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The deep lasso algorithm (dlasso) is introduced as a neural version of the statistical

linear lasso algorithm that holds benefits from both methodologies: feature selection and

automatic optimization of the parameters (including the regularization parameter). This

last property makes dlasso particularly attractive for feature selection on small samples. In

the two first conducted experiments, it was observed that dlasso is capable of obtaining

better performance than its non-neuronal version (traditional lasso), in terms of predictive

error and correct variable selection. Once that dlasso performance has been assessed, it

is used to determine whether it is possible to predict the severity of symptoms in children

with ADHD from four scales that measure family burden, family functioning, parental

satisfaction, and parental mental health. Results show that dlasso is able to predict

parents’ assessment of the severity of their children’s inattention from only seven items

from the previous scales. These items are related to parents’ satisfaction and degree of

parental burden.

Keywords: deep learning, lasso, feature selection, interpretability, ADHD

1. INTRODUCTION

Attention-deficit hyperactivity disorder (ADHD) is the most common chronic psychiatric
disorder in childhood (Wender and Tomb, 2016). According to a recent systematic review, this
neurodevelopmental disorder has an estimated prevalence in children and adolescents of 7.2%
(Thomas et al., 2015). ADHD is characterized by inattention, excessive activity, and impulsive
behavior. Children with ADHD have a higher risk of suffering from accidents, school failure or
addiction problems (Harpin, 2005; Elkins et al., 2007). In addition, it has been observed that
untreated children present low self-esteem and poor social functioning in the long term (Harpin
et al., 2016). Fortunately, it has been observed that these negative consequences are reduced with
an early and accurate diagnosis (Sonuga-Barke et al., 2011).

The diagnosis of ADHD is obtained through a clinical interview in which the clinician relies
on the information provided by parents or teachers. However, several studies have shown that this
information can be influenced by the characteristics of the informant. For example, it has been
shown that female young teachers tend to provide more severe scores than older male teachers
(Schultz and Evans, 2012). In another study, Chi and Hinshaw predicted the discrepancies between
the reports provided by the mother and the teacher based on the mother’s responses to the Beck
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Depression Inventory (Chi and Hinshaw, 2002). They observed
that the responses provided by mothers with depression were
negatively biased. This result has been validated in other studies
(Harvey et al., 2013; Madsen et al., 2020). In addition, it has been
observed that parental stress is another factor that explains the
discrepancy between parents and teachers (Yeguez and Sibley,
2016; Chen et al., 2017).

This article, which expands the above studies, focuses on
determining whether it is possible to predict the severity of
a child’s inattention and hyperactivity/impulsivity reported by
his/her parents based on their distress and family burden.
Furthermore, it seeks to identify the factors that influence
parents’ assessments. To achieve these objectives, the deep
lasso (dlasso) algorithm is developed. This algorithm combines
recent advances in the fields of machine learning and statistics:
deep learning and the least absolute shrinkage and selection
operator (lasso).

Without a doubt, deep learning has become one of the
greatest advances in recent years (Goodfellow et al., 2016).
Improvements in hardware, the availability of larger databases,
and algorithmic advances have made possible to accurately build
neural networks with more than one hidden layer. These deep
neural networks have managed to solve problems that were
previously unattainable in the fields of computer vision (Liu et al.,
2020), natural language processing (Young et al., 2018) or speech
recognition (Nassif et al., 2019).

However, in mental health, getting accurate results is not
enough. Knowing the factors that characterize a given disease
is often as important as precisely detecting those patients who
suffer the condition. Identifying the relevant factors allows for
improved treatments and prevention measures. One scientific
field that has put a lot of effort in creating explainable models
is the area of statistics. Among the techniques developed in this
field, the lasso algorithm is undoubtedly one of the most widely
used (Tibshirani, 1996). The lasso algorithm performs variable
selection by including a regularization term in the loss function
of the linear regression. The importance of this technique can be
observed in the several extensions that have been developed to
deal with variable selection. These techniques, which modify the
loss function, include Elastic-Net (Zou and Hastie, 2003, 2005;
Witten et al., 2014), Group Lasso (Zhou and Zhu, 2010; Zhao
et al., 2014) or recently Sparse Group Lasso (Simon et al., 2013;
Vincent and Hansen, 2014; Rao et al., 2016; Laria et al., 2019).
However, in order to use these techniques, a database with a
moderate/large size is needed since the regularization parameter
is estimated through crossvalidation. Having a database of this
size is not always possible in the mental health field.

