
ORIGINAL RESEARCH
published: 18 October 2021

doi: 10.3389/fncom.2021.697469

Frontiers in Computational Neuroscience | www.frontiersin.org 1 October 2021 | Volume 15 | Article 697469

Edited by:

Shuaiqi Liu,

Hebei University, China

Reviewed by:

Yuanluo An,

Beijing Jiaotong University, China

Shuhuan Zhao,

Hebei University, China

*Correspondence:

Hongbing Pan

phb@nju.edu.cn

Received: 19 April 2021

Accepted: 20 September 2021

Published: 18 October 2021

Citation:

Chen X, Yuan X, Fu G, Luo Y, Yue T,

Yan F, Wang Y and Pan H (2021)

Effective Plug-Ins for Reducing

Inference-Latency of Spiking

Convolutional Neural Networks During

Inference Phase.

Front. Comput. Neurosci. 15:697469.

doi: 10.3389/fncom.2021.697469

Effective Plug-Ins for Reducing
Inference-Latency of Spiking
Convolutional Neural Networks
During Inference Phase
Xuan Chen, Xiaopeng Yuan, Gaoming Fu, Yuanyong Luo, Tao Yue, Feng Yan, Yuxuan Wang

and Hongbing Pan*

The School of Electronic Science and Engineering, Nanjing University, Nanjing, China

Convolutional Neural Networks (CNNs) are effective and mature in the field of

classification, while Spiking Neural Networks (SNNs) are energy-saving for their sparsity

of data flow and event-driven working mechanism. Previous work demonstrated that

CNNs can be converted into equivalent Spiking Convolutional Neural Networks (SCNNs)

without obvious accuracy loss, including different functional layers such as Convolutional

(Conv), Fully Connected (FC), Avg-pooling, Max-pooling, and Batch-Normalization (BN)

layers. To reduce inference-latency, existing researches mainly concentrated on the

normalization of weights to increase the firing rate of neurons. There are also some

approaches during training phase or altering the network architecture. However, little

attention has been paid on the end of inference phase. From this new perspective, this

paper presents 4 stopping criterions as low-cost plug-ins to reduce the inference-latency

of SCNNs. The proposed methods are validated using MATLAB and PyTorch platforms

with Spiking-AlexNet for CIFAR-10 dataset and Spiking-LeNet-5 for MNIST dataset.

Simulation results reveal that, compared to the state-of-the-art methods, the proposed

method can shorten the average inference-latency of Spiking-AlexNet from 892 to 267

time steps (almost 3.34 times faster) with the accuracy decline from 87.95 to 87.72%.

With our methods, 4 types of Spiking-LeNet-5 only need 24–70 time steps per image

with the accuracy decline not more than 0.1%, while models without our methods require

52–138 time steps, almost 1.92 to 3.21 times slower than us.

Keywords: artificial neural network, spiking neural network, deep learning, object classification, deep networks,

spiking network conversion, inference-latency

1. INTRODUCTION

CNN architectures, such as YOLO (Redmon et al., 2016), ResNet (He et al., 2016),
GoogLeNet (Szegedy et al., 2015, 2016) and VGG-16 (Simonyan and Zisserman, 2014),
have been successfully proved effective on computer vision benchmarks like ImageNet
(Deng et al., 2009). Besides, there are many mature methods (e.g., forward propagation,
back propagation, gradient descent; Rumelhart et al., 1986) and tools [e.g., PyTorch
(Paszke et al., 2019), Caffe (Jia et al., 2014), Tensorflow (Abadi et al., 2016)] for training.
However, higher accuracy of classification means larger and deeper CNN architectures,
which further incurs more operands and larger energy costs. To overcome these

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2021.697469
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2021.697469&domain=pdf&date_stamp=2021-10-18
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:phb@nju.edu.cn
https://doi.org/10.3389/fncom.2021.697469
https://www.frontiersin.org/articles/10.3389/fncom.2021.697469/full

Chen et al. Reducing Inference-Latency of SCNNs

challenges, many researchers made attempts to make their
CNN architectures smaller or sparser by pruning (Guo et al.,
2016; He et al., 2017), compression (Han et al., 2016) and
quantization (Gong et al., 2014), displaying promising results.
In spite of these methods, to achieve higher accuracy, deeper
and more complicated neural networks still need a large
amount of computing resources and power consumption
(Tan and Le, 2019).

Imitating human’s brain, SNN architectures replace particular
data values in CNNs with spikes. The event-based operations
in SNNs ensure low-power consumption in their hardware
implementations, such as Field-Programmable Gate Arrays
(FPGAs) (Han et al., 2020) and Application Specific Integrated
Circuits (ASICs) (Frenkel et al., 2019). In addition, large-scale
neuromorphic spiking platforms such as TrueNorth (Benjamin
et al., 2014; Merolla et al., 2014) and SpiNNaker (Furber et al.,
2014) are also useful for SNN simulation. Though SNNs are
energy efficient, they are not as popular as CNNs on account of
relatively immature training methods and worse accuracies (Roy
et al., 2019). Training methods of SNNs include unsupervised
spike-timing-dependent plasticity (STDP) (Diehl and Matthew,
2015) and supervised gradient descent and back-propagation
(Haeng et al., 2016). Although STDP is biologically closer to
human’s brain, its learning performance is significantly lower
than that of CNNs. Recent works (Jin et al., 2018) proposed a
supervised learning algorithm, using an approximate function to
represent the non-differentiable portion of SNNs in order to use
back-propagation. Despite these efforts, most previous works can
achieve good performance for MNIST dataset but still remain
gaps for more difficult datasets (Roy et al., 2019).

Combining the effectiveness of CNNs with the efficiency
of SNNs, Cao et al. (2015) raised SCNNs and described the
way to directly transform CNNs to SNNs without complex
changes. Specifically, spikes are generated by random number
and probability. The frequency of spikes during a long time
represents corresponding value in CNNs. Max-pooling layers are
replaced by Avg-pooling layers. All the biases in Conv layers and
FC layers are set to zero. This work reports good performance
on CIFAR-10 dataset, error rates of which are not more than 2%
less than that of original CNNs. Diehl et al. (2015) improved
SCNNs by using a weight scheme, which rescaled the weights
to avoid approximation errors in neurons. Rueckauer et al.
(2017) changed the random input to constant analog activation,
which improved accuracy and reduced inference-latency. In
addition, their work extended SCNNs by developing spiking
implementations of Max-pooling layers, softmax activation,
neuron biases, and BN layers (Ioffe and Szegedy, 2015) in CNNs.
Among large-scale CNNs, VGG-16 and GoogLeNet Inception3
have been successfully converted into spiking forms (Rueckauer
et al., 2017). Spiking-ResNet and Spiking-YOLO have been
implemented by later works (Sengupta et al., 2018; Kim et al.,
2019).

Though these approaches have achieved good results on
MNIST (Lecun et al., 1998), CIFAR-10 (Krizhevsky and Hinton,
2009) and ImageNet (Deng et al., 2009) datasets, during the
simulation of Spiking-LeNet-5 and Spiking-AlexNet models, we
find that the large inference-latency of SCNNs is an ineludible

problem. Analysis of Rueckauer et al. (2017) is focusing on
raising firing rates of neurons in each layer through weight-
normalization, which will effectively save time. Zambrano and
Bohte (2016) have developed a conversion method using spiking
neurons with adaptive firing threshold to reduce the needed
number of spikes for information encoding. Panda et al. (2016)
added extra output layers to get part of results in advance.
Neil et al. (2016) introduced several approaches during training
phase to reduce inference-latency. Yang et al. (2020) proposed
a novel n-scaling weight mapping method to realize high-
accuracy and low-latency SCNNs. Though these works have
achieved effective performance on reducing inference-latency of
SCNNs, their focuses of attention are on weights, thresholds,
network architectures and training phase, not on the end of
inference phase.

Through observing output spike counts received by counters
corresponding to neurons of the last layer in SCNNs, we find that
there are some input data points hard to classify. To be specific,
at least two maximal output spike counts always look similar.
These input data points are defined as tough data. The number
of tough data is decreasing with the increment of time steps.
But even when time steps are large enough, there are still tough
data remaining, leading to incorrect results. Compared with
tough data, other data can obtain expected results and consume
fewer time steps. Therefore, as long as we can distinguish
tough data and other data as early as possible, inference-latency
for other data can be greatly saved, reducing total inference-
latency. During inference phase, according to real-time output
spike counts, through analyzing the gap between output spike
counts, we add different stopping criterions to determine whether
current SCNN continues or generates result. These stopping
criterions are based on observation, experiment results and
mathematical demonstration. In cognitive neuroscience field,
Sequential Sampling Models (Forstmann et al., 2015) and Visual
Confidence (Mamassian, 2016) are models for organic brains to
deal with determination problem. The connection between our
stopping criterions and these models provides a biological basis
for the reasonability of our methods.

