
ORIGINAL RESEARCH
published: 29 July 2021

doi: 10.3389/fncom.2021.684373

Frontiers in Computational Neuroscience | www.frontiersin.org 1 July 2021 | Volume 15 | Article 684373

Edited by:

Arpan Banerjee,

National Brain Research Centre

(NBRC), India

Reviewed by:

Mengsen Zhang,

University of North Carolina at Chapel

Hill, United States

Yu Zhang,

Lehigh University, United States

*Correspondence:

Dongwei Chen

chendwzsc@zsc.edu.cn

†These authors have contributed

equally to this work

Received: 23 March 2021

Accepted: 15 June 2021

Published: 29 July 2021

Citation:

Chen D, Miao R, Deng Z, Han N and

Deng C (2021) Sparse Granger

Causality Analysis Model Based on

Sensors Correlation for Emotion

Recognition Classification in

Electroencephalography.

Front. Comput. Neurosci. 15:684373.

doi: 10.3389/fncom.2021.684373

Sparse Granger Causality Analysis
Model Based on Sensors Correlation
for Emotion Recognition
Classification in
Electroencephalography

Dongwei Chen 1*†, Rui Miao 2†, Zhaoyong Deng 3,4, Na Han 5 and Chunjian Deng 4

1 Zhuhai People’s Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China, 2 Faculty of Information

Technology, Macau University of Science and Technology, Avenida Wai Long, Taipa, China, 3University of Electronic Science

and Technology of China, Chengdu, China, 4 School of Electronic Information Engineering, University of Electronic Science

and Technology of China, Zhongshan, China, 5 School of Business, Beijing Institute of Technology, Zhuhai, China

In recent years, affective computing based on electroencephalogram (EEG) data has

attracted increased attention. As a classic EEG feature extraction model, Granger

causality analysis has been widely used in emotion classification models, which construct

a brain network by calculating the causal relationships between EEG sensors and select

the key EEG features. Traditional EEG Granger causality analysis uses the L2 norm

to extract features from the data, and so the results are susceptible to EEG artifacts.

Recently, several researchers have proposed Granger causality analysis models based

on the least absolute shrinkage and selection operator (LASSO) and the L1/2 norm to

solve this problem. However, the conventional sparse Granger causality analysis model

assumes that the connections between each sensor have the same prior probability.

This paper shows that if the correlation between the EEG data from each sensor can be

added to the Granger causality network as prior knowledge, the EEG feature selection

ability and emotional classification ability of the sparse Granger causality model can be

enhanced. Based on this idea, we propose a new emotional computing model, named

the sparse Granger causality analysis model based on sensor correlation (SC-SGA).

SC-SGA integrates the correlation between sensors as prior knowledge into the Granger

causality analysis based on the L1/2 norm framework for feature extraction, and uses L2
norm logistic regression as the emotional classification algorithm. We report the results

of experiments using two real EEG emotion datasets. These results demonstrate that

the emotion classification accuracy of the SC-SGA model is better than that of existing

models by 2.46–21.81%.

Keywords: granger causality analysis, EEG sensors, LASSO, SC-SGA, L1/2-based sparse granger causality

analysis, L2 norm logistic regression
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1. INTRODUCTION

Emotions are an important part of decision cognition and
interpersonal interaction (Oatley et al., 2006; Izard, 2013),
and research in many fields is attempting to recognize human
emotions through computer systems, such as emotional
computing, neurology, and psychology (Catanzarite and
Greenburg, 1979; Picard, 1999). In the field of human interaction,
in particular, emotional computing would enable machines to
perceive the emotional state of the human brain, allowing
them to learn more about people through human–computer
interaction (Cauchard et al., 2016; Zhou, 2018). At present,
research methods for studying emotion recognition are mainly
divided into two categories: the first category is based on
non-physiological signals, such as speech, body posture, and
facial expression; the second category is based on physiological
signals, such as electrocardiogram and electroencephalogram
(EEG) data (Picard, 2000, 2003; Tao and Tan, 2005). EEG signals
are obtained directly from the cerebral cortex, and thus directly
reflect changes in human emotions (Larsen, 2011; Dan et al.,
2013). Therefore, in recent years, EEG emotion recognition
technology has become increasingly popular (Bos et al., 2006;
Lin et al., 2010; Atkinson and Campos, 2016; Song et al., 2018).

