan et al., 2008). In this case,
the B and D matrices used in higher-order DCMs both form part
of the Jacobian and, as such, must transform exactly in the same
way as the intrinsic A matrix does in scalable systems as in Eq.
(14) and in scale free systems as in Eq. (28).

As with the orbital example, we then perform PEB modelling
in order to characterise the change in intrinsic connectivity from
calcium imaging data collected in murine cortex at different levels
of coarse graining. This allows us to recover the dynamical critical
exponent z with the highest model evidence by assuming that
neural timeseries: (a) can be approximated by solutions of the
DCM recovery model in Eq. (7); and (b) are known a priori to
be scale free – an assumption that is justified by the empirical
evidence, albeit under debate, indicating the presence of scale free
dynamics in neural systems (Breakspear, 2017; Zhigalov et al.,
2017; Palva and Palva, 2018).

RESULTS

Orbital Simulation
Here, we simulate the motion of two planets orbiting a sun for
ten different scales, each with orbital paths of progressively larger
semi-major axes (Figure 1A).

Using Bayesian model inversion, we recover estimates of
both the orbital trajectories (Figure 1B), as well as the intrinsic
connectivity matrices associated with each scale (Figure 1C). We
then use hierarchical modelling (PEB) to assess the extent to

FIGURE 1 | Orbital simulation. (A) The three-body system orbiting a sun at
different scales. Note that in the results we use a total of ten scales.
(B) Normalized radial distance of the first planet from the centre of mass of the
three-body system at the largest scale, as a function of time for the first 300
timepoints of the simulation. The blue line is the true trajectory obtained from
the simulation and the red line is the estimated trajectory following Bayesian
model inversion. (C) A posteriori estimates (e) of coupling strength
(gravitational attraction) following first-level modelling (see Appendix 1) of the
three-body system for each of the ten orbital scales (s1–s10).
(D) Approximate lower bound log model evidence given by the free energy
(see Appendix 1), following second-level modelling of the ten scales shown in
panel (B), as a function of temporal rescaling α. Each curve corresponds to
one of the 100 trials in which Gaussian noise is added to the scaling
parameter in order to obtain a distribution of peak free energies (see
Appendix 2). The first four panels (from left to right) pertain to the individual
intrinsic coupling matrix elements, as indicated by the insets. The fifth column
shows the free energies summed across the four individual matrix elements.
The red bar indicates the range of peak free energies.

which the intrinsic connectivity transformation in Eq. (14) can
explain variability across orbital paths of different sizes, for a
range of power law exponents α (see Appendix 2). The peak log
model evidence (see Appendix 1) for the entire two-body system
(Figure 1C, last column on right) is found to be approximately
distributed around α = −3/2 for 100 trials containing noise (see
Appendix 2), as predicted by Kepler’s third law in Eq. (6)
(Figure 1D).

Neuroimaging Data
Here, we use a coarse graining approach to determine the
dynamical critical exponents associated with calcium imaging
data collected in mice (Figures 2A,B) that are either in an
awake resting state (spontaneous activity) or performing a
task (Helmchen and Gallero-Salas, 2020). We show the ways

FIGURE 2 | Coarse graining of calcium imaging data: (A) wide-field calcium
imaging over the left hemisphere of a head-fixed mouse, expressing GCaMP6f
in layer 2/3 excitatory neurons. (B) Example z-scored (DF/F) activity averaged
over a 10 s trial length, shown as standard deviation (s) of the signal from the
mean. Cortical areas are aligned to the Allen Mouse Common Coordinate
Framework. The top and bottom white squares correspond to ROIs 1 and 2,
respectively. (C) Approximate lower bound log model evidence given by the
free energy (F) as a function of the dynamical critical exponent (z), following
PEB modelling across coarse-grained scales for spontaneous (blue) and task
(red). Maximum values are indicated by the dashed vertical lines. Results in
the left and right columns correspond to ROIs 1 and 2 in panel (B),
respectively, as shown by the insets in the bottom row. Free energy values are
presented individually for the three mice (rows 1–3 from top to bottom) and
summed across the three mice (row 4, bottom).
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in which the calcium imaging data and intrinsic connectivity
matrix transform between scales in Supplementary Movie 1
and Supplementary Figure 1, respectively. Results are presented
for n = 3 mice, with analyses performed separately within two
regions of interest (ROIs) (Figure 2C). ROI 1 (the top white
square in Figure 2B) covers principally forelimb, hindlimb, and
motor cortices; i.e., areas not directly involved in the task. ROI
2 (the bottom white square in Figure 2B) covers principally
posterior parietal and visual cortices; i.e., areas directly involved
in the task (see Appendix 3). We note three main results with
reference to Figure 2C, which were remarkably consistent over
the three mice analysed:

(a) All values of the dynamical critical exponent z are positive,
which indicates, via Eq. (26), that signal fluctuations decay
more slowly in larger cortical structures.

(b) The dynamical critical exponent z that maximises model
evidence is higher in the spontaneous state in the task-
irrelevant region (ROI 1).

(c) The dynamical critical exponent, z, that maximises
model evidence is higher in the task state in the task-
relevant region (ROI 2).

DISCUSSION

Let us imagine making a copy of a dynamical system that is
identical to the original in every way, except that it is twice
its size. What we observe is that, purely by virtue of their
difference in size, the two systems will generate entirely different
states. However, in certain cases it is possible to compensate
for such a change in size through transformations to other
model parameters which, in turn, allows for both the original
and the larger version to be governed by the same equation
of motion. We refer to systems that possess this property of
single equation governance as being “scalable”. In this paper, we
derive the precise ways in which parameters must transform,
relative to system size, in order for the DCM recovery model to
be scalable. We then translate these theoretical transformations
into a methodology for determining, via hierarchical modelling,
the temporal rescaling factor associated with the highest model
evidence for any scalable system.

A planetary trajectory is an example of a scalable system, due
to the fact that an orbit that is increased in size will result in an
entirely new orbit – but one that is an equally valid solution of
Newton’s second law. In addition, we know that the scalability of
planetary motion requires the square of the period of the orbit to
be proportional to the cube of its semi-major axis, i.e., Kepler’s
third law. This additional fact allows for planetary motion to be
used, not only as a known case of scalability, but also as a ground
truth model with a temporal rescaling factor known a priori from
Kepler’s third law. Specifically, one can show that the highest
variational free energy (model evidence) obtained from Bayesian
model inversion of orbital timeseries is associated with the Kepler
factor – thus providing construct validation.

There are a range of scenarios in biology in which one may
wish to characterize scalable system architectures, for example

in the phylogenetic or ontogenetic scaling of neural structures
(Buzsaki et al., 2013). In neuroimaging, one would usually
account for differences in size by first projecting data into a
common space before beginning the analysis of neural dynamics
(Muller et al., 2018). For example, homologues are first identified
between brain regions when comparing different species such as
primates and humans (Figure 3A). Similarly, when comparing
across development, infant and adult brains are first aligned onto
a common template (Figure 3B).

Let us now go back to our original dynamical system and,
rather than making a new scaled copy, imagine that we instead
zoom in to twice the level of magnification within the same
system. What we see is that the states generated at these two
levels are completely different. However, there are certain cases in
which it is impossible to tell, due to a lack of characteristic length
scale, whether any magnification has in fact taken place – we refer
to such systems as being “scale free”.

Investigations in neuroscience tend to be reported in isolation,
e.g., either at the cellular level (Ouzounov et al., 2017) or at the
level of a large population of neurons (Power et al., 2017), with
microscopic findings seldom being translated to macroscopic
properties of neural circuits. As such, there is continuing interest
within theoretical (Di Santo et al., 2018), computational (Ly et al.,
2019), as well as experimental (Cocchi et al., 2017) neuroscience
in the characterisation of scale free dynamics in neural systems
(Figure 4). In contrast, we propose a methodology in this paper
that allows for a unified approach to the quantification of cross-
scale dynamics.