In this work, we propose 4 stopping criterions to reduce
the inference-latency of SCNNs during inference phase. As
plug-ins at the end of networks, experiments demonstrate that
our stopping criterions can significantly save total inference-
latency without obvious accuracy loss. Compared with original
models following existing techniques (Rueckauer et al., 2017), for
Spiking-AlexNet and CIFAR-10, we only need 267 time steps per
image to achieve the accuracy of 87.72%, the accelerative ratio
of which is 3.34X. For Spiking-LeNet-5 and MNIST, we use 4
types of models, Avg-pooling with no biases, Avg-pooling with
no biases but Poisson input, Max-pooling with no biases and
Avg-pooling with BN layers and biases, respectively, verifying
the universality and compatibility of our methods. For Spiking-
LeNet-5 with Avg-pooling and no biases, 24 time steps per image
can obtain the accuracy of 98.50% and the accelerative ratio
is 2.3X. For Spiking-LeNet-5 with Avg-pooling and no biases
but Poisson input, we can attain the accuracy of 98.48% with
27 time steps per image, while the accelerative ratio is 1.92X.
For Spiking-LeNet-5 with Max-pooling and no biases, 30 time

Frontiers in Computational Neuroscience | www.frontiersin.org 2 October 2021 | Volume 15 | Article 697469

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Chen et al. Reducing Inference-Latency of SCNNs

steps are needed per image to reach the accuracy of 97.91%. Its
accelerative ratio is 3.21X. For Spiking-LeNet-5 with Avg-pooling
and BN layers, to achieve the accuracy of 98.73%, 44 time steps
are required, the accelerative ratio of which is 1.95X.

The remainder of this paper is organized as follows. Section
2 introduces the basic principle for CNNs converting to SCNNs,
observations and analysis for training dataset and the 4 proposed
stopping criterions to reduce inference-latency. Then, we give
the software experimental results and compare our methods
with the prior arts in section 3. In section 4, we discuss relative
cognitive neuroscience works, compare the 4 stopping criterions
and summarize our work.

2. METHODS

In section 2.1, details of conversion from CNNs to SCNNs are
provided, including information of CNNs, the implementation of
Max-pooling layers and Batch-Normalization layers in SCNNs,
neuron equations used for conversion, different input formats
and rules for thresholds and weight normalization. In section
2.2, we observe original SCNN models described in section 2.1,
analyze the relation between inference-latency and accuracy and
find some data points difficult to obtain unique classification
results along with time steps. Such data points are defined as
tough data. In section 2.3, for training dataset, the relation
between output spike counts in SCNNs and corresponding values
in CNNs is analyzed. In section 2.4, we propose 4 stopping
criterions to reduce the inference-latency for SCNNs.

2.1. Converting CNNs to SCNNs
The rules converting CNNs to SCNNs used in this paper are
based on the work of Rueckauer et al. (2017), ensuring the
universality and good performance of our original SCNNmodels.

2.1.1. Network Architectures
In this work, we use AlexNet (Krizhevsky et al., 2012) for CIFAR-
10 and LeNet-5 (Lecun et al., 1998) for MNIST. In the work
of Cao et al. (2015), the conversion from CNNs to SCNNs
requires replacing Max-pooling layers by Avg-pooling layers and
setting biases to zero. Therefore, our main SCNN models use
Avg-pooling layers and have no biases. In addition, we use
LeNet-5 to test situations with Max-pooling layers and Batch-
Normalization layers.

Rueckauer et al. (2017) created the way to implement Max-
pooling layers in SCNNs according to the principle of Winner-
Take-All. More specifically, in the Max-pooling window, only
the earliest neuron generating spikes will be the choice. Besides,
Rueckauer et al. (2017) successfully added biases and BN
layers in their SCNNs. Through altering weights and biases
of one Conv layer or FC layer, the following BN layer can
be deleted. These new biases can be continuously added into
corresponding neurons after dividing the product of thresholds
before this layer.

The trained accuracy of AlexNet-avg-0b is 87.95%. The
accuracy of LeNet-5-avg-0b after training is 98.56%. Then
we replace Avg-pooling layers by Max-pooling layers. The
accuracy of LeNet-5-max-0b is 98.65%. We also add two BN

layers to LeNet-5. BN layer 1 follows Conv layer 1 and BN
layer 2 follows Conv layer 2. All the layers in this model
have biases. The accuracy of LeNet-5-avg-BN after training
is 98.82%.

2.1.2. Neuron
The basic principle of converting CNNs to SCNNs is that the
frequency of spike in SCNNs is approximately linear to the value
in CNNs. In neurons, spikes are generated by firing operations.
According to the work of Rueckauer et al. (2017), the membrane
potential V(t) of a spiking neuron in SCNN models is updated
at each time step by the following equations derived from the
integrate-and-fire neuron model:

V(t) = V(t − 1)+ X(t)

if V(t) ≥ Vthr , spike and reset V(t) = V(t)− Vthr .
(1)

In the neuron equations, X(t) is the sum of all the input synapses
connected into the neuron. Particularly, X(t) is the dot product
of input vector and weight vector. Input vector comes from
input activation or output spikes of other neurons. Weight vector
means strength of synapses in neurons. The correspondence
between input vector and weight vector is the same as that in
CNNs. After V(t) exceeds its threshold Vthr , the neuron fires
and generates a spike, transmitted to neurons in the next layer.
Meanwhile, the neuron’s membrane potential V(t) will be reset
to V(t)-Vthr .

2.1.3. Thresholds and Normalization
In the papers of Diehl et al. (2015) and Rueckauer et al. (2017), all
the thresholds were set to 1, altering and normalizing weights and
biases simultaneously. In our work, we use 99.9% normalization.
For each layer and each input data point in training dataset, we
calculate the dot product of input vector and weight vector in
CNNs, named output vector. For network with biases, the output
vector also needs to add the bias vector. Then we delete zero
and negative values in output vectors and find the 0.1% maximal
value from the rest for each layer. By pervious operations, we
can get one value per layer, defined as O0.1%

layer
. The weights

WSCNN
layerN

and biases BSCNN
layerN

in layer N will be transformed by

following equations:

WSCNN
layerN = WCNN

layerN ∗
O0.1%
layerN−1

O0.1%
layerN

BSCNNlayerN = BCNNlayerN ∗
1

O0.1%
layerN

O0.1%
layer0 = 1.

(2)

2.1.4. Input
In the paper of Rueckauer et al. (2017), input data for SCNNs
are in the form of continuous analog currents between 0 and 1.
For validation of universality, we also use Poisson spikes as our
input for LeNet-5-avg-0b model. According to the work of Cao

Frontiers in Computational Neuroscience | www.frontiersin.org 3 October 2021 | Volume 15 | Article 697469

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Chen et al. Reducing Inference-Latency of SCNNs

et al. (2015), we transform input data I in MNIST dataset ranging
from 0 to 255 into Poisson spikes by following rules:

random number(t) ∼ U(0, 1)

if random number(t) < I/255, IPoisson(t) = 1

if random number(t) ≥ I/255, IPoisson(t) = 0.

(3)

The random number is generated per time step t and follows
uniform distribution pattern from 0 to 1. IPoisson(t) means the
input spike transmitted into SCNNs at time step t.

2.2. Observation of Original SCNN Models
After all the steps introduced in section 2.1, we have built our
original SCNN models. Observation of these models during
inference phase is presented in this section.

2.2.1. Original Stopping Criterion
For original models, all the data have been run for the same set
finish time. For the last layer, one counter per neuron is used
to count the number of output spikes. Then we compare all the
counters after finish time, the maximal counter of which will be
the winner. The set finish time is defined as Tmax. The unit of
Tmax is time step. We use original stopping criterion to describe
this termination operation.

2.2.2. Random Selection for Tough Data
During our observation, not matter how many time steps have
been consumed, there still remain some input data points difficult
to classify. For these input data points, at least two maximal
counters always receive almost equivalent number of spikes. In
this case, different Tmax may lead to different results. We use
tough data to represent such situations. On the contrary, maximal
counter of other data can obviously receive more spikes than
other counters.