Researchers have proposed many advanced EEG analysis

methods, such as identifying subtypes of mental disorders from

the functional connection patterns of resting state EEG data;

improving EEG decoding through cluster-based multitasking
feature learning; and early Alzheimer’s diagnosis based on resting
state EEG topological network analysis (Moore and DeNero,
2011; Wang et al., 2011; Liu et al., 2012; Zhang et al., 2012; Zhou
et al., 2012; Zhu et al., 2014; Suk et al., 2015). Among them,
feature extraction and sensor causality analysis are hot topics
of research. Granger causality analysis is an important feature
extraction method based on sentiment calculation, and has been
widely used by researchers (Dongwei et al., 2013; Immordino-
Yang and Singh, 2013; Zhang et al., 2017). For example, Zhang
et al. used the Granger causality analysis model to construct
an effective brain connection network on Database for Emotion
Analysis Using Physiological Signals (DEAP) emotional EEG
data to study how emotion affects the pattern of effective
connection (Zhang et al., 2017); Coito et al. used the Granger
causality model to study whether the EEG phase of patients
with left temporal lobe epilepsy and right temporal lobe epilepsy
exhibited changes in directional functional connectivity (Coito
et al., 2016). However, clinical and neuroscience applications
will inevitably produce outliers or artifacts when collecting
data (Blankertz et al., 2007). These can cause the quality of
EEG signals to deteriorate and produce problems with noise.
In particular, EEG signals are often contaminated by abnormal
values when blinking or head movements form a trajectory.
The original Granger causality analysis uses the L2 norm loss
function, the squared nature of which tends to exaggerate
outliers, and retains all of the data. This can lead to erroneous
analysis results (Xu et al., 2007, 2010a; Li et al., 2015; Bore et al.,
2018, 2019). Therefore, due to the sparse connectivity of the brain
network, researchers proposed Granger causality analysis models
based on the least absolute shrinkage and selection operator

(LASSO) to solve the noise problem (Valdés-Sosa et al., 2005;
Marinazzo et al., 2008; Shaw and Routray, 2018). However, the
L1/2 regularizer is more sparse and robust than LASSO (Xu
et al., 2010b; Zong-Ben et al., 2012; Li et al., 2017). Thus,
Granger causality analysis based on the L1/2 norm has been
developed, and experiments have proved that this obtains better
solutions (Bore et al., 2020).

The purpose of the existing sparse Granger causality analysis
model based on LASSO or L1/2 regularization is to establish a
sparse brain network relationship matrix, retain the data between
EEG sensors with high causality, and remove data with weak
causality. Hence, effectively calculating the causality weights
between EEG sensors has become a key issue in sparse Granger
causality analysis. The existing sparse Granger model uses
the multivariate autoregressive (MVAR) model to establish the
weight matrix of the EEG sensor causality relationship (Geweke,
1982; Seth, 2010; Hu et al., 2015). MVAR reflects the direct
causality relationship between each sensor. This method assumes
that each EEG sensor has the same prior knowledge (that
is, the correlation between the various sensors is consistent).
However, based on known EEG data, researchers can use
statistical methods to pre-calculate the correlation between each
EEG channel. We believe that if the correlation between EEG
channels could be integrated into the sparse Granger model as
prior knowledge, the causality relationship between the various
sensors in the existing sparse Granger causality model would be
enhanced, thereby improving the feature selection ability of the
model. Based on this idea, the present paper proposes a Granger
causality network model based on sparse sensor correlation,
and combines a sparse logistic regression classification algorithm
based on L2 regularization. This sparse Granger causality analysis
model based on sensor correlation (SC-SGA) uses the Pearson
similarity coefficient to calculate the degree of similarity between
sensors. SC-SGA integrates this similarity degree as a weight into
a sparse Granger causality model based on the L1/2 regularizer
for feature extraction, and finally uses a sparse logistic regression
algorithm based on L2 regularization for emotion recognition, as
shown in Figure 1.

In this study, experiments were conducted on two real
datasets. The experimental results show that, compared with the
existing models, the SC-SGA model achieves better recognition
of different emotions. We believe that the SC-SGA model is a
good complement to the classification model based on sparse
Granger causality analysis, and that the method and results
presented in this article will be very useful in future research.

2. MATERIALS AND METHODS

2.1. Materials
Sixteen channels were selected for experiments related to
emotional states. The channel selection is shown in Figure 2.

2.1.1. SEED Dataset
The SJTU(Shanghai Jiao Tong University) Emotion EEG Dataset
(SEED) is a collection of EEG datasets provided by the
BCMI(Brain-like Computing & Machine Inteligence) laboratory
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FIGURE 1 | Experimental process of the model proposed in the paper.