We show that there is a connection between scalable and
scale free systems in terms of the derived DCM model parameter
transformations. It is this connection that allows us, via the same
basic methodology used to recover the Kepler factor in planetary
motion, to recover the state-dependent dynamical critical
exponents in different regions of murine cortex. Specifically, we
show that the dynamical critical exponent is higher in a task state
(as compared with a spontaneous state) in a task-relevant region

FIGURE 3 | Scalability in neural systems. (A) Vervet monkey (left) and human
(right). (B) Inflated cortical surfaces from an infant (left) and adult (right) human.
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FIGURE 4 | Scale freeness in neural systems. The same human brain at three
different levels of resolution.

and vice versa for a task-irrelevant region of the cortex. The study
of critical dynamics remains an ongoing area of research in neural
systems (Plenz and Thiagarajan, 2007; Yu et al., 2011; Wu et al.,
2019), as these have been associated with functional benefits in
the operation of the cortex, such as allowing for the conditions
necessary for optimal information processing, as demonstrated
both in vivo (Haimovici et al., 2013) as well as in vitro (Shew et al.,
2009; Tetzlaff et al., 2010).

In summary, we devise a theoretical construct that, following
measurements taken at any arbitrary scale, allows for predictions
to be made about how the system will behave – either as it
changes in size (if scalable) or as we zoom in or out (if scale
free). In this way, we create a unified approach for future
studies to analyse both scalable and scale free systems via the
construction of generative models within the same formal DCM-
based statistical framework.

Wide-Field Calcium Imaging
Calcium dynamics over the whole dorsal cortex of the left
hemisphere are recorded using a wide-field imaging approach.
Excitation light emanates from a blue LED (Thorlabs; M470L3)
and is filtered (excitation filter, 480/40 nm BrightLine HC),
diffused, collimated, and directed to the left hemisphere by a
dichroic mirror (510 nm; AHF; Beamsplitter T510LPXRXT). The
imaging system consists of two objectives (Navitar, top objective:
D-5095, 50 mm f0.95; bottom objective inverted: D-2595, 25 mm
f0.95). Excitation light is focused approximately 100 µm below
the blood vessels. Green emission photons are collected through
both objectives and dichroic, filtered (emission filter, 514/30 nm
BrightLine HC) and recorded with a sensitive CMOS camera
(Hamamatsu Orca Flash 4.0) mounted on top of the system.
No photobleaching is observed under these imaging conditions.
Images of 512× 512 pixels are collected at 20 frames per second.

Wide-field calcium imaging through the intact skull allows
for the simultaneous recording of neural population activity
across the whole dorsal cortex. Although fluorescence arises
from single neurons, photons are diffused through the skull.
Therefore, this method does not have single-cell resolution and
the measured signal represents the bulk population activity. One
cubic millimetre contains approximately 105 neurons and one
pixel represents 43 × 43 × 150 µm (43 × 43 imaged from
above). As we collect light from all labelled neurons, we take
150 µm as the total depth on layer 2/3, which means that one
pixel represents approximately 30 neurons. However, in reality
the light is diffused, which means that the DF/F values of a pixel
are influenced by neighbouring pixels (Keller et al., 2018).

By spatially averaging the recorded signal, the activity of
a bigger population of neurons is averaged at each coarse

graining step. Additionally, hemodynamic changes may influence
the signal. However, in the absence of movement (we only
include periods in which the animal is sitting quietly) we have
previously shown that this influence is minimal (Gilad et al.,
2018). By analogy with human imaging, we might consider
the fine-grained data to represent multiunit recordings from
the electrocorticogram of an implanted patient, while the most
coarse-grained level would be analogous to the spatially extended
resting state networks. Therefore, we do not directly measure
neural activity but use calcium as a proxy. This is motivated by
the lack of a technique that allows the direct measurement of
neural activity with similar spatiotemporal resolution as wide-
field calcium imaging. Overall, this method is limited by the
calcium indicator dynamics (GCaMP6f: decay τ½ for one action
potential of∼140 ms; rise τpeak 1 AP∼45 ms) and imaging speed
(20 Hz) (Chen et al., 2013). However, given that the indicator
is genetically encoded, we know that the signal only arises from
layer 2/3 excitatory neurons.