In the code, the way to find maximal counter can directly
determine the classification result of tough data. For example,
ascending or descending order will lead to different accuracies,
drawing imprecise conclusions. To avoid this problem, 10,000
times of random selections between the same maximal counters
will be used during each determination of tough data. The final
accuracy is an average result of 10,000 times.

2.2.3. The Influence of Tmax on Accuracy and Tough

Data
Figure 1A shows that the accuracy of each Spiking-LeNet-5
original model is close to 10% at first several time steps and
then increases significantly. After a sudden increasing phase, each
accuracy increases slowly and tends to be stable. The accuracy of
BNmodel increases much slower than that of other models. After
zooming in on Y-axis, Figure 1B clearly shows that accuracies
are rising slowly in fluctuation after the sudden increasing phase.
Spiking-LeNet-5 (avg, 0b), no matter analog input or Poisson
input, can easily achieve its CNN accuracy (98.56%) when Tmax

is larger than 60 time steps. Spiking-LeNet-5 (avg, BN) can also
achieve its CNN accuracy (98.82%) but consumes more time
steps than other models. The accuracy achieved by Spiking-
LeNet-5 (max, 0b) is not more than 98%, lower than CNN

accuracy (98.65%). This gap comes from the implementation
of Max-pooling. Tmax larger than 60 time steps guarantees an
accuracy higher than 97.9%.

Besides, error rates contributed by tough data are presented in
Figure 1A. For models with no biases, such error rates decrease
dramatically at first and slowly later on. Error rate of Max-
pooling model is higher than Avg-pooling models with no
biases, in accord with accuracy results. For BN model, error rate
generated by tough data first drops down and then rises up to
normal level like other models. This phenomenon is caused by
biases. At first several time steps, neurons with relatively large
biases will generate spikes early, reducing the number of tough
data. Then spikes mainly contributed by input will be generated.
Output spike counts gradually move close to ideal results. From
the perspective of time, we can infer from Figure 1A that
classifying tough data needs long time, even not ensuring correct
results. On the contrary, classifying other data needs shorter time.
To reduce inference-latency, different strategies should be used
for different types of data.

2.3. Output Spike Analysis
To better learn characteristics of tough data and other data,
output spike counts should be analyzed carefully, together with
their corresponding values in CNNs.

2.3.1. The Relation Between Output Spike Counts

and Corresponding Values in CNN
Figures 2A–D present the relation between output spike
counts in Spiking-LeNet-5 and corresponding value distribution
(greater than zero) in LeNet-5 after T time steps, for Spiking-
LeNet-5 (avg, 0b, analog input) model, Spiking-LeNet-5 (avg,
0b, Poisson input) model, Spiking-LeNet-5 (max, 0b, analog
input) model and Spiking-LeNet-5 (avg, BN, analog input)
model, respectively. All the input data points are from MNIST
training dataset (60,000 images). In these figures, X-axis means
value in CNNs and Y-axis means density. Data in these figures
colored diversely correspond to different output spike counts
in SCNNs. For one fixed CNN value, several output spike
counts can be generated by SCNN. For one fixed output spike
count, the probability distribution of its corresponding CNN
value is clearly shown in these figures. Obviously, for models
with no biases, we can use normal fitting to estimate these
probability distributions. For models with biases, unfortunately,
these probability distributions look like a mess. We need to find
other ways to analyze models with biases.

2.3.2. Normal Fitting Parameters for Models With No

Biases
As output spike count 0 corresponds to most of negative
values and part of relatively small positive values in CNNs,
we cannot use normal fitting to deal with this asymmetric
situation. Besides, negative values are not important during final
classifying phase. Only positive values need to be analyzed. In
consequence, for positive values corresponding to output spike
count 0, we use half-normal fitting with a mean zero to get the
standard deviation.

Frontiers in Computational Neuroscience | www.frontiersin.org 4 October 2021 | Volume 15 | Article 697469

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Chen et al. Reducing Inference-Latency of SCNNs

FIGURE 1 | The relation between inference-latency and accuracy and the relation between inference-latency and error rate of tough data. (A) Four thick lines are error

rates produced by tough data for 4 different Spiking-LeNet-5 models. Four fine lines are accuracies of these models. (B) The accuracy in the range of 97 to 99%.

CNN accuracy for each model has been drawn by dotted lines.

For Spiking-LeNet-5 (avg, 0b, analog input), Figure 3 presents
its normal fitting parameters after different time steps. In
each subfigure, the upper oblique line is the linear fitting
result of fitted means and the other line is the linear fitting
result of fitted standard deviations. X-axis means output spike
counts. No matter how many time steps have been consumed,
fitted means have a good linear relation with output spike

counts, while fitted standard deviations are close to each other.
Similar results can be obtained in Spiking-LeNet-5 (avg, 0b,
Poisson input) and Spiking-LeNet-5 (max, 0b, analog input), but
fitted standard deviations of Spiking-LeNet-5 (max, 0b, analog
input) are obviously larger than those of Avg-pooling models.
This difference probably comes from the implementation
of Max-pooling.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 October 2021 | Volume 15 | Article 697469

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Chen et al. Reducing Inference-Latency of SCNNs

FIGURE 2 | The relation between output spike counts in Spiking-LeNet-5 and corresponding CNN values distribution (greater than zero) in LeNet-5 after T time steps.

Distributions with different colors correspond to different output spike counts. For models without biases, normal fitting or half-normal fitting are added.

(A) Spiking-LeNet-5 avg 0b analog T = 20 time steps, (B) Spiking-LeNet-5 avg 0b Poisson T = 20 time steps, (C) Spiking-LeNet-5 max 0b analog T=20 time steps,

(D) Spiking-LeNet-5 avg BN analog T = 20 time steps.

2.3.3. Focusing on Max1 and Max2 CNN Values for

Models With Biases
According to Figure 2D, we cannot use normal fitting to describe
the relation between output spike counts and CNN values for
models with biases.We need to analyze from other points of view.
From Figure 2D, we can see that relatively small CNN values (less
than 0.4) may belong to several different output spike counts.
For one fixed CNN value in this range, it’s difficult for us to
estimate its corresponding output spike count. Similarly, for two
fixed output spike counts in this range, we are not certain that
the CNN value corresponding to the larger output spike count
is larger as well. Nevertheless, from Figure 2D we can also find
that relatively large CNN values (greater than 0.4) belong to larger
output spike counts. The distribution of CNN values for relatively
small output spike counts is obviously separate from that for
relatively large output spike counts. In this case, if we observe one
CNN value less than 0.4 and another CNN value greater than 0.4,
we will find the output spike count of larger CNN value larger

with high probability. In CNNs, we always find maximal value
among neurons in the last layer to get classification result. If we
only take maximal CNN value and second maximal CNN value
into consideration, distributions of relatively small values may be
filtered out. Avoiding dealing with disordered distributions, this
perspective can help us make decisions.

For convenience, we use max1 and max2 to refer to the
maximal value and second maximal value among neurons in the
last layer of CNN. For Spiking-LeNet-5 (avg, BN, analog) model,
we record all the output spike counts corresponding to max1 and
max2 after going through training dataset. For different output
spike counts, we count their occurrence numbers at different time
steps. Figure 4A exhibits the occurrence number distribution
after 40 time steps, counting, respectively, for max1 and max2.
As can be seen from this figure, there is a distinct gap between
output spike counts for max1 and max2. Figure 4B displays the
occurrence number distribution after 40 time steps, counting
simultaneously for max1 and max2. As we know nothing of

Frontiers in Computational Neuroscience | www.frontiersin.org 6 October 2021 | Volume 15 | Article 697469

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Chen et al. Reducing Inference-Latency of SCNNs

FIGURE 3 | Linear fitting of normal fitting parameters after different time steps for Spiking-LeNet-5 avg 0b analog model. The upper lines are linear fitting of means

and the other lines are linear fitting of standard deviations. X-axis is output spike count.

testing dataset, what we can rely on is training dataset. These
occurrence number distributions will be important research
materials for models with biases.