(Duan et al., 2013). SEED uses film fragments as emotion-
inducing materials and includes three categories of emotion:
positive, neutral, and negative. The details of the film clips used
in the experiments are listed in Table 1. A total of 15 subjects
(seven males, eight females, mean age 23.27 years, standard
deviation 2.37 years) participated in the SEED experiments, all
of whom had normal visual, auditory, and emotional states. In
the experiments, 15 movie clips were played. These movie clips
were all from Chinese movies. The 15 movie clips were of three
types, with five clips of each type. Each clip was played for about 4
min. In each experiment, movie clips of different emotional states
were watched by the participants. As the subject was watching
the movie, EEG signals were recorded through an electrode cap
at a sampling frequency of 1,000 Hz. The experiments used the
international 10–20 system and a 62-channel electrode cap. Each
volunteer participated in three experiments, and each experiment
was separated by about 1 week. Therefore, after screening, a total

of 660 data samples had been obtained. To obtain a preprocessed
EEG dataset, 200 Hz down-sampling and a bandpass frequency
filter from 0 to 75 Hz were applied. Each dimension of SEED is
described inTable 2. Formore information on this dataset, please
refer to the website http://bcmi.sjtu.edu.cn/∼seed/index.html.

a) Gamma band dataset: The SEED EEG dataset contains
five EEG bands. The main frequency range of the five bands
is 1–50 Hz. The frequency range of gamma brain waves is
31–50 Hz. Previous studies have shown that the gamma band
generally occurs in pathological conditions, such as epilepsy,
or under external stimuli. Additionally, it is often used for
multimodal analysis in experiments. Therefore, we use the
gamma brain waves for experimental analysis. The gamma brain
wave frequency band of the SEED dataset contains 660 samples.

b) Combined band dataset: To verify the performance of
our model, we also examine the use of all frequency bands of
the EEG dataset. The EEG signals were decomposed into five
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W1(t) =
∑s

i=1 a11(i)W1(t − i)+
∑s

i=1 a21(i)W2(t − i)+ . . . +
∑s

i=1 am1(i)Wm(t − i)+ ε1(t), var(ε1(t)) =
∑

1
W2(t) =

∑s
i=1 a12(i)W1(t − i)+

∑s
i=1 a22(i)W2(t − i)+ . . . +

∑s
i=1 am2(i)Wm(t − i)+ ε2(t), var(ε2(t)) =

∑

2
...
Wm(t) =

∑s
i=1 a1m(i)W1(t − i)+

∑s
i=1 a2m(i)W2(t − i)+ . . . +

∑s
i=1 amm(i)Wm(t − i)+ εm(t), var(εm(t)) =

∑

m

. (1)

FIGURE 2 | Sixteen channels used in the experiments.

TABLE 1 | Details of the film clips used in the SEED dataset.

No. Emotion label Film clip sources

1 negative Tangshan Earthquake

2 negative Back to 1942

3 positive Lost in Thailand

4 positive Flirting Scholar

5 positive Just Another Pandora’s Box

6 neutral World Heritage in China

frequency bands according to the EEG rhythm, comprising delta
(1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz), and
gamma (31–50 Hz) bands. These five frequency band signals
were combined to form a new combined frequency band dataset.
Therefore, two EEG datasets representing different frequency
bands were obtained. Finally, four feature processing models
were tested and verified using the above datasets: Original
(dataset not processed), LASSO, least absolute Lp (0<p<1)
penalized solution (LAPPS), and SC-SGA. In the experiments,
the 660 samples were randomly assigned to a mutually exclusive
training set (80%) and a verification set (20%).

2.1.2. DEAP Dataset
The DEAP dataset (Koelstra et al., 2011) can be found at
http://www.eecs.qmul.ac.uk/mmv/datasets/deap/. It includes

TABLE 2 | SEED dataset.

Array name Array shape Array contents

data 660× 62× 185× 5 sample/trial × channel × data× band

labels 660× 1 sample/trial × labels

32-channel EEG signals and peripheral physiological signals
such as GSR(galvanic skin response) signals, EOG(electro-
oculogram) signals, EMG(electromyography) signals,
PPG(photoplethysmograph) signals, temperature, and status.
All data have been down-sampled to 128 Hz, whereby the
EEG signal data became a 60 s test signal and a 3 s baseline. A
zero-phase bandpass filter of 4–45 Hz was applied. In this study,
the 32-channel EEG data were divided into two classes according
to their arousal status: positive (more than 6) and negative (less
than 4).