The proposed dlasso algorithm, a neuronal network with two
hidden layers and a regularization term, combines the advantages
of lasso and the neural networks. On the one hand, like the lasso
linear model, dlasso performs variable selection and provides
the weights associated with each selected variable. This makes
the neural network explainable. On the other hand, the weights
of the neural network are trained through the backpropagation
algorithm which, unlike traditional lasso, makes to automatically
find the optimal value of the regularization parameter possible.
Therefore, dlasso proposes to be a bridge that connects the

prominent area of neural networks with that of modern statistics
to obtain mutual benefits.

The rest of this article is organized as follows. Next
section introduces the dlasso technique. Section 3 compares
the performance of dlasso with respect to the traditional
non-neural lasso. Additionally, some technical details of our
implementation are highlighted in this section. After showing
dlasso’s performance, also in this section, it is used to predict
children’s ADHD severity based on their parent’s burden and to
identify the factors that influence parents’ assessment. Finally,
section 4 includes a discussion of the implication of our findings
for future research.

2. MODEL FORMULATION

Consider the usual linear lasso framework, where we have a data
matrix X ∈ R

N×p containing N observations of dimension p, a
response vector y ∈ R

N , and the objective is to find β ∈ R
p that

minimizes, for some λ, the objective function

L(β , λ) =

N
∑

i=1



yi −

p
∑

j=1

Xijβj





2

+ λ||β||1. (1)

where ||β||1 =
∑p

i=1 |βi| is the L1 norm.
The general approach chooses the value of λ that minimizes

the quadratic error term in L on a separate dataset, using
some type of cross-validation over a grid (see, for example,
Friedman et al., 2010; Friedman, 2012). In order to develop our
methodology, the following proposition provides an alternative
definition of the lasso problem.

Proposition 1. The lasso problem Equation (1) is equivalent
to,

min
w







N
∑

i=1



yi −
λ0

λ

p
∑

j=1

Xijwj





2

+ λ0||w||1






, with λ, λ0 > 0.

(2)
The proof of Proposition 1 is straightforward, taking ω =

λβ/λ0. Although there is also λ0, the regularization hyper-
parameter in Equation (2) is λ, because λ0 is a fixed constant. The
hyper-parameter λ0 could be interpreted, to some extent, as an
initial approximation of λ if we were solving the traditional lasso.

Based on Proposition 1, Problem Equation (2) can be
formulated as the neural network of Figure 1, assuming that the
weight γ = λ0/λ is constant. However, this neural representation
is a more general approach than Equation (2), because the
parameter γ is optimally selected as part of the training process,
unlike previous methodologies that rely on some sort of cross
validated set-up to select λ.

Regarding the weights’ optimization, it is known that in the
context of neural networks, L1 regularization does not completely
zero out the weights. This is because the neural network
optimizer does not take into account the non-differentiability
of the regularization term at ωj = 0. To carry out feature
selection from the neuronal network perspective, a condition on
the weights is imposed so that, after a given number of iterations,
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FIGURE 1 | Neural network representation of the lasso problem Equation (2).

the weights that satisfy this condition are forced to be exactly 0.
The mathematical derivation of the condition is presented from
an optimization perspective, using subgradient conditions on
problem Equation (2). General optimization problems where the
objective function is the sum of a convex differentiable function
(the squared error in this case) and a convex non-smooth part
(the penalty) are discussed in Beck and Teboulle (2009a,b). In
our case, it is simpler than that, since we are only interested in the
condition that makes a particular ωj = 0. Notice that automatic
feature selection in our context means a solution to Equation (2)
where w has many components that are exactly zero.

Assume that we have some estimation of ω, γ , which is
the result of optimizing the weights in the neural network of
Figure 1, after a number of epochs. Focusing on ω, and letting
γ fixed, we have,

min
ω

F(ω) : =
∥
∥y− γXω

∥
∥
2

2
+ λ0‖ω‖1. (3)

The optimality of any solutionω
∗ of Equation (3) is characterized

by the subgradient conditions. That is, for every j = 1, 2, . . . , p,

0 = ∂jF(ω
∗) = −2γXT

j (y− γXω
∗)+ λ0vj, (4)

where

vj =

{

sign(ω∗
j ) ω

∗
j 6= 0

∈ [−1, 1] ω
∗
j = 0
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In particular, ω∗
j = 0 if

0 = −2γXT
j



y − γ

p
∑

i=1,i6=j

Xiω
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which is equivalent to
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. (5)

Equation (5) provides a natural criterion to update the weights ω,
trained after some number of epochs.