2.4. Proposed Inference-Latency Reducing
Plug-Ins
In section 2.3.2, we have observed that for models with no biases,
there is a linear relation between the fittedmean of possible values
in CNNs and output spike count in SCNNs. We can deduce that
for two CNN values with a big gap, their output spike counts will
own the same size relationship with high probability. To illustrate
this deduction, we draw the scatter diagram of different CNN
values and their corresponding output spike counts when T is
30 time steps for Spiking-LeNet-5(avg, 0b, analog) model, as is
shown in Figure 5. The red horizontal line means CNN value 0.6.
The output spike count of values in green box is 10. The output
spike count of values in pink box is 16. Obviously, all the values
in green box are not more than 0.6 while all the values in pink box
are greater than 0.6. Therefore, when we receive two output spike
counts 10 and 16, we are sure that CNN value corresponding
to output spike count 16 is greater than that corresponding
to output spike count 10. By analogy, when we receive two
output spike counts with a big gap, their CNN values will own
the same size relationship. According to this deduction, section
2.4.1 proposes a simple stopping criterion with enumeration,
section 2.4.2 puts forward a stopping criterion based on Normal
distribution theory and section 2.4.3 presents a simple stopping

criterion based on Normal distribution theory. For situation with
biases, section 2.4.4 brings forward a stopping criterion based on
the estimation of training dataset in section 2.3.3.

2.4.1. Simple Stopping Criterion With Enumeration
No matter 0b or BN models, to differentiate output spike
counts corresponding to different values, the simplest solution
is subtraction. In this way, we set a simple stopping criterion
for SCNNs:

Count1 = max(output spike counts(T))

Count2 = max(output spike counts(T) without Count1)

If Count1 ≥ Count2+ REQ or T = Tmax, end

else T = T + 1, continue.

(4)

In this stopping criterion, we use REQ to represent the gap
between Count1 and Count2, which means the requirement for
this gap. When the stopping criterion of REQ is satisfied, we
regard the class of Count1 as our determination. For tough data,
which will not easily meet the stopping criterion of REQ, we use
Tmax to limit their running time, avoiding meaningless waste
of time. For other data, Count1 is larger than Count2 at time
steps before Tmax. With this stopping criterion, these data will
certainly save inference-latency. We can use the same Tmax as
original models but need to find suitable REQ by enumeration
and multiple experiments.

Frontiers in Computational Neuroscience | www.frontiersin.org 7 October 2021 | Volume 15 | Article 697469

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Chen et al. Reducing Inference-Latency of SCNNs

FIGURE 4 | The occurrence number distribution for the output spike counts of max1 and max2 in CNN. For convenience, we use max1 and max2 to represent

maximal value and second maximal value among neurons in the last layer of CNN. For Spiking-LeNet-5(avg, BN, analog) and training dataset, occurrence numbers of

different output spike counts corresponding to max1 and max2 at different time steps have been recorded. (A) The occurrence number distribution after 40 time

steps, counting, respectively, for max1 and max2. (B) The occurrence number distribution after 40 time steps, counting simultaneously for max1 and max2.

Frontiers in Computational Neuroscience | www.frontiersin.org 8 October 2021 | Volume 15 | Article 697469

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Chen et al. Reducing Inference-Latency of SCNNs

FIGURE 5 | The scatter diagram of different CNN values and their corresponding output spike counts when T is 30 time steps for Spiking-LeNet-5(avg, 0b, analog)

model. The red horizontal line means CNN value 0.6. The output spike count of values in green box is 10. The output spike count of values in pink box is 16.

Obviously, all the values in green box are not more than 0.6 while all the values in pink box are greater than 0.6. Therefore, when we receive two output spike counts

10 and 16, we are sure that CNN value corresponding to output spike count 16 is greater than that corresponding to output spike count 10.

2.4.2. Stopping Criterion Based on Normal

Distribution Theory
According to the observation in section 2.3.2, for models without
biases, we can differentiate output spike counts by Normal
distribution theory. After T time steps, value X1 in CNNs, which
corresponds to output spike count Count1 in SCNNs, is normally
distributed. The mean of this normal distribution is defined as
µ1(T) and the standard deviation is defined as σ1(T). Similarly,
value X2 in CNNs, which corresponds to output spike count
Count2 in SCNNs, obeys normal distribution. The mean isµ2(T)
and the standard deviation is σ2(T). We assume that Count1 is
larger than Count2 and define X equals to X1 minus X2. We can
deduce following inferences from normal distribution theory:

X1 ∼ N
(

µ1(T), σ1(T)
2
)

while Count1

X2 ∼ N
(

µ2(T), σ2(T)
2
)

while Count2

X = X1 − X2,Count2 < Count1 (5)

X ∼ N
(

µ1(T)− µ2(T), σ1(T)
2 + σ2(T)

2
)

P (X1 < X2) = P(X < 0).

In this way, µ(T) and σ (T) fitted in section 2.3.2 can be used to
calculate the degree of credibility for each combination of Count1
and Count2. As there are errors existing from fitting process
and different datasets, the probability calculated by Normal
distribution theory is not actual probability for testing dataset.
The value can only represent an extent for reference. We define
P(X<0) as an extent of error (EE).With set EE, stopping criterion
based on Normal distribution theory is as follows:

Count1 = max(output spike counts(T))

Count2 = max(output spike counts(T) without Count1)

X ∼ N
(

µ1(T)− µ2(T), σ1(T)
2 + σ2(T)

2
)

If P(X < 0) < EE or T = Tmax, end

else T = T + 1, continue.

(6)

Frontiers in Computational Neuroscience | www.frontiersin.org 9 October 2021 | Volume 15 | Article 697469

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Chen et al. Reducing Inference-Latency of SCNNs

2.4.3. Simple Stopping Criterion Based on Normal

Distribution Theory
In section 2.3.2, we have observed that µ(T) is nearly linear and
σ (T) is approximately horizontally linear for models without
biases. Therefore, we put the slope of µ(T) and the mean value
of σ (T) into our equation in section 2.4.2 and name them k(T)
and σ (T), respectively:

Count1 − Count2 = REQ

µ1(T)− µ2(T) ≈ k(T) ∗ (Count1 − Count2) = k(T) ∗ REQ

σ1(T)
2 + σ2(T)

2 ≈ [
√
2σ (T)]2

P(X < 0) < EE, X ∼ N
(

k(T) ∗ REQ, [
√
2σ (T)]2

)

P(Y < −
k(T) ∗ REQ
√
2σ (T)

) < EE, Y ∼ N (0, 1)

REQ >

√
2σ (T) ∗ norminv(1− EE, 0, 1)

k(T)
.

(7)

Norminv function means inverse cumulative distribution
function (ICDF) of normal distribution. For actual use, REQ
should round up into an integer by ceil function. Compared
with simple stopping criterion with enumeration, REQ used
in this section is calculated by set EE and fitted Normal
distribution parameters:

Count1 = max(output spike counts(T))

Count2 = max(output spike counts(T) without Count1)

REQ(EE,T) =

√
2σ (T) ∗ norminv(1− EE, 0, 1)

k(T)

If Count1 ≥ Count2+ ceil(REQ(EE,T)) or T = Tmax, end

else T = T + 1, continue.

(8)

Figures 6A–C exhibit REQ(EE,T) for Spiking-LeNet-5 (avg, 0b,
analog), Spiking-LeNet-5 (avg, 0b, Poisson) and Spiking-LeNet-
5 (max, 0b, analog), respectively. Figures 6A,B are similar as
they share the same weights and network architectures, except
for REQ(EE,T) before 15 time steps. This difference is caused by
different input forms. The slopes of REQ(EE,T)-T in Figure 6C

are visibly larger than others, which indicates that Spiking-LeNet-
5(max, 0b, analog) needs larger REQ than other models to get
similar performance. This phenomenon comes from the larger
standard deviations of Max-pooling models as mentioned in
section 2.3.2. From the three figures, we can see that smaller
EE and larger T will lead to larger REQ. In the cases of fixed
EE, REQ is nearly linear to T. Performance of this stopping
criterion can help us choose suitable REQ for stopping criterion
in section 2.4.1.

2.4.4. Stopping Criterion Based on the Estimation of

Training Dataset
From section 2.3.1, we have found that, for models with biases,
it’s hard to describe the relation between CNN values and output
spike counts through directly fitting the distributions. Though

stopping criterion with enumeration proposed in section 2.4.1
can be used in this situation, we still need to raise this problem
and try to solve it.

In section 2.3.3, we have calculated occurrence number
distribution of max1 output spike count (output spike count
of max1 value in CNN) and max2 output spike count
(output spike count of max2 value in CNN) at different time
steps, denoting as ON(Count1,Count2,T). With this occurrence
number distribution, when we use REQ as our stopping
criterion, we can approximatively calculate the error probability
Perror(REQ,T) as follows:

Perror(REQ,T)

=

∑

Count1−Count2≥REQ ON(Count2,Count1,T)
∑

Count1−Count2≥REQ(ON(Count1,Count2,T) + ON(Count2,Count1,T))
.