The DEAP dataset consists of two parts. The first part contains
the ratings from an online self-assessment in which 120 1-min
extracts of music videos were rated by 14–16 volunteers based
on arousal, valence, and dominance. The second part includes
the participant ratings, physiological recordings, and facial videos
from an experiment in which 32 volunteers watched a subset
of 40 of the above music videos. The EEG and physiological
signals were recorded and each participant rated the videos as
above. For 22 participants, frontal face videos were also recorded.
At the end of each video, the participants were required to
fill out a self-assessment form of their arousal, ranging from
inactive (1) to active (9), their valence, ranging from unpleasant
(1) to pleasant (9), and their dominance feelings, ranging from
helpless and weak (1) to empowered (9). Figure 3 shows the
two-dimensional emotional model of the DEAP dataset. Each
dimension of DEAP is described in Table 3. In experiments
with the DEAP dataset, we only used data from combined
frequency bands.

2.1.3. Cross-Validation
To ensure the accuracy of the results, a 5-fold cross-validation
method was used in all the experiments. Five-fold cross-
validation first divides all the data into five sub-samples. One
of the sub-samples is selected as the test set, and the other
four samples are used for training. This process is repeated five
times, and the average and its error range are calculated. In
addition to 5-fold cross-validation, all experiments described in
this paper were performed 100 times, allowing the average and
error statistics to be obtained.
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FIGURE 3 | Two-dimensional emotional model.

TABLE 3 | DEAP dataset.

Array name Array shape Array contents

data 40× 40× 8064 video/trial × channel × data

labels 40× 4 video/trial × labels

2.2. Methods
The sparsity of connections in brain networks has been proved by
researchers (Genç et al., 2018). Many unnecessary connections
will occur when researchers construct causality brain networks.
If these connections are directly involved in the analysis and
calculation, there will be an increased computational complexity
and an enhanced likelihood of overfitting. Therefore, when
constructing causality brain networks, sparse regularizers such
as the L1 and L2 norm can be used. Adding sparse regularizers
effectively extracts the important features of the network and
reduces the time complexity of the network. In this way, the
goal of improving accuracy while reducing the operational
requirements can be achieved (Bore et al., 2018, 2020).

2.2.1. L2 Granger Analysis
Granger analysis is based on an MVAR model. This form of
analysis allows researchers to estimate the relationship between
multiple sets of time series data. Therefore, the accuracy with
which the MVAR parameters are calculated determines the
reliability of the final relationship, which ultimately affects the
accuracy of the Granger analysis correlation network. There
are multiple strategies for estimating the parameters of MVAR
models. If we assume there are m stationary stochastic processes
with Wi(t) ∈ R time domain observations such that i =

1, 2, . . . ,m; t − 1, 2, . . . ,T, we obtain Equation (1), where s is

the maximum number of lagged observations that are added
to the model and aij(i = 1, 2 . . . ,m; j = 1, 2, . . . ,m) is the
vector of coefficients that defines the effect of the activity ofWi(t)
on Wj(t). Moreover,

∑

k(k = 1, 2, . . . ,m) is the variance of

residuals between the expected Wk and the predicted Ŵk in the
corresponding processes. Suppose that:

Xk = [a1k(1), . . . , a1k(s), . . . , amk(1), . . . , amk(s)]
T (2)

are the multivariate autoregressive coefficients, with m being the
number of time series and yk = [Wk(s+1),Wk(s+2), . . . ,Wk(n)]
being the n− s elements to be predicted forWk, where n denotes
the length of the signal. Now, we define the design matrix A ∈

R
(n−s)×(m×s) as:

A = [Z1 Z2 . . . Zk . . . Zm] (3)

In this case:

Zi =











Wi(s) Wi(s− 1) . . . Wi(1)
Wi(s+ 1) Wi(s) . . . Wi(2)
...

...
...

...
Wi(n− 1) Wi(n− 2) . . . Wi(n− s)











(4)

Consequently, we find the solution for Equation (1) with the
objective term defined in the L2 norm space (L2 norm loss
function) as:

argmin
xk

fk(Xk) = ‖yk − AXk‖
2
2 (5)
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Here, ‖·‖2 denotes the L2 norm of a vector and “argmin” indicates
that the best solution minimizes the objective function fk(Xk). By
taking the derivative of Equation (5) with respect to Xk under the
condition (dfk)/(dXk) = 0, we obtain the following formulation:

2ATAXk − 2ATyk = 0 (6)

The MVAR coefficients for processWk are given by:

Xk =

{

(ATA)−1ATyk if ATA is nonsingular

(ATA)+ATyk if ATA is singular
. (7)

where (ATA)−1 is the inverse operation of ATA and (ATA)+

indicates the pseudo-inverse of ATA (Watkins, 2004).