3. EXPERIMENTAL RESULTS

In this section, the performance of dlasso is evaluated in
two different scenarios that have been previously used in
the literature.

3.1. Experiment 1
This first experiment is based on the one conducted in the
original lasso article (Tibshirani, 1996). The data is simulated
from the model y = Xβ + ǫ, where ǫi ∼ N(0, 5) and

β = [3 1.5 0 0 2 0 . . . 0
︸ ︷︷ ︸

p−5

].

The data matrix X is simulated so that the correlation between
its columns Xi and Xj is given by ρij = 0.5|i−j|, for 1 ≤

i < j ≤ p. To illustrate different configurations, the number
of variables p varies in {20, 100, 200}. In addition, in order to
obtain significant results, the simulation for each configuration
is repeated 100 times.

The training data set was composed of 50 observations,
whereas 950 observations were used to test the performance
of lasso and dlasso. Unlike dlasso, which automatically tunes
the regularization parameter along with the optimization of the
coefficients, the β estimation provided by the lasso method
depends on a user-supplied value of λ. This hyper-parameter was
optimally selected using random search on a grid of size 1, 000,
compared across 5 bootstrap repetitions of the training data. To
fit the lasso model, and select the hyper-parameter λ, we used
the following R libraries: glmnet (Friedman et al., 2010) for
the model engine, parsnip (Kuhn and Vaughan, 2020) for the
tidymodel interface, and tune (Kuhn, 2020) for tuning λ using
random search.

Regarding the fit of the dlasso’s parameters, the algorithm
was trained for 1,000 epochs. In order to avoid initialization
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TABLE 1 | Simulation results of the first experiment.

Method rmse recall (β) precision (β)

p = 20
dlasso 0.5 (0.08) 1 (0) 0.659 (0.18)∗∗

lasso 0.5 (0.08) 1 (0) 0.486 (0.19)

p = 100
dlasso 0.518 (0.08)∗∗ 0.99 (0.06) 0.348 (0.13)

lasso 0.531 (0.09) 0.99 (0.06) 0.362 (0.22)

p = 200
dlasso 0.545 (0.11)∗∗ 1 (0)∗ 0.244 (0.08)

lasso 0.561 (0.11) 0.99 (0.06) 0.313 (0.19)∗∗

Differences at the 0.05 and 0.01 significance levels are denoted by * and **, respectively.

dependence, the training process was repeated 20 times and the
network with the minimum training loss (mean squared error)
was selected as the final model.

Table 1 summarizes the simulation results for Experiment
1, displaying the root mean squared error (rmse), the β recall
(proportion of true non-zero coefficients correctly identified)
and the β precision (proportion of zero coefficients correctly
identified), of both lasso and dlasso. The values reported
in Table 1 are averaged over the 100 repetitions, with the
corresponding standard deviations in parenthesis.We performed
paired t-tests to evaluate the significance of the differences
between both methods, denoting with (∗∗) those for which the
p-value was lower than 0.01 and (∗) if the p-value was lower
than 0.05. This table shows that the proposed dlasso method
obtains a lower rmse than lasso in all the scenarios. Furthermore,
this difference seems to be accentuated as the number of noise
variables in the problem increases.

3.2. Experiment 2
The second experimental set-up is based on the simulation
studies carried out by Witten et al. (2014). The data is simulated
according to the linear model y = Xβ + ǫ, with the number
of features p, and ǫi i.i.d. from a N(0, 10) distribution (1 ≤ i ≤
n). The data matrix X is simulated from a multivariate N(0,6)
distribution, where 6 ∈ Rp×p is block diagonal, given by

6 =





6ρ 0 0
0 6ρ 0
0 0 0





p×p

,

with 6ρ ∈ R20×20 such that

6ρ(i, j) =

{

1 i = j
ρ i 6= j

,

with ρ denoting the correlation inside groups. The true
coefficient vector β ∈ Rp is also random, given by,

β = [β1 β2 . . . β10 0 . . . 0
︸ ︷︷ ︸

10

β21 β22 . . . β30 0 . . . 0
︸ ︷︷ ︸

p−30

],

where

βj ∼

{

U[0.9, 1.1], 1 ≤ j ≤ 10
U[−1.1,−0.9], 21 ≤ j ≤ 30

.