(9)

The stopping criterion based on the estimation of training dataset
is described as follows:

Count1 = max(output spike counts(T))

Count2 = max(output spike counts(T) without Count1)

If Perror(Count1− Count2,T) < EE or T = Tmax, end

else T = T + 1, continue.

(10)

We still use EE to represent the extent of error. The core of this
stopping criterion is to estimate the size relationship of output
spike counts for testing dataset by training dataset through
calculated error probabilities.

3. RESULTS

Except for the training of CNNs, all the experiments and figures
in this section are done on MATLAB platform. We get all the
distribution data from training dataset. The testing results in this
section are due to testing dataset. For AlexNet, we use CIFAR-10
dataset. For LeNet-5, we use MNIST dataset.

3.1. Performance of Proposed Methods
For convenience, we use stopping criterion 1 to denote the simple
stopping criterion with enumeration in section 2.4.1, stopping
criterion 2 to denote the stopping criterion based on Normal
distribution theory in section 2.4.2, stopping criterion 3 to denote
the simple stopping criterion based on Normal distribution
theory in section 2.4.3 and stopping criterion 4 to denote the
stopping criterion based on the estimation of training dataset
in section 2.4.4.

We firstly select suitable Tmax for each original model to
get suitable accuracy. In our proposed stopping criterions,
we use the same Tmax as that in original models. During
inference phase, we sum all the inference-latency for testing
dataset and calculate the average inference-latency. To exhibit the
performance of proposed stopping criterions on the reduction of
inference-latency, we use the ratio of average inference-latency
to Tmax. We also compare the accuracies when using proposed

Frontiers in Computational Neuroscience | www.frontiersin.org 10 October 2021 | Volume 15 | Article 697469

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Chen et al. Reducing Inference-Latency of SCNNs

FIGURE 6 | Calculated REQ(EE,T) according to Normal distribution theory for Spiking-LeNet-5(avg, 0b, analog), Spiking-LeNet-5(avg, 0b, Poisson) and

Spiking-LeNet-5(max, 0b, analog), respectively. EE means extent of error. T means time steps. REQ is proposed in simple stopping criterion with enumeration.

(A) Spiking-LeNet-5 avg 0b analog. (B) Spiking-LeNet-5 avg 0b Poisson. (C) Spiking-LeNet-5 max 0b analog.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 October 2021 | Volume 15 | Article 697469

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Chen et al. Reducing Inference-Latency of SCNNs

FIGURE 7 | Performance of stopping criterion 1 for five different models. X-axis is REQ. For full lines, Y-axis means ratio of average inference-latency to Tmax . For

dotted lines, Y-axis means accuracy decline compared with original models owning the same Tmax , the unit of which is percent. Different colors means

different models.

stopping criterions or original one, denoting their difference as
accuracy decline.

3.1.1. Performance of Stopping Criterion 1
The accuracies of Spiking-LeNet-5(avg, 0b, analog) are 98.50,
98.51, and 98.56% when REQ is 5, 6 and 7, respectively. Their
average inference-latencies are 24, 27, and 30 time steps, while
Tmax is 56 and the accuracy of original model is 98.59%. For
Spiking-LeNet-5(avg, 0b, Poisson), accuracies of 98.48, 98.50,
and 98.52% can be achieved with the REQ of 6, 7, and 8,
while the accuracy of original model is 98.57% at 52 time steps.
Corresponding inference-latencies are 27, 30, 33 time steps.
The original model of Spiking-LeNet-5(max, 0b, analog) obtains
the accuracy of 97.99% at 96 time steps. With the REQ of
6, 8, and 10, accuracies of 97.91, 97.94, and 98.00% can be
achieved at 30, 37, 43 time steps on average. For Spiking-LeNet-
5(avg, BN, analog), accuracies of 98.72, 98.77, and 98.80% can
be reached with the REQ of 15, 18, and 20 when inference-
latencies are 70, 76, and 80, respectively. The accuracy of original
model is 98.82% at 138 time steps. Original Spiking-AlexNet(avg,

0b, analog) model can achieve the accuracy of 87.95% at 892
time steps. With the REQ of 25, 27, and 29, the accuracies of
87.65, 87.67, and 87.72% can be reached at 243, 255, and 267
time steps.

Performance of stopping criterion 1 for five different
models is displayed in Figure 7. The dotted lines are accuracy
decline. LeNet-5 without biases can achieve good accuracy
performance with the REQ smaller than 10. For AlexNet
and LeNet-5 with biases, the REQ near 30 is suitable.
When REQ is large enough, the accuracy improvement is
unapparent compared with smaller REQ. We can deduce
that accuracy can be improved with the increase of REQ
in one certain range. What’s more, the average inference-
latency is nearly linear to REQ for most models. When
accuracy decline is smaller than 1%, the ratio of average
inference-latency to Tmax is in the range of 0.1 to 0.7. The
tradeoff between accuracy and inference-latency is evident in
Figure 7. By enumeration, users can select the smallest REQ
to get the best accelerating performance, while satisfying their
accuracy demands.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 October 2021 | Volume 15 | Article 697469

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Chen et al. Reducing Inference-Latency of SCNNs

FIGURE 8 | Performance of stopping criterion 2 and 3 for three different models. X-axis is REQ. For full lines, Y-axis means ratio of average inference-latency to Tmax .

For dotted lines, Y-axis means accuracy decline. The unit is percent.

3.1.2. Performance of Stopping Criterion 2 and 3
For stopping criterion 2, the accuracies of Spiking-LeNet-5(avg,
0b, analog) are 98.50, 98.52, and 98.56% when EE is 10e-6, 10e-
8, and 10e-10, respectively. Their average inference-latencies are
24, 27, and 30 time steps, while Tmax is 56 and the accuracy
of original model is 98.59%. With the same EE, for stopping
criterion 3, the accuracies of Spiking-LeNet-5(avg, 0b, analog) are
98.49, 98.52, and 98.53% consuming 25, 28 and 31 time steps.
For Spiking-LeNet-5(avg, 0b, Poisson), the accuracies of stopping
criterion 2 with the EE of 10e-6, 10e-8, and 10e-10 are 98.44,
98.48, and 98.51%, while corresponding inference-latencies are
24, 27, and 29 time steps. With stopping criterion 3 and the same
EE, the accuracies for Poissonmodel are 98.41, 98.49, and 98.51%
at 24, 27, and 29 time steps, respectively. The accuracy of original
Poisson model is 98.57% at 52 time steps. In the case of Spiking-
LeNet-5(max, 0b, analog), using stopping criterion 2 can achieve
the accuracies of 97.68, 97.90, and 97.99% with the EE of 10e-3,
10e-4, and 10e-5, while corresponding inference-latencies are 33,
44, and 56 time steps. With stopping criterion 3 and the same EE,
accuracies of 97.92, 97.99, and 97.98% can be reached at 40, 54,

and 64 time steps. For original model, the accuracy is 97.99% at
96 time steps.

As stopping criterion 2 and stopping criterion 3 share the same
principle and parameter EE, we compare their performance in
Figure 8. In this figure, when EE is smaller than 1e-02, accuracy
decline is not more than 1.6%. For Avg-pooling models, stopping
criterion 2 and 3 achieve similar ratio of average inference-latency
to Tmax (reciprocal of accelerative ratio) and accuracy decline.
With the accuracy decline near 0.3%, the accelerative ratio is close
to 2.5X. For Max-pooling models, when EE is smaller than 1e-
05, stopping criterion 2 and 3 share similar accuracy decline.
The accelerating performance of stopping 3 is a little bit worse
than that of stopping criterion 2. With the accuracy decline near
0.3%, the accelerative ratio is also close to 2.5X. For actual use, if
computing resources are limited, replacing complex lookup table
of fitted means and standard deviations (stopping criterion 2) by
several simple REQs (stopping criterion 3) will be better.

Figure 9A compares the accuracy-inference-latency tradeoff
among stopping criterion 1,2 and 3. Taking both accuracy and
inference-latency into consideration, stopping criterion 1 for

Frontiers in Computational Neuroscience | www.frontiersin.org 13 October 2021 | Volume 15 | Article 697469

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Chen et al. Reducing Inference-Latency of SCNNs

FIGURE 9 | The scatter of (accuracy decline, ratio of average inference-latency to Tmax) for different models and different stopping criterions. The x-axis is accuracy

decline, unit of which is percent. The y-axis is the ratio. (A) Comparison of the accuracy-inference-latency tradeoff among stopping criterion 1, 2, and 3 for three

models. (B) Comparison of the accuracy-inference-latency tradeoff between stopping criterion 1 and 4 for Spiking-LeNet-5 avg BN analog model.