2.2.2. LASSO Granger Analysis
Because the neurons in the brain are sparsely connected,
retaining all the information between the sensors may cause
erroneous analysis results due to noise. Therefore, Granger
analysis based on LASSO has been developed. LASSO uses the
L1 norm, and adding the L1 norm to Granger analysis can reduce
some coefficients to zero, thus obtaining sparse results. Based on
Equation (5), we can write:

LASSO_GA = argmin{‖y− AX‖22 + λ‖X‖1} (8)

where λ ≥ 0 is a regularization parameter. This formula is a
classic convex optimization problem that can be solved using a
greedy algorithm.

2.2.3. LAPPS Granger Analysis
Recently, researchers have discovered that the L1/2 norm is a
more sparse and robust regularizer than the L1 norm. Therefore,
a Granger analysis model based on the L1/2 norm has been
proposed. The model estimates the MVAR parameters using
LAPPS. The model is theoretically sparser than that given by
LASSO. The ability to eliminate noise and artifacts is also
stronger. The Granger analysis model based on the L1/2 norm
can be written as:

LAPPS_GA = min
X

{
1

η
‖AX − y‖1 + ‖X‖PP} (9)

where the fitting error is measured in the L1 norm space and
LP(p = 1

2 ) norm regularization is imposed on the coefficients,
while η > 0 is the regularization parameter. The alternating
directionmethod of multipliers (ADMM) framework can be used
to solve this problem.

2.2.4. Proposed LAPPS Granger Analysis Based on

Sensor Correlation
In the EEG emotion recognition model, the key factor in
improving the final experimental result is feature extraction.
Finding EEG data that are related to emotion is the core problem
of feature extraction. However, in the previous sparse Granger
analysis model, each sensor has the same prior knowledge. This
means that the final feature extraction result is only related to the

value of the EEG signal, and does not necessarily correspond to
the emotional state. If we can quantify the correlation between
each EEG sensor and emotion (Chen et al., 2020), and use this
as a weight in the sparse Granger analysis model, the model’s
feature selection ability would be improved, further improving
the model’s classification ability. Under this idea, based on
existing research, we propose a sparse Granger analysis model
based on sensor correlation and the L1/2 norm. The model can
be written as follows:

LALF_GA = min
X

{‖y− EAX‖1 + ‖X‖PP} (10)

where LP (p = 1
2 ) norm regularization is imposed on the

coefficients. E represents the sensor correlation, which can also
be approximated as the weight of emotion. We hope to retain
as much relationship information related to emotion as possible.
The formula for calculating E is as follows:

E = [T1 T2 . . . Tm] (11)

where T is the number of time series. In this case:

Ti =











M11 M12 . . . Mi1

M21 M22 . . . Mi2

...
...

...
...

M1j M2j . . . Mij











(12)

where i and j represent the number of sensors. ForMi, we have:

Mij =
Cov(Mi,Mj)

√

Var[Mi]Var[Mj]
(13)

where Cov(Mi,Mj) represents the covariance of the i-th and j-th
sensors, Var[Mi] represents the variance of the i-th sensor, and
Var[Mj] represents the variance of the j-th sensor.

3. CLASSIFICATION METHODS

3.1. Logistic Regression Model
In this study, logistic regression is used as the classification
model. The probability formula of logistic regression is as
follows Wright (1995):

p(y = 1|x) =
1

1+ e−wx
(14)

3.2. L2 Sparse Regularizer
Considering the high-dimensional characteristics of EEG data, a
logistic regression model based on the L2 regularizer is used. The
formula for the L2 regularizer is as follows Cortes et al. (2012):

Φ(w) =
∑

w2 (15)
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TABLE 4 | Precision and recall results for ridge regression using the gamma band of the SEED dataset.

Feature extraction model Neutral Positive Negative

Precision Recall Precision Recall Precision Recall

Original 0.7021 ± 0.0310 0.7174 ± 0.0295 0.5909 ± 0.0278 0.6667 ± 0.0320 0.6829 ± 0.0286 0.5957±0.0304

LASSO-GA 0.7660 ± 0.0221 0.8000 ± 0.0248 0.8333 ± 0.0214 0.8489 ± 0.0213 0.8649 ± 0.0201 0.7619 ± 0.0193

LAPPS 0.8537 ± 0.0132 0.8333 ± 0.0154 0.8400 ± 0.0182 0.8733 ± 0.0173 0.8780 ± 0.0148 0.8000 ± 0.0146

SC-SGA 0.8599 ± 0.0105 0.8470 ± 0.0110 0.8821±0.0092 0.8975 ± 0.0103 0.8979 ± 0.0114 0.8360 ± 0.0108

TABLE 5 | Precision and recall results for ridge regression using the combined band of the SEED dataset.

