
ORIGINAL RESEARCH
published: 28 September 2021

doi: 10.3389/fncom.2021.705050

Frontiers in Computational Neuroscience | www.frontiersin.org 1 September 2021 | Volume 15 | Article 705050

Edited by:

Christos Volos,

Aristotle University of Thessaloniki,

Greece

Reviewed by:

Fernando Corinto,

Politecnico di Torino, Italy

Xiaoping Wang,

Huazhong University of Science and

Technology, China

*Correspondence:

Alex James

apj@ieee.org

Received: 04 May 2021

Accepted: 31 August 2021

Published: 28 September 2021

Citation:

Adam K, Smagulova K and James A

(2021) Generalised Analog LSTMs

Recurrent Modules for Neural

Computing.

Front. Comput. Neurosci. 15:705050.

doi: 10.3389/fncom.2021.705050

Generalised Analog LSTMs Recurrent
Modules for Neural Computing

Kazybek Adam 1, Kamilya Smagulova 2 and Alex James 3*

1Department of Electronics and Nanoengineering, Alto University, Espoo, Finland, 2Department of Intelligent Systems and

Cybersecurity, Astana IT University, Nursultan, Kazakhstan, 3 School of Electronic Systems and Automation, Digital University

Kerala, Trivandrum, India

The human brain can be considered as a complex dynamic and recurrent neural network.

There are several models for neural networks of the human brain, that cover sensory to

cortical information processing. Large majority models include feedback mechanisms

that are hard to formalise to realistic applications. Recurrent neural networks and

Long short-term memory (LSTM) inspire from the neuronal feedback networks. Long

short-term memory (LSTM) prevent vanishing and exploding gradients problems faced

by simple recurrent neural networks and has the ability to process order-dependent

data. Such recurrent neural units can be replicated in hardware and interfaced with

analog sensors for efficient and miniaturised implementation of intelligent processing.

Implementation of analog memristive LSTM hardware is an open research problem

and can offer the advantages of continuous domain analog computing with relatively

low on-chip area compared with a digital-only implementation. Designed for solving

time-series prediction problems, overall architectures and circuits were tested with TSMC

0.18 µm CMOS technology and hafnium-oxide (HfO2) based memristor crossbars.

Extensive circuit based SPICE simulations with over 3,500 (inference only) and 300

system-level simulations (training and inference) were performed for benchmarking the

system performance of the proposed implementations. The analysis includes Monte

Carlo simulations for the variability of memristors’ conductance, and crossbar parasitic,

where non-idealities of hybrid CMOS-memristor circuits are taken into the account.

Keywords: analog LSTM, crossbar, memristors, general-purpose LSTM, neural networks

1. INTRODUCTION

The intelligent sensing and information processing at edge is an emerging topic of study in
industrial automation. Multiple sensors collect a variety of information in industrial applications,
that require sensors to incorporate co-processors for real-time detection, monitoring and data
processing. By incorporating neural networks in sensor hardware, it will be possible to embedded
intelligent information processing to be low power, high speed, distributed and scalable. Long
short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) that is known to bypass
exploding or vanishing gradient problems of Recurrent Neural Network (RNN) find use in a range
of time-series prediction and classification problems.

The implementations of LSTM with conventional microprocessors shows that it can take long
delays and high power consumption. Some of the existing digital implementations uses FPGAs
(Chang et al., 2015; Ferreira and Fonseca, 2016; Guan et al., 2017; Han et al., 2017; Zhang et al.,
2017; Chen et al., 2018; Rizakis et al., 2018) and custom built chips (digital ASICs) (Conti et al.,
2018; Giraldo and Verhelst, 2018). As can be expected, the digital ASICs are smaller in the area and
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is more efficient in terms of latency and power consumption
than FPGA-implemented hardware. However, even smaller and
more efficient chips can be fabricated using memristive crossbar
circuits (Li et al., 2019) where weights and vector matrix
multiplications (VMM) operations are stored and performed,
respectively, using the crossbar arrays.

The full-analog design of the LSTM is an open problem. In
this paper, we use memristive crossbars and a set of control
circuits for designing, benchmarking and comparing LSTM
neural networks. Majority of sensors capture information in
analog form. Afterwards the data is digitised and processed
by digital processors. As opposed to building LSTM as a co-
processing unit away from the sensing unit, we aim to build
LSTM for near-sensor processing, suitable for real-time systems.
In other words, our system can handle analog signals which
allows to avoid analog-to-digital conversion. All the simulations
were in SPICE on LSTM architectures for three different time-
series prediction problems for performance analysis.