Sensory Mapping and Alignment
In order to align brain areas to the Allen Mouse Common
Coordinate Framework (Mouse Coordinate, 2016), we perform
sensory mapping under light anaesthesia (1% isoflurane) in
each mouse. We present five different stimuli contralateral to
the imaging side: a vibrating bar coupled to a loudspeaker is
used to stimulate either (1) whiskers; (2) forelimb paw; or (3)
hindlimb paw (somatosensory stimuli; 20 Hz for 2 s); (4) 2 s-
long white noise is played (auditory stimulus); and (5) a blue LED
positioned in front of the right eye provides a visual stimulus
(100 ms duration; approximately zero elevation and azimuth).
The stimuli activate a corresponding set of cortical areas. These
areas, together with anatomical landmarks (Bregma; Lambda;
midline; as well as the anterior, posterior, and lateral ends of
the dorsal cortex), are used as anchoring points to align each
individual brain to the Mouse Common Coordinate Framework.
Pixels outside the borders of the Mouse Common Coordinate
Framework are discarded.

Behavioural Task
Water-deprived head-fixed mice are trained in a go/no-go
auditory discrimination task with a delay. Each trial (10 s
duration) commences with a trial cue (visual cue delivered by an
orange LED, 1 flash, 500 ms duration) after which mice had to
discriminate between two auditory tones (4 vs 8 kHz) presented
for 2 s. After a delay period (2–3 s) a reward cue (3 flashes,
150 ms duration with 100 ms interval) signals the start of the
response window (2 s). Pure auditory sounds are generated by a
Tucker-Davis System 3 processor (RZ6) and are presented using
a magnetostatic loudspeaker (MF-1, Tucker-Davis) placed∼5 cm
from the right ear (contralateral to the imaged hemisphere). Each
trial is separated by an inter-trial interval of∼5 s.

Mice are trained using the 8 kHz tone as the “go” stimulus. In
order to obtain a water reward, mice have to lick a water spout
in the response window during go trials (“hit”). Licks in response
to the “no-go” tone are mildly punished with white noise and a
time out (∼2 s, “false alarms”, FA). Licks outside the response
window (“earlies”) are equally punished. The absence of licks
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in “no-go” (“correct-rejections”, CR) and: “go” (“misses”) trials
are neither rewarded nor punished. Performance is quantified
as d-prime: d

′

= Z
(
Hit
/
(Hit+Miss)

)
− Z

(
FA
/
(FA+ CR)

)
where Z denotes the inverse of the cumulative distribution
function. Animals are imaged upon reaching expert level
performance

(
d
′

> 1.5
)

, specifically d
′

= 1.90, 2.23, and 2.36 for
mouse 1, 2, and 3, respectively.

Spontaneous Activity
We record meso-scale spontaneous activity in the same three
mice that are imaged solving the task (using the same wide-field
set-up) with equal trial and inter-trial interval lengths. Calcium
dynamics are recorded in the absence of any external stimuli
with the exception of a continuous blue light used for wide-
field imaging (also present during task). This light is directed
into the intact skull preparation from the optical path (placed
above the heads of the mice) with an illumination intensity
of <0.1 mW/mm2. The light in the recording environment is
dim, as the light is collimated and the objective is close to
the preparation.

Movement
Although the animals are head-fixed, they are able to freely
whisk and move their limbs and backs. Given the dim recording
conditions, we use infrared light to monitor the animals’
movements (940 nm infra-red LED) in both states (task and
spontaneous activity). We extract movement vectors of the
forelimb and back region from the recordings. Movement is
calculated as 1 minus frame-to-frame correlation of these two
regions. We perform multiple linear regression of all recordings
with respect to the animals’ movements, as well as to the external
stimuli (sound and light cues) in the task recordings. It is due to
this regression of movement and stimuli that we set the elements
of the C matrix in the DCM recovery model to zero.

Data Pre-processing
Matlab software (Mathworks) was used to pre-process the
data. 512 × 512 pixel images are collected with the wide-field
system and then downsampled to 256 × 256. Pixel size
after downsampling was ∼40 µm. To normalize for uneven
illumination or GCaMP6f expression, we calculate the percentage
change of fluorescence (1F/F) relative to the start of each trial.