Feature extraction model
Neutral Positive Negative

Precision Recall Precision Recall Precision Recall

Original 0.7400 ± 0.0280 0.7872 ± 0.0301 0.8095 ± 0.0293 0.7718 ± 0.0284 0.7250 ± 0.0312 0.7174 ± 0.0205

LASSO-GA 0.8310 ± 0.0243 0.8222 ± 0.0212 0.8374 ± 0.0250 0.7955 ± 0.0201 0.7308 ± 0.0224 0.8437±0.0198

LAPPS 0.8438 ± 0.0156 0.8438 ± 0.0127 0.8413 ± 0.0149 0.8717 ± 0.0186 0.7500 ± 0.0190 0.8036 ± 0.0198

SC-SGA 0.8598 ± 0.0124 0.8612 ± 0.0106 0.8618 ± 0.0096 0.8788 ± 0.0101 0.8315 ± 0.0090 0.8756 ± 0.0104

3.3. Support Vector Machine Model
As well as the logistic regression model based on sparsity, a
support vector machine (SVM) model is used for classification
and comparison. The SVM model is a two-classification
technique. Its basic model is a linear classifier of the largest
interval defined in the feature space, which is the most amenable
to the perceptual machine (Adnan et al., 2020; Li et al., 2020;
Wang and Chen, 2020). The SVM model also includes kernel
techniques, which makes it an effective nonlinear classifier. The
learning strategy for the SVM involves maximizing the interval
and formalizing a convex quadratic programming problem,
which is equivalent to the problem of minimizing the regular
closed loss function. The learning algorithm of the SVM model
is the optimization algorithm for solving convex quadratic
programming problems (Scholkopf and Smola, 2018).

4. EXPERIMENTAL RESULTS

A series of experiments were conducted using two real datasets
and four sparse Granger causal models, namely the Original-
Granger causal model, LASSO-Granger causal model, LAPPS
model, and the proposed SC-SGA model. The classifier for each
model was built using the SVM method, logistic regression
method, and ridge regression method. Confusion matrices
are used to compare the results between the various models.
These matrices summarize the prediction results of classification
models in machine learning. The records in the dataset are
summarized in matrix form according to the real category and
the classification criteria predicted by the classification model.
The rows of the matrix represent the true values, and the columns
represent the predicted values. The computational accuracy of
the proposed model is used as a measure of quality, where the
accuracy is defined as the ratio of the number of samples correctly
classified by the classifier to the total number of samples in
the test dataset. However, accuracy is not always an effective

metric for performance evaluation, especially if the numbers of
samples with different labels are not exactly equal. Therefore,
we also analyze the precision and recall for further comparison
of the three two-classifier models. Here, precision refers to the
proportion of all predicted true positives in positive classes, and
recall refers to the proportion of positives found in all positive
classes. All experiments used 5-fold cross-validation to ensure the
stability of the proposed model.

4.1. SEED Dataset
As shown in Table 4 and Supplementary Table I, the
experimental results using the gamma band show that the
SC-SGA model proposed in this paper has obvious advantages
over the other models. In terms of neutral emotion, the
experimental results using the SVM method give a precision
of 84.70% for the proposed model, which is 22.70, 10.23,
and 2.48% higher than the Original, LASSO-GA, and LAPPS
models, respectively. The recall of our proposed model is
87.03%, which is 13.22, 9.25, and 0.98% higher than that of
the Original, LASSO-GA, and LAPPS models, respectively. In
the experimental results using the logistic regression method,
the precision of our proposed model is 88.89%, which is 16.80
13.10 and 3.18% higher than with the Original, LASSO-GA, and
LAPPS models, respectively. The recall of our proposed model
is 79.12%, which is 5.31, 3.36, and 0.86% higher than that of
the Original, LASSO-GA, and LAPPS models, respectively. In
the experimental results using the ridge regression method, the
precision of our proposed model is 85.99%, which is 15.78, 9.39,
and 0.62% higher than that of the Original, LASSO-GA, and
LAPPS models, respectively. The recall of our proposed model
is 84.70%, which is 12.96, 4.70, and 1.37% higher than with the
Original, LASSO-GA, and LAPPS models, respectively.