Frontiers in Computational Neuroscience | www.frontiersin.org 14 October 2021 | Volume 15 | Article 697469

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Chen et al. Reducing Inference-Latency of SCNNs

TABLE 1 | Comparison with other inference-latency reducing methods.

Dataset Method Accuracy (decline

compared with CNN)

Inference-latency

(time steps)

Accelerative ratio

MNIST (Neil et al., 2016) Sparse Coding 98.00% 631 -

MNIST (Neil et al., 2016) Activation Cost 98.00% 602 -

MNIST (Neil et al., 2016) Dropout 98.00% 641 -

MNIST (Neil et al., 2016) Dropout Learning Sched. 98.00% 602 -

MNIST (Neil et al., 2016) Stacked AE 98.00% 788 -

MNIST (Avg 0b Analog) Stopping criterion 98.50% (0.06%) 24 1.88X

MNIST (Avg 0b Poisson) Stopping criterion 98.48% (0.08%) 27 1.48X

MNIST (Max 0b Analog) Stopping criterion 97.91% (0.74%) 30 1.97X

MNIST (Avg BN Analog) Stopping criterion 98.73% (0.09%) 70 1.39X

MNIST (Yang et al., 2020) Conversion rule 99.03% (0.08%) 67 1.49X

CIFAR-10 (Avg 0b Analog) Stopping criterion 87.72% (0.23%) 267 1.87X

CIFAR-10 (Avg 0b Analog) Stopping criterion 87.25% (0.70%) 146 1.81X

CIFAR-10 (Yang et al., 2020) Conversion rule 80.03% (0.78%) 245 1.63X

The accelerative ratio in the table is compared with original model (Rueckauer et al., 2017) under the same accuracy.

LeNet-5 Max-pooling model has the best performance. Though
the accelerating performance of stopping criterion 2 and 3 for
LeNet-5 Max-pooling model is a little bit worse than that of
stopping criterion 1, the accuracy decline of stopping criterion
2 and 3 can be ensured. For avg-0b models, performance of the
three stopping criterions is similar. The performance of analog
model is better than Poisson model. According to this figure,
for avg-0b models, we can use stopping criterion 3 to calculate
suitable REQ beforehand, avoiding the enumeration of REQ in
stopping criterion 1. In fact, based on Figure 9A, when EE is
smaller than 1e-08, accuracy decline will be stable. Through
formula introduced in section 2.4.3, the REQ can be calculated
with this set EE.

3.1.3. Performance of Stopping Criterion 4
Figure 9B compares the accuracy-inference-latency tradeoff
between stopping criterion 1 and 4 for LeNet-5 BN model.
Stopping criterion 4 seems terrible as its ratio is near 0.7 with
accuracy decline more than 0.3%. For actual use, to deal with
models with biases, stopping criterion 1may be better choice. The
terrible performance of stopping criterion 4 may be caused by the
gap between training set and testing set. Compared with stopping
criterion 2 and 3, stopping criterion 4 only uses 60,000 numbers
to calculate occurrence number distribution, while others use
nearly 300,000 numbers (assuming that half of them are negative)
to make normal fitting and then extract rules and information
from fitting results.

3.2. Comparison With Others
Table 1 compares inference latency and accelerative ratio
between our proposed method and other works. Neil et al. (2016)
introduced several optimization approaches during training
phase to reduce the inference-latency of SCNNs. However, to
achieve the accuracy of 98.00% forMNIST, all of these approaches
needmore than 600 time steps. By contrast, ourmodels only need
24–70 time steps.

Our experiments add proposed stopping criterions on original
models, which use the same neuron equations, the same
threshold generating principle and the same principle of biases
and Max-pooling layers as the work of Rueckauer et al. (2017).
The accelerative ratio in Table 1 is the ratio of the average
inference-latency of original models to the average inference-
latency of new models under the same accuracy. From the table
we can see that the accelerative ratios of our methods are in
the range of 1.39X to 1.97X without accuracy loss. The work
of Yang et al. (2020) is also an improvement of the work of
Rueckauer et al. (2017). In their work, deterministic conversion
rule for CNNs to SCNNs is proposed to reduce inference-latency,
mainly concentrating on weights and thresholds. Because of
different basic trained CNNs, we compare the accuracy decline
between SCNNs and CNNs. For CIFAR-10 dataset, they achieve
the accuracy of 80.03% and the accuracy decline is 0.78%. We
find the data point with similar accuracy decline 0.70%. Our
model needs 146 time steps and their model needs 245 time steps.
Considering the accelerative ratio which is compared with the
work of Rueckauer et al. (2017), our work performs better.

Besides, these methods mainly concentrate on training phase,
weights, and thresholds, our methods mainly concentrate on the
stopping criterion of inference phase. As plug-ins, our stopping
criterions have been demonstrated effective on the basis of the
work of Rueckauer et al. (2017), which have improved the
inference-latency by weight normalization. Therefore, there is
no theoretical conflict between our stopping criterions and other
inference-latency reducing methods such as adjusting thresholds
or weight normalization. So long as there is a gap between
maximal and the second maximal output spike counts, it is
possible to combine our plug-ins with these methods to get
better performance.

4. DISCUSSION

Converting from CNNs, SCNNs have the advantage of accuracy
compared with SNNs. By using spikes as data flows, SCNNs

Frontiers in Computational Neuroscience | www.frontiersin.org 15 October 2021 | Volume 15 | Article 697469

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Chen et al. Reducing Inference-Latency of SCNNs

are much more energy-saving than CNNs. However, inference-
latency, i.e., the processing speed of classification, cannot be
ignored in practical SCNN applications (Roy et al., 2019).
Thus, the stopping criterions proposed in this work aim to
reduce the inference-latency of SCNNs. Experiment results have
demonstrated that our stopping criterions can be used in SCNNs
as plug-ins for several different network components. With few
extra computing resources, our plug-ins can significantly speed
up the inference phase of SCNNs in hardware implementations.

In section 2.1, our original models are built on the basis of
the work of Rueckauer et al. (2017), which represents the state-
of-the-art and complete theory of SCNNs, including techniques
such as the implementation of Max-pooling layers and batch
normalization layers, and the normalization of weights and
biases for each layers. For original models, after observing
the relation between accuracy and inference-latency, we can
draw the conclusion that accuracy increases fast with the
increment of inference-latency at first, then increases slowly
and finally becomes stable near a fixed value. Simply reducing
inference-latency will lead to the loss of accuracy. Focusing
on incorrectly classified data, we find some of them have
one common feature, that in the last layer, the maximal
counter and the second maximal counter will receive similar
number of spikes. The determination for these cases is hard
to make and time-consuming. We define these data as tough
data. Through analyzing the gap among output spike counts
of each data point in training dataset, we can deduce some
rules to distinguish tough data and other data. Allocating
more time steps for tough data and fewer time steps for
other data can reduce total inference-latency and ensure
accuracy simultaneously.

4.1. Connection With Cognitive
Neuroscience
In section 2.2, we find tough data hard to obtain correct results
even after consuming a considerable amount of time steps.
On the contrary, other data can achieve the same results as
CNNs without too many time steps. During inference phase,
we need to make the termination decision if current output
spike counts meet our preset requirement. According to our
analysis of output spike counts, we use the gap between the
largest output spike count and the second largest output spike
count as the key index in stopping criterion 1. Experiment results
reveal that stopping criterion 1 can achieve good performance.
Moreover, higher requirement of the gap (REQ) will lead to
higher accuracy but larger inference-latency. In psychology,
similar balance when people and animals make decisions under
time pressure is known as the speed-accuracy tradeoff (Latty
and Beekman, 2011). Sequential sampling models assume that
decision maker accumulates noisy samples of information from
the environment until a threshold of evidence is reached (Ratcliff
and Smith, 2004; Bogacz et al., 2006; Teodorescu and Usher,
2013; Forstmann et al., 2015). REQ in stopping criterion 1 has
similar effect as the threshold of evidence in sequential sampling
models, demonstrating that our stopping criterion for SCNNs is
conformed to the cognitive law of organic brains.

Except making difference directly, in stopping criterion 2 and
3, we also use Normal distribution theory to calculate the error
probability according to current output spike counts. In stopping
criterion 4, we use the occurrence number distribution in training
dataset to estimate the error probability in testing dataset. In
visual tasks, Visual confidence(VC) refers to the ability of the
observer to make a good inference on the validity of the response
corresponding to this perceptual decision (Mamassian, 2016).
Though VC is used in training phase rather than inference phase,
the usage of probability in our stopping criterions is similar to
VC, providing reasonability for our proposed error probability.