Regions of Interest
We begin by defining two non-overlapping ROIs within the
Allen Mouse Common Coordinate Framework that each span
64 × 64 pixels, as this is the largest power of 2 that can be
accommodated within the imaged area. The first ROI covers (as
designated by the Allen Institute) primary somatosensory areas
upper and lower limb. It also includes parts of the primary and
secondary motor areas; primary somatosensory area unassigned;
primary somatosensory area trunk; primary somatosensory area
barrel field; and the retrosplenial area. The second ROI covers the
posterior parietal association areas; the anteromedial visual area;
and the posteromedial visual area. It also includes parts of the
primary visual area; primary somatosensory area barrel field; and

primary somatosensory area trunk (see Figure 2B). Data outside
the ROIs are disregarded.

Coarse Graining
Note that we use the term “ROI” to refer to the two large
areas of the cortex defined above, whereas we use the term
“region” to refer to the constituents of “blocks” in the language
of renormalization group theory. For each of the two ROIs,
we then: (a) z-score each region’s timecourse in the 64 × 64
ROI; i.e., we subtract the mean and divide by the standard
deviation on a region-wise level; (b) subdivide the 64 × 64
ROI into a grid consisting of 32 × 32 blocks; (c) run first
level DCM on each of the 32 × 32 blocks, in which all
connectivity matrices entered into first level DCMs are of size
2 × 2; (d) perform Bayesian model averaging on the 32 × 32
first level DCMs, such that we obtain a single representative
intrinsic connectivity matrix [A in Eq. (14)] associated with
the first scale; (e) coarse grain the 64 × 64 regions by a
factor of 2 such that we obtain 32 × 32 regions, each of
which corresponds to the mean of a 2 × 2 block within the
original 64× 64 ROI.

We then repeat steps (a) through (c) above for 32 × 32,
16 × 16, 8 × 8, 4 × 4, and 2 × 2 regions, each time
recovering the intrinsic connectivity matrix associated with
each level of coarse graining. One quarter of the blocks are
randomly sampled in step (c) above for the first three scales,
in the interest of computational expediency. Note that in this
characterisation of coupled dynamics we are taking averages
across different combinations of regions at each scale. With
reference to step (d) we use a prior variance of 1, and
prior means of −1 for the main diagonal and 0 for the off-
diagonal coupling parameters of the A matrix. Therefore, we
assume a priori that each region can be positively or negatively
influenced by any other region, while maintaining stability
via self-inhibition. We then enter the intrinsic connectivity
matrices recovered at each level of coarse graining into the
second level of the hierarchical modelling (PEB). We compare
each scale to the original full-resolution 64 × 64 region data
and test the extent to which the theoretical transformation
in Eq. (28) holds.
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Supplementary Figure 1 | A sample intrinsic connectivity matrix from one trial
collected in the first mouse in the spontaneous state. The six subplots show the
way in which the connectivity strength (s) progresses from full resolution data (top
left) to the maximum level of coarse graining used in this study (bottom right).

Supplementary Movie 1 | One trial collected in the first mouse in the
spontaneous state. The six subplots progress from full resolution data (top left) to
the maximum level of coarse graining used in this study (bottom right) with the
same colour scale used as in Figure 2B.
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APPENDIX 1

In the first level modelling, timecourses of the three-body system
are used to recover their intrinsic connectivity via a Bayesian
estimation method known as dynamic expectation maximization
(DEM) (Friston et al., 2008) for each of the ten simulations. The
DEM procedure seeks to estimate the “true” signal (similar to a
Kalman filter). To do this, it assumes a factorizable (independent)
set of unknowns in the model. The three sets are:

(1) The D-step, in which v and u are estimated with priors. In
other words, the form of the ordinary differential equation
(ODE) under a given A matrix and noise value is assumed
and then the dynamic states are predicted and updated
according to derivatives of a cost function (the variational
free energy). The variational free energy F combines both
accuracy and complexity when scoring models:

F =
〈
log p(y|θ,m)

〉︸ ︷︷ ︸
accuracy

−KL
[
q (θ) , p (θ|m)

]︸ ︷︷ ︸
complexity

where log p
(
y|θ,m

)
is the log likelihood of the data

y conditioned upon model states, parameters and
hyperparameters θ, and model structure m. This
cost function combines accuracy maximisation with
complexity minimisation, where complexity represents
the divergence from the estimate to the prior on the
trajectories of v and u.