In terms of negative emotion, we obtain a similar conclusion.
In the experimental results using the ridge regression method,
the precision of the proposed model is 89.79%, some 21.50, 3.30,
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FIGURE 4 | Box plot obtained using ridge regression with the four models for

the combined band of the SEED dataset. Score represents the accuracy rate.

and 1.99% higher than the Original, LASSO-GA, and LAPPS
models, respectively. The recall of SC-SGA is 83.60%, which is
24.03, 7.41, and 3.60% higher than that of the Original, LASSO-
GA, and LAPPS models, respectively. In classifying positive
emotion, the proposed method achieves the best experimental
results. Using ridge regression, the precision of our proposed
model is 88.21%, which is 29.12, 4.88, and 4.21% higher than the
Original, LASSO-GA, and LAPPSmodels, respectively. The recall
of our proposed model is 89.75%, which is 23.08, 4.86, and 2.42%
higher than that of the Original, LASSO-GA, and LAPPS models,
respectively. With the ridge regression method, the precision
of our proposed model is 86.49%, which is 20.58, 4.67, and
1.88% higher than the Original, LASSO-GA, and LAPPS models,
respectively. (See the Supplementary Materials for the L1 and
SVM results.)

We also experimented with the combined band of the SEED
dataset. The three classification methods were used with the four
processing models, and the results are consistent with those for
the gamma band. The following analysis considers the results
obtained by ridge regression (for the SVM and L1 results, see the
Supplementary Materials).

The results in Table 5 indicate that, when ridge regression is
used as the classification method, the SC-SGA model achieves
the best precision and recall of the four emotional classification
models. For neutral emotion, the precision of our proposed
model is 85.98%, which is 11.98, 2.88, and 1.60% higher than
the Original, LASSO-GA, and LAPPS models, respectively. The
recall of our proposed model is 86.12%, which is 7.40, 3.90, and
1.74% higher than that of the Original, LASSO-GA, and LAPPS
models, respectively. In terms of positive emotion, the precision
of our proposed model is 86.18%, which is 5.23, 2.44, and 2.05%
higher than Original, LASSO-GA, and LAPPS, respectively. The
recall of our proposed model is 87.88%, approximately 0.70, 8.33,
and 0.71% higher than when using the Original, LASSO-GA, and
LAPPS models, respectively. Regarding negative emotion, the
precision of our proposed model is 83.15%, which is 10.65, 10.07,
and 8.15% higher than that of the Original, LASSO-GA, and
LAPPS models, respectively. The recall of our proposed model

is 87.56%, which is 15.82, 3.19, and 7.20% higher than with the
Original, LASSO-GA, and LAPPS models, respectively.

Figures 4, 5 in the Supplementary Materials and Figure 4

are box plots obtained from experiments using the four
processing models with SVM, L1, and ridge regression classifiers
for the combined band of the SEED dataset. Clearly, the
accuracy of SC-SGA is better than that of the other three
classification models and the results are more robust, with fewer
fluctuations, which produces a better effect. In particular, the
ridge regression method produces smaller fluctuations than the
other two classifiers.

Figures 5A–D show the confusion matrices obtained by
using the four processing models under the ridge regression
classificationmethod for the combined band of the SEED dataset.
These data show that, among the four processing models, the SC-
SGA model achieves the highest accuracy of 86.58%, which is
7.79, 3.25, and 2.46% higher than the accuracy of the Original,
LASSO-GA, and LAPPS models, respectively. Among the three
emotions, the SC-SGA processingmodel gives the fewest wrongly
classified samples (15 samples), while the Original, LASSO-GA,
and LAPPS models produce 31, 25, and 22 classification errors,
respectively. The results show that SC-SGA is better than other
models in dealing with the SEED dataset. To further validate the
model proposed in this article, we now analyze the results using
the DEAP dataset.

4.2. DEAP Dataset
The experimental results using the DEAP dataset are analyzed in
Table 6. Similar to the results with the SEED dataset, the SC-SGA
model produces the best effect. The detailed results using SVM
and L1 are given in the Supplementary Materials, and the results
using ridge regression are analyzed below.

In terms of positive emotion, the precision of the proposed
model is 80.16%, which is 8.84, 7.79, and 3.17% higher than that
of the Original, LASSO-GA, and LAPPS models, respectively.
The recall of the proposed model is 79.31%, which is 10.85,
8.25, and 4.43% higher than with the Original, LASSO-GA, and
LAPPS models, respectively. For negative emotion, the precision
of the proposed model is 81.02%, which is 8.05, 6.06, and 2.96%
higher than that of the Original, LASSO-GA, and LAPPS models,
respectively. The recall of the proposed model is 82.67%, which
is 12.18, 7.54, and 4.24% higher than when using the Original,
LASSO-GA, and LAPPS models, respectively.