TABLE 2 | Simulation results of the second experiment.

Method rmse recall (β) precision (β)

ρ = 0.1

p = 40
dlasso 0.73 (0.1) 0.684 (0.1) 0.748 (0.1)∗∗

lasso 0.701 (0.11)∗∗ 0.804 (0.14)∗∗ 0.679 (0.11)

p = 100
dlasso 0.797 (0.1)∗∗ 0.612 (0.1) 0.526 (0.09)∗∗

lasso 0.838 (0.15) 0.624 (0.23) 0.469 (0.15)

p = 400
dlasso 0.875 (0.13)∗∗ 0.511 (0.12)∗∗ 0.275 (0.06)

lasso 0.939 (0.16) 0.332 (0.24) 0.399 (0.2)∗∗

ρ = 0.5

p = 40
dlasso 0.454 (0.07) 0.722 (0.09) 0.689 (0.08)∗∗

lasso 0.401 (0.05)∗∗ 0.784 (0.08)∗∗ 0.658 (0.07)

p = 100
dlasso 0.477 (0.08) 0.71 (0.11) 0.655 (0.09)∗∗

lasso 0.476 (0.14) 0.75 (0.12)∗∗ 0.463 (0.12)

p = 400
dlasso 0.494 (0.08)∗∗ 0.73 (0.12) 0.539 (0.1)∗∗

lasso 0.588 (0.27) 0.74 (0.17) 0.33 (0.17)

ρ = 0.8

p = 40
dlasso 0.344 (0.05) 0.772 (0.1)∗∗ 0.597 (0.07)

lasso 0.302 (0.04)∗∗ 0.637 (0.09) 0.634 (0.08)∗∗

p = 100
dlasso 0.356 (0.05) 0.747 (0.1)∗∗ 0.584 (0.08)∗∗

lasso 0.347 (0.1) 0.627 (0.13) 0.451 (0.13)

p = 400
dlasso 0.368 (0.06)∗∗ 0.782 (0.09)∗∗ 0.558 (0.06)∗∗

lasso 0.425 (0.22) 0.652 (0.18) 0.354 (0.18)

Differences at the 0.05 and 0.01 significance levels are denoted by * and **, respectively.

To explore different scenarios, the parameter ρ ∈ {0, 0.5, 0.8},
whereas p ∈ {40, 100, 400}, resulting in a total of 9 possible
configurations. Similarly to the previous experiment, the data
is composed of 50 and 950 observation for training and
test, respectively, and the simulation for each configuration is
repeated 100 times. The estimation of β and the selection of λ

is carried out as described in the previous experiment.
Table 2 illustrates the results that were obtained by each

methods in the different configurations. As before, the values
reported inTable 2 are averaged over the 100 repetitions, with the
corresponding standard deviations in parenthesis, and significant
differences at level 0.01 are denoted with (∗∗). It is observed that
dlasso obtains better results as the number of variables increases,
which suggests that dlasso might be a more suitable approach in
the high-dimensional setting.

4. COMPUTATIONAL ISSUES

The dlasso algorithm has been implemented in R, using the
keras library (Allaire and Chollet, 2019), and TensorFlow as
backend (Abadi et al., 2016). Concerning the optimizer, we have
chosen ADAM (Kingma and Ba, 2014), but our theoretical model
formulation is not limited to a particular optimizer, and in this
regard, different configurations may be tested.

An important computational issue is how to set the number
of iterations to train the network, since a very large number
can degrade its performance on future data. Figure 2 shows how
the rmse evolves in the test data over the different iterations
for one of the simulations of the first experiment (Figure 2A)
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FIGURE 2 | Evolution of the rmse in the test data over 5,000 iterations for one of the simulations of the first experiment (A) and for one of the second experiment (B).

and for one of the second experiment (Figure 2B). These two
plots are representative of the different simulations. In both
cases, no performance drop is observed in the test data as the
number of iterations increases. This shows that the proposed
method is quite robust to variations in the number of epochs
and that, for example, 1,000 iterations is an acceptable value in
both experiments.