(2) The E-step, in which the model parameters are
optimised as represented in the A matrix –
these are updated according to derivatives of
the free energy.

(3) The M-step, in which the magnitude of random
fluctuations (known as hyperparameters) are updated
(again based on their free energy derivatives)
while holding the other sets constant. Overall this
scheme should converge (after repetition of D, E,
and M steps) on a posterior probability of all three
sets of unknowns.

APPENDIX 2

In the second level modelling, we use a hierarchical Bayesian
scheme to assess the degree to which changes in intrinsic
connectivity matrix elements can be explained by the
theoretically predicted transformation for: (a) scalable systems
for a range of α values recovered for different sized orbits;
and (b) scale free systems for a range of dynamical critical
exponents z recovered for different levels of coarse graining in
neuroimaging data.

This statistical test uses a parametric empirical Bayesian (PEB)
approach – which allows us to test over multiple individual
models (e.g., at different scales) and to define between-model
covariates of interest. In other words, PEB provides a way to
perform a test similar to a general linear model (GLM) or
regression and to account for posterior densities, rather than
just point estimates (since the DCMs return full probability

distributions). Here we construct a set of potential between-
model tests that account for different possible changes in both
scalable and scale free systems.

Parametric empirical Bayesian was repeated for each plausible
value of (a) α in the context of the orbital mechanics analysis,
and (b) the dynamical critical exponent z in the context of
the neuroimaging analysis – (both in steps of 0.005). These
line searches enabled us to track the free energy approximation
to model evidence (as well as the posterior expectation of
second-level parameters) as a function of (a) α for the
orbital mechanics analysis and (b) z for the neuroimaging
analysis. We use the model Y = Xβ+ ∈, where Y is a column
vector comprising DCM estimates (means and variances) at
different scales and X is a column vector which contains
the theoretically determined scale – specified by the scaling
parameter b. PEB returns the approximate model evidence
(free energy), as well as the posterior over β for each value
of between-model tests. This allows us to determine the
best possible value of (a) α (for the physical scaling of the
orbits) or (b) z (for the coarse graining of the images) that
would account for the changes in the individual DCMs. In
the case of the orbital analysis, we repeat the hierarchical
PEB scheme 100 times, each time adding Gaussian noise to
the scaling parameter b, such that we obtain a range of
maximum free energies. We are therefore in a position to
test the hypothesis that the variation in connectivity with
respect to scale in Eq. (14) is best explained using a scaling
exponent value close to α = −3/2 in accordance with Kepler’s
third law in Eq. (6).

APPENDIX 3

Animals and Surgical Procedures
We use three triple transgenic Rasgrf2-2A-dCre; CamK2a-tTA;
and TITL-GCaMP6f adult male mice (3–5 months old). This
line is characterised by inducible, specific and high expression
of the calcium indicator GCaMP6f in pyramidal layer 2/3
neurons of the neocortex (Madisen et al., 2015). To induce the
expression of the indicator, destabilized Cre must be stabilized
by trimethoprim (TMP). Individual mice are intraperitoneally
injected with 150 µg TMP/g of body weight reconstituted
in Dimethyl sulfoxide (DMSO, Sigma 34869) at a saturation
level of 100 mg/ml.

In order to expose the skull above the left brain hemisphere
for wide-field calcium imaging, we use a minimally invasive
intact skull preparation technique. Briefly, mice are anaesthetized
(2% isoflurane in pure O2) and their temperature controlled
(37◦C). After removing the skin and connective tissue above
the dorsal skull, we clean and dry the skull. We then apply a
layer of UV-cure iBond over the skull, followed by a second
layer of transparent dental cement (Tetric EvoFlow T1). Dental
cement “worms” (Charisma) are applied around the preparation
and a metal head post for head fixation is glued to the
preparation. The resulting imaging window ranges from ∼3 mm
anterior to bregma to ∼1 mm posterior to lambda and ∼5 mm
laterally to midline.
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