The above results indicate that LASSO-GA, LAPPS, and
SC-SGA have improved to a certain extent. However, the
improvement effect of the SC-SGA model is better than
that of the existing LASSO-GA and LAPPS models. This
demonstrates that SC-SGA provides support for superior
emotion classification.

Figure 5, 7 in the Supplementary Materials and Figure 6 are
box plots obtained from experiments using the four processing
models with SVM, L1, and ridge regression applied to the DEAP
dataset. Clearly, the accuracy of SC-SGA is better than that of the
other three classification models. As far as stability is concerned,
SC-SGA produces smaller fluctuations and is more stable.

It can therefore be concluded that the SC-SGA model is
superior to existing models in the experiments conducted on
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FIGURE 5 | Confusion matrices obtained using ridge regression under the processing of the four models for the combined band of the SEED dataset. The darker the

cell color, the more samples allocated in the interval. (A) Original dataset, (B) Using LASSO-G, (C) Using LAPPS, and (D) Using SC-SGA.

these two real datasets. This proves that the SC-SGA model is
better able to solve the problem of false connections caused by
abnormal values.

5. DISCUSSION

In emotional computing, feature selection is the key to
improving model performance. A classic algorithm for EEG
feature extraction is the brain network based on Granger
causality analysis. However, the inevitable abnormal values in
EEG measurements can lead to false connections. Therefore,
researchers have developed Granger causality analysis models

based on LASSO and causality analysis based on the L1/2
norm for denoising. However, in the construction of the
brain network based on Granger causality analysis, the
characteristic EEG data are retained by analyzing the causality

relationships between the EEG sensors. Thus, accurately
analyzing the causality relationship between sensors and

assigning appropriate weights have become the focus of

research. The existing sparse Granger causality model

does not consider the use of prior knowledge. However,
based on known EEG sensor timing signals, researchers

can directly analyze the degree of correlation between

sensors. We believe that if the timing signals of two sensors
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TABLE 6 | Precision and recall results for ridge regression using the DEAP dataset.

Feature extraction model
Positive Negative

Precision Recall Precision Recall

Original 0.7132 ± 0.0350 0.6846 ± 0.0332 0.7297 ± 0.0314 0.7049 ± 0.0321

LASSO-GA 0.7219 ± 0.0243 0.7106 ± 0.0251 0.7496 ± 0.0220 0.7513 ± 0.0201

LAPPS 0.7699 ± 0.0190 0.7488 ± 0.0143 0.7806 ± 0.0158 0.7843 ± 0.0176

SC-SGA 0.8016 ± 0.0120 0.7931 ± 0.0123 0.8102 ± 0.0092 0.8267 ± 0.0102

FIGURE 6 | Box plot obtained using ridge regression with the four models for

the DEAP dataset. Score represents the accuracy rate.

are more closely related, they are more likely to have a
causality relationship.

On the basis of this idea, we proposed the model described
in this article, using the known sensor correlations as prior
knowledge to enhance the causality construction ability of
the existing sparse Granger model. Based on the existing
literature, we selected 16 emotion-related sensor channels
and used the L1/2 norm to remove artifacts in the data
while retaining emotion-related information (Zheng and Lu,
2015; Zheng et al., 2017; Chen et al., 2020). Next, we
calculated the similarity between sensors. We assumed that
the similarity between these sensors was related to the
sensor correlation, which means that the similarity degree
could be used as a correction to enhance the ability of
the model to distinguish different emotional states. From
a neurobiological perspective, the cortical electrodes record
the total discharge of neurons, and the discharge state of
different emotions must be different. Therefore, the similarity
between sensors should be used as the a priori weight for
sensor causal analysis. The experimental results strongly support
our hypothesis.

Although we have proved that the similarity between
sensors can enhance the feature selection ability of the
Granger causality model, the experimental constructions in
this paper are based only on cerebral cortex signals and do
not trace the EEG signals. Therefore, in future work, we
will further improve this model so that it can be applied
to the data after EEG traceability. This will enable further

study of the relationship between the sensor similarity and
sensor causality.

6. CONCLUSION

The experimental results presented in this paper show that,
compared with existing models, the proposed SC-SGAmodel has
better emotion recognition capabilities and stability. We believe
that this model provides an excellent supplement to classification
models based on sparse Granger causality analysis. We hope that
the proposed model will provide new ideas for the development
of sparse Granger causality models, thus promoting the clinical
application of the auxiliary diagnosis of affective disorders in the
brain science industry.
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