4.1. Experiment 3
Once that the performance of the proposed dlasso technique
has successfully been evaluated, this third experiment examines
whether it is able to predict the assessments that parents make
about the severity of their children’s ADHD symptoms based on
their distress and family burden.

To this end, the parents of 73 children diagnosed with ADHD
by the medical professionals at the Fundacioń Jimeńez Díaz
Hospital of Madrid participated in this study. The parents (54
mothers and 19 fathers) were required to sign an informed
consent after the study was explained in detail to them. The mean
age of their children was 12.4 years. The consent form and the
study protocol were reviewed and approved by the Institutional
Review Board of Fundacioń Jimeńez Díaz Hospital (reference:
EO 77/2013_FJD_HIE_HRJC).

The participants assessed the severity of their children’s
symptoms through the Strengths and Weaknesses of ADHD-
symptoms and Normal-behavior (SWAN) scale (Swanson et al.,
2012). The SWAN scale is composed of 18 items, based on the
DSM-5 criteria, for ADHD diagnosis which measure positive
attention and impulse regulation behaviors in the normal

population. The first nine items measure inattention while the
remaining nine assess impulsivity/hyperactivity. The sum of
the first nine items is used as an indicator of the severity of
inattention, while the sum of the last nine items is used as an
indicator of the severity of impulsivity/hyperactivity. The family
burden and distress were assessed with the following scales:

• The Zarit Burden Interview. This 22-item self-
report inventory examines the burden associated with
functional/behavioral impairments and the home care
situation (Zarit and Zarit, 1987; Schreiner et al., 2006). The
responses ranged from never to always. It has been pointed
out that this instrument has an excellent internal consistency
(Bédard et al., 2001).

• The General Health Questionnaire-12 (GHQ-12). This
questionnaire, consisting on 12 items, measures general
mental health (Anjara et al., 2020). The responses ranged
from much worse than usual to better than usual. Sanchez-
Lopez and Dresch showed that, in a Spanish sample of 1001
participants, the GHQ-12 exhibited an adequate reliability and
external validity (Sánchez-López and Dresch, 2008). They also
indicated that the GHQ-12 is an efficient technique to detect
non-psychotic psychiatric problems.

• The family Adaptability, Partnership, Growth, Affection,

and Resolve (Apgar) scale. This five-item scale is used to
assess how family members perceive the level of functioning
of the family unit (Smilkstein, 1978). Responses ranged from
hardly ever to almost always.

• Visual Analoge Scale (Vas) on life satisfaction. This is
an ad hoc questionnaire designed by the Department of
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Translational Psychiatry of the Fundación Jiménez Díaz
Hospital and which is part of the electronic questionnaires
administered by a digital tool. Parents were asked to rate their
own level of satisfaction in different life areas: themselves,
family, friends, work and leisure activities. Parents scored these
aspects on a scale from 0 to 10, where a higher number means
more satisfaction.

Once the data were collected, a repeated validation analysis
was conducted to test whether the dlasso algorithm was able
to predict the severity of parent-reported child inattention, via
the SWAN scale, based on the responses that they provided
to the 44 previous predictors. The number of repetitions was
set to 100. For each repetition, and similarly to the previous
experiments, the training set contained 50 randomly selected
observations. The remaining 23 observations were used to
evaluate the performance of dlasso. The number of training
epochs was 1,000. The performance measures were the rmse
and the correlation between the total scores obtained with the
SWAN inattention subscale and the values predicted by dlasso.
The average correlation obtained by dlasso was 0.34 (std: 0.15)
and the rmse was 1.99 (std: 2.87). These results indicate that
dlasso was able to obtain good estimates of parents’ assessment
of their children’s inattention. In addition, it was also observed
that the correlation and rmse that would have been obtained if
a multiple linear regression was applied were –0.01 (std: 0.23)
and 4.14 (std: 14.12), respectively. These numbers reflect the
importance of conducting feature election.

The previous repeated validation study was replicated, but
using parent-reported child hyperactivity as the dependent
variable. However, unlike the previous results, dlasso was not able
to accurately estimate hyperactivity with these predictors. The
average correlation obtained by dlasso was 0.03 (std: 0.19) and
the rmse was 2.35 (std: 3.69). Similar results would have been
obtained if all predictors were included in the multiple linear
regression. Concisely, the average correlation would have been
–0.05 (std: 0.20) and the rmse 4.34 (std: 17.6). These results show
that, for our data, it is possible to estimate the degree of children’s
inattention through parental reported distress and family burden,
but not the severity of children’s hyperactivity.