Nevertheless, terminal condition in programming algorithm
is different from that in brain. In our stopping criterions, we use
a fixed Tmax to limit the longest inference time. In our daily life,
when we make decisions, we can adjust the determining time
for many reasons. For example, external disturbance, mood, and
physical state can influence our decision making phase. But in
our codes, we need to set a terminal condition. If output spike
counts cannot fit the need of set stopping criterion after a long
time, the program will stop the current inference and begin a
next turn.

4.2. Differences Between 4 Stopping
Criterions
In section 2.4, we propose 4 stopping criterions to reduce the
inference-latency of SCNNs for different situations. In stopping
criterion 1, we use REQ as a threshold of the difference of
maximal output spike count and the second maximal output
spike count. If the difference exceeds REQ, we will select the
maximal counter as our final choice and stop this turn of
inference. REQ here needs enumeration. In stopping criterion
2, we need to calculate the error probability of current decision
in real time with two maximal output spike counts and pre-
computed parameters. EE is the requirement of error probability.
As the fitted means are linear and fitted standard deviations are
horizontally linear to time steps in section 2.3.2, after formula
derivation in section 2.4.3, we can convert the error probability
into the form of REQ before inference starts. In stopping criterion
3, we use a look-up table of REQ changing with time steps
as the requirement of current output spike counts, avoiding
continuously calculating error probability. In stopping criterion
4, as we cannot use Normal distribution theory to deal with BN
models, we propose another expression of error probability. For
each data point in training dataset, we find maximal and the
second maximal CNN value in the last layer and record their
corresponding output spike counts in SCNNs. Error probability
in this stopping criterion is calculated directly by statistical
information above. Therefore, the degree of similarity between
training dataset and testing dataset will affect the reliability of
this stopping criterion. For all the 4 stopping criterions, we
use the same Tmax as original stopping criterion, limiting the
meaningless inference of tough data.

For compatibility, we try 5 different models, including CIFAR-
10 and MNIST, AlexNet, and LeNet-5, Avg-pooling layer and
Max-pooling layer, biases set to zero and BN layer with biases,
analog input and Poisson input. Stopping criterion 1 performs

Frontiers in Computational Neuroscience | www.frontiersin.org 16 October 2021 | Volume 15 | Article 697469

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Chen et al. Reducing Inference-Latency of SCNNs

well for all the 5 different models. Accelerative ratio of inference-
latency is in the range of 1.92X to 3.34X. For LeNet-5 models,
the accuracy decline is not more than 0.1%. For AlexNet models,
the accuracy decline is 0.23%. Stopping criterion 2 is useful for
LeNet-5 avg models without biases. Stopping criterion 3 share
similar performance as stopping criterion 2. Stopping criterion 4
cannot work as well as stopping criterion 1 formodels with biases,
remaining problem to solve in the future.

For actual use, we need to choose different stopping criterions
for different models. For Avg-pooling models without biases,
we can use stopping criterion 2 and 3. If real-time computing
resources are limited, stopping criterion 3 is better. For Max-
pooling models without biases, we can first use stopping criterion
3 to help us find suitable REQ range and use stopping criterion 1
later on. For models with biases, only stopping criterion 1 can be
used but we can first calculate the error probability in stopping
criterion 4 to find the rough range of REQ, avoiding large amount
of enumeration.

4.3. New Problem and Possible Solutions
As bias is an important ingredient for CNNs, the inference-
latency reducing method for SCNNs with biases is of great
significance. According to our experiment results, stopping
criterion 1 achieves better performance than stopping criterion
4. This result suggests that calculating the error probability of
testing dataset through simply imitating training dataset is not
enough. In fact, the difference between bias situation and 0-bias
situation is the summing way of biases. In SCNNs, biases are
continuously accumulated into neurons all the time but weights
are accumulated into neurons only when there are input spikes.
Over time, weights and biases accumulated in neurons conform
to the same relationship as that in CNNs. However, at the early
stage of SCNNs, disordered spike patterns are mainly contributed
by biases, especially by large biases. Without changing the
implementation of biases, what we can do is extracting more
useful information from training dataset or adjusting the CNN
values during training phase. For example, monte carlo method
can be used to describe the disordered distribution in Figure 2D.

What’s more, if we can widen the gap between max1 and max2

output CNN values during training phase, the gap between
maximal and the second maximal output spike counts will be
larger to distinguish.

In summary, through adding extra stopping criterions for
received output spikes at the end of inference phase, without
obvious accuracy loss and extra computing resources, our
proposed plug-ins can significantly reduce inference-latency of
SCNNs with compatibility and organic basis.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found below: https://github.com/
XuanChen75/SCNN.

AUTHOR CONTRIBUTIONS

XC developed the theory, implemented the methods, wrote
the codes for experiments, analyzed the data, and drafted the
manuscript. XY trained the CNN networks and ran MATLAB
simulation on CPU server. TY provided probable analysis
directions. YW, YL, TY, and HP modified the structure of the
manuscript. YL, GF, YW, TY, FY, and HP contributed to the
writing of the manuscript. All authors contributed to the article
and approved the submitted version.

FUNDING

This work was supported by the National Nature Science
Foundation of China under Grant Nos. 61376075
and 41412020201.

ACKNOWLEDGMENTS

We thank for helpful comments and discussions, and the
reviewers for their valuable contributions.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016).

Tensorflow: A System for Large-Scale Machine Learning. Berkeley, CA: USENIX

Association.

Benjamin, B., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran,

A., Bussat, J.-M., et al. (2014). Neurogrid: a mixed-analog-digital

multichip system for large-scale neural simulations. Proc. IEEE 102, 1–18.

doi: 10.1109/JPROC.2014.2313565

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., and Cohen, J. (2006). The

physics of optimal decision making: a formal analysis of models of

performance in two-alternative forced-choice tasks. Psychol. Rev. 113, 700–765.

doi: 10.1037/0033-295X.113.4.700

Cao, Y., Chen, Y., and Khosla, D. (2015). Spiking deep convolutional neural

networks for energy-efficient object recognition. Int. J. Comput. Vision 113,

54–66. doi: 10.1007/s11263-014-0788-3

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Li, F. F. (2009).

“Imagenet: a large-scale hierarchical image database,” in 2009 IEEE Conference

on Computer Vision and Pattern Recognition (Miami, FL), 248–255.

doi: 10.1109/CVPR.2009.5206848

Diehl, P., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015).

“Fast-classifying, high-accuracy spiking deep networks through weight

and threshold balancing,” in 2015 International Joint Conference on

Neural Networks (IJCNN) (Killarney). doi: 10.1109/IJCNN.2015.72

80696

Diehl, P. U., and Matthew, C. (2015). Unsupervised learning of digit recognition

using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.

doi: 10.3389/fncom.2015.00099

Forstmann, B. U., Ratcliff, R., and Wagenmakers, E. J. (2015). Sequential

sampling models in cognitive neuroscience: advantages, applications, and

extensions. Annu. Rev. Psychol. 67:641. doi: 10.1146/annurev-psych-122414-

033645

Frenkel, C., Legat, J., and Bol, D. (2019). Morphic: a 65-nm 738k-synapse/mm2

quad-core binary-weight digital neuromorphic processor with stochastic

spike-driven online learning. IEEE Trans. Biomed. Circ. Syst. 13, 999–1010.

doi: 10.1109/TBCAS.2019.2928793

Frontiers in Computational Neuroscience | www.frontiersin.org 17 October 2021 | Volume 15 | Article 697469

https://github.com/XuanChen75/SCNN
https://github.com/XuanChen75/SCNN
https://doi.org/10.1109/JPROC.2014.2313565
https://doi.org/10.1037/0033-295X.113.4.700
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1146/annurev-psych-122414-033645
https://doi.org/10.1109/TBCAS.2019.2928793
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

Chen et al. Reducing Inference-Latency of SCNNs

Furber, S., Galluppi, F., Temple, S., and Plana, L. (2014). The spinnaker project.

Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gong, Y., Liu, L., Yang, M., and Bourdev, L. (2014). Compressing deep

convolutional networks using vector quantization. arXiv [Preprint].

arXiv:1412.6115.

Guo, Y., Yao, A., and Chen, Y. (2016). “Dynamic network surgery for efficient

DNNs,” in Advances in Neural Information Processing Systems 29, eds D. D.

Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (Barcelona: Curran

Associates, Inc.), 1379–1387.

Haeng, L. J., Tobi, D., and Michael, P. (2016). Training deep spiking

neural networks using backpropagation. Front. Neurosci. 10:508.

doi: 10.3389/fnins.2016.00508

Han, J., Li, Z., Zheng, W., and Zhang, Y. (2020). Hardware implementation

of spiking neural networks on fpga. Tsinghua Sci. Technol. 25, 479–486.

doi: 10.26599/TST.2019.9010019

Han, S., Mao, H., and Dally, W. (2016). Deep compression: compressing deep

neural networks with pruning, trained quantization andHuffman coding. arXiv

[Preprint]. arXiv:1510.00149.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for

image recognition,” in 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) (Las Vegas, NV), 770–778. doi: 10.1109/CVPR.

2016.90

He, Y., Zhang, X., and Sun, J. (2017). “Channel pruning for accelerating very deep

neural networks,” in 2017 IEEE International Conference on Computer Vision

(ICCV) (Venice), 1398–1406. doi: 10.1109/ICCV.2017.155

Ioffe, S., and Szegedy, C. (2015). Batch normalization: accelerating deep network

training by reducing internal covariate shift. arXiv [Preprint]. arXiv:1502.

03167.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., et al.

(2014). “Caffe: convolutional architecture for fast feature embedding,” in

Proceedings of the 22nd ACM International Conference on Multimedia,

MM’14 (New York, NY: Association for Computing Machinery), 675–678.

doi: 10.1145/2647868.2654889

Jin, Y., Zhang, W., and Li, P. (2018). “Hybrid macro/micro level backpropagation

for training deep spiking neural networks,” in Advances in Neural Information

Processing Systems 31, eds S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

N. Cesa-Bianchi, and R. Garnett (Montréal, QC: Curran Associates, Inc.),

7005–7015.

Kim, S., Park, S., Na, B., and Yoon, S. (2019). Spiking-yolo: spiking neural

network for energy-efficient object detection. Proc. AAAI Conf. Artif. Intell. 34,

11270–11277. doi: 10.1609/aaai.v34i07.6787

Krizhevsky, A., and Hinton, G. (2009). Learning Multiple Layers of Features From

Tiny Images. Technical report. Computer Science Department, University of

Toronto.

Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). Imagenet classification

with deep convolutional neural networks. Commun. ACM 60, 84–90.

doi: 10.1145/3065386

Latty, T., and Beekman, M. (2011). Speed-accuracy trade-offs during foraging

decisions in the acellular slime mould physarum polycephalum. Proc. R. Soc.

B Biol. Sci. 278, 539–545. doi: 10.1098/rspb.2010.1624

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based

learning applied to document recognition. Proc. IEEE 86:2278–2324.

doi: 10.1109/5.726791

Mamassian, P. (2016). Visual confidence. Annu. Rev. Vis. Sci. 2, 459–481.

doi: 10.1146/annurev-vision-111815-114630

Merolla, P., Arthur, J., Alvarez-Icaza, R., Cassidy, A., Sawada, J., Akopyan, F.,

et al. (2014). Artificial brains a million spiking-neuron integrated circuit

with a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Neil, D., Pfeiffer, M., and Liu, S.-C. (2016). “Learning to be efficient:

algorithms for training low-latency, low-compute deep spiking neural

networks,” in SAC ’16: Proceedings of the 31st Annual ACM Symposium on

Applied Computing (New York, NY: Association for Computing Machinery).

doi: 10.1145/2851613.2851724

Panda, P., Sengupta, A., and Roy, K. (2016). “Conditional deep learning for

energy-efficient and enhanced pattern recognition,” in 2016 Design, Automation

& Test in Europe Conference & Exhibition (DATE) (Dresden), 475–480.

doi: 10.3850/9783981537079_0819

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).

“Pytorch: an imperative style, high-performance deep learning library,” in

Advances in Neural Information Processing Systems (Vancouver, BC: Curran

Associates, Inc.), 32.

Ratcliff, R., and Smith, P. L. (2004). A comparison of sequential sampling

models for two-choice reaction time. Psychol. Rev. 111, 333–367.

doi: 10.1037/0033-295X.111.2.333

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You only

look once: unified, real-time object detection,” in 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV), 779–788.

doi: 10.1109/CVPR.2016.91

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-based machine

intelligence with neuromorphic computing. Nature 575, 607–617.

doi: 10.1038/s41586-019-1677-2

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017). Conversion

of continuous-valued deep networks to efficient event-driven networks for

image classification. Front. Neurosci. 11:682. doi: 10.3389/fnins.2017.00682

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning

representations by back propagating errors. Nature 323, 533–536.

doi: 10.1038/323533a0

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2018). Going deeper in

spiking neural networks: VGG and residual architectures. Front. Neurosci.

13:95. doi: 10.3389/fnins.2019.00095

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for

large-scale image recognition. arXiv [Preprint]. arXiv:1409.1556.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., et al.

(2015). “Going deeper with convolutions,” in 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (Boston, MA), 1–9.

doi: 10.1109/CVPR.2015.7298594

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2016). “Rethinking

the inception architecture for computer vision,” in 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) (Las Vegas, NV).

doi: 10.1109/CVPR.2016.308

Tan, M., and Le, Q. (2019). “EfficientNet: rethinking model scaling for

convolutional neural networks,” in International Conference on Machine

Learning, ICML (Long Beach, CA).

Teodorescu, A. R., and Usher, M. (2013). Disentangling decision models: from

independence to competition. Psychol. Rev. 120, 1–38. doi: 10.1037/a0030776

Yang, X., Zhang, Z., Zhu, W., Yu, S., Liu, L., and Wu, N. (2020).

Deterministic conversion rule for CNNs to efficient spiking convolutional

neural networks. Sci. China Inform. Sci. 63:122402. doi: 10.1007/s11432-019-1

468-0

Zambrano, D., and Bohte, S. (2016). Fast and efficient asynchronous neural

computation with adapting spiking neural networks. arXiv [Preprint]

arXiv:1609.02053.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Chen, Yuan, Fu, Luo, Yue, Yan, Wang and Pan. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 18 October 2021 | Volume 15 | Article 697469

https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.26599/TST.2019.9010019
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1609/aaai.v34i07.6787
https://doi.org/10.1145/3065386
https://doi.org/10.1098/rspb.2010.1624
https://doi.org/10.1109/5.726791
https://doi.org/10.1146/annurev-vision-111815-114630
https://doi.org/10.1126/science.1254642
https://doi.org/10.1145/2851613.2851724
https://doi.org/10.3850/9783981537079_0819
https://doi.org/10.1037/0033-295X.111.2.333
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.3389/fnins.2017.00682
https://doi.org/10.1038/323533a0
https://doi.org/10.3389/fnins.2019.00095
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1037/a0030776
https://doi.org/10.1007/s11432-019-1468-0
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Effective Plug-Ins for Reducing Inference-Latency of Spiking Convolutional Neural Networks During Inference Phase
	1. Introduction
	2. Methods
	2.1. Converting CNNs to SCNNs
	2.1.1. Network Architectures
	2.1.2. Neuron
	2.1.3. Thresholds and Normalization
	2.1.4. Input

	2.2. Observation of Original SCNN Models
	2.2.1. Original Stopping Criterion
	2.2.2. Random Selection for Tough Data
	2.2.3. The Influence of Tmax on Accuracy and Tough Data

	2.3. Output Spike Analysis
	2.3.1. The Relation Between Output Spike Counts and Corresponding Values in CNN
	2.3.2. Normal Fitting Parameters for Models With No Biases
	2.3.3. Focusing on Max1 and Max2 CNN Values for Models With Biases

	2.4. Proposed Inference-Latency Reducing Plug-Ins
	2.4.1. Simple Stopping Criterion With Enumeration
	2.4.2. Stopping Criterion Based on Normal Distribution Theory
	2.4.3. Simple Stopping Criterion Based on Normal Distribution Theory
	2.4.4. Stopping Criterion Based on the Estimation of Training Dataset

	3. Results
	3.1. Performance of Proposed Methods
	3.1.1. Performance of Stopping Criterion 1
	3.1.2. Performance of Stopping Criterion 2 and 3
	3.1.3. Performance of Stopping Criterion 4

	3.2. Comparison With Others

	4. Discussion
	4.1. Connection With Cognitive Neuroscience
	4.2. Differences Between 4 Stopping Criterions
	4.3. New Problem and Possible Solutions

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