After evaluating the performance of the proposed technique,
a third analysis was carried out to determine which items dlasso
used to estimate inattention. To do this, the dlasso was run on the
whole sample and with all the predictor variables. The different
predictors were standardized so that the selected items could
be compared based on the absolute value of their weights. The
variables selected were:

• GHQ-12, Item 1: Have you recently been able to concentrate
on what you’re doing?

• GHQ-12, Item 4: Have you recently felt capable of making
decisions about things?

• Zarit, Item 20: Do you feel you should be doing more for your
relative?

• Zarit, Item 22: How burdened do you feel in caring for your
relative?

• Vas, Item 2: Satisfaction with Family

• Vas, Item 3: Satisfaction with Friends
• Vas, Item 5: Satisfaction with Leisure Activities

and the adjusted R2 was 0.314. It is observed that only 7 of the 44
items were used to make the predictions. It is also noted that no
items of the Apgar scale were selected. The values of the weights
of the selected items are shown in Figure 3.

This figure shows that the most influential items are the
second item of the Vas scale and item 20 of the Zarit scale.
Both items are related to family satisfaction. It is also observed
that three of the five items of the Vas scale, about the
person’s satisfaction with friends, pleasure activities and family,
are selected.

5. CONCLUSIONS

In this article, the dlasso method has been proposed,
implementing the well-known lasso feature selection technique
using neural networks. The performance of the proposed dlasso
has been assessed in two experiments previously referenced
in the literature. In most of the conducted simulations, the
proposed dlasso has attained a lower rmse, and significant
higher precision and recall in the variable selection than the
traditional lasso. Moreover, the simulation studies reveal that the
gap between dlasso and its traditional counterpart widens as the
number of variables increases.

In a third experiment, dlasso was used to predict the severity of
symptoms in children with ADHD from the responses provided
by their parents to four questionnaires aimed at measuring
family burden, family functioning, parental satisfaction, and
parental mental health. It was observed that dlasso was able
to predict the severity of inattention using only seven items
out of the 44 available. Interestingly, three of these seven
items were obtained from the life satisfaction scale. Specifically,
it was observed that higher parental satisfaction in essential
domains such as family, friends and leisure activities are
good predictors of inattentive symptomatology in children. The
remaining four items are related to anxious symptomatology.
Another noteworthy issue is that the algorithm did not select
any of the items of the Apgar scale, which implies that
family functioning is not taken into account in predicting
inattention. This result complements the findings reported in
the literature that show parental stress as one of the factors of
disagreement among informants. Specifically, van der Oord et
al. showed that parental stress explained 12% of the variance in
the disagreement of parent and teacher ratings of inattention
(van der Oord et al., 2006). Subsequently, Yeguez and Sibley
showed that parental stress, maternal education, and maternal
ADHD predicted high maternal grades relative to teacher-
reported (Yeguez and Sibley, 2016). van der Veen-Mulders et
al. also showed that differences in ratings between fathers and
mothers were due to parental stress (van der Veen-Mulders et al.,
2017).

The results obtained, together with those reported in the
literature, raise the question of whether the stress reported
by parents is mostly caused by their children’s symptoms
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FIGURE 3 | Weights of the selected items.

or whether it is caused by external factors. Several studies
have pointed to the first hypothesis. In this case, parental
stress could be used as an excellent predictor of the severity
of their children’s ADHD symptoms. However, on the
other hand, stress could also be caused mostly by external
factors. Therefore, these results point to the need to establish
mechanisms that identify the source of parental stress so
that the relevance of the evaluation carried out by them can
be assessed.

Regarding hyperactivity/impulsivity, dlasso was not able to
obtain accurate estimates. Children diagnosed with ADHD
inattentive subtype are usually diagnosed later than those with
hyperactive/impulsive and/or combined subtypes (Milich et al.,
2001). This may lead to significant family overload, psychological
distress and poorer family functioning.

These results build a bridge between statistical and
artificial intelligence approaches that allows tackling mental
health conditions in which large samples are difficult
to obtain.
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