This paper can be read as having a section 2 that provides
the architecture and method details, while section 3 highlights
the main results. Section 4 provides the summary, while
the Supplementary Material provides supporting details and
additional results required to reconstruct the results.

2. METHODOLOGY AND PROPOSED LSTM
DESIGN

In this paper, three problems were selected to validate the
proposed general purpose LSTM analog information processing
architecture elaborated in section 2.2. Problem 1 consists of
predicting the number of airline passengers, Problem 2 that
of prediction of volcanic CO2 emission volumes and Problem
3 to predict the Semiconductor Wafer quality. The proposed
architecture can be configured to different LSTM architectures
required to optimally solve the problems 1–3.

2.1. Selected Models and System Level
Simulation Setup
The utilised models consists LSTM units followed by a dense
layer.Table 1 shows the summary of datasets used in the problem
1, 2, and 3. For problem 1, there are 144 sample points that are
converted to 142 datasets. Each of this dataset has one target value
and 2 samples points. Problem 2 data was similarly rearranged,
while problem 3 was already in the right shape for the selected
model. In all the datasets, normalisation is applied to limit the
range pf data samples to [0, 1].

Normalisation is performed to adjust to the scale of the input
voltage range required formemristor crossbar arrays. The trained
weights of LSTM are mapped to memristances of crossbar nodes.
The training ratios for each of the problem is shown inTable 1. In
the first two problems the train to test ratio of 2/1 is used. As for
the third problem, it was chosen according to Wafer (2018) to be
6,164 training datasets over 1,000 testing datasets. Each dataset
in problem 3 contains 152 elements (measurement data) and a
single label (class). The same model was used for both problem
1 and problem 2. Interestingly, the same network configuration

TABLE 1 | The network configurations used for three problems addressed using

the proposed general purpose LSTM hardware.

Problem 1 Problem 2 Problem 3

Configuration of network

[L1(units)+L2(units)]
LSTM(4)+Dense(1) LSTM(4)+Dense(1) LSTM(4)+Dense(1)

Train/Test data ratio 2/1 2/1 6.164

Look-back no. 2 2 152

Size of Dataset

i.e., (features, samples)
(1, 3= 1*2+1) (1, 3= 1*2+1) (1,153= 1*152+1)

Total # of Datasets 142 190 7,164

Epoch size (weight

extraction/analysis)
500/300 500/300 180/25

Batch size (weight

extraction/analysis)
1/1 1/1 15/1

Weight Constraints [−1, 1] [−1, 1] [−1, 1]

Range of input values [0, 1] [0, 1] [−0.5, 0.5]

worked well for the third problem despite it using significantly
more time-steps to predict the class of a wafer. However, due
to large training data availability in problem 3, an epoch size
of 180 instead of 500 was used. When analysis is performed
on multiple LSTM architectures, the first two problems uses an
optimal epoch size of 300, that helps to speed-up Monte Carlo
(MC) simulations. The last problem used 180 and 25 epoch sizes
for weights extraction and system-level analysis respectively. The
numbers here were chosen to be significantly lower due to reduce
the training time. The epoch size of 180 was compensated by
having batch size of 15.

2.2. General Purpose Voltage Driven LSTM
Crossbar Architecture
The voltage driven analog LSTM architecture offers high accurate
computations with a design of activation function and voltage
buffers. In contrast, current based designs of activation function
leads to lower computational accuracy.It is mainly due to the cost
of designing high accuracy current mirrors aimed to pass both
positive and negative currents from one stage to another while
isolating the parasitic interaction between the two stages.

The system in the Figure 1 is comprised of LSTM and dense
layers1. The background equations and notations are included in
Supplementary Material for reference. The LSTM layer consists
of LSTM unit with M=4 hidden units h1, h2, h3, h4 and a single
unit dense layer without an activation function. Considering bias
weights, the size of LSTM weight matrix should be [6×16]. Since
two memristors per weight are used, the resulting size of the
LSTM crossbar is [6×32]. Similarly, the size of a crossbar in dense
layer is [5,2]. At time t1 current input of LSTM unit is xt1 is

concatenated with Eht0 =[0,0,0,0] and enters a crossbar. Crossbar
outputs are squashed by hyperbolic tangent or Sigmoid activation
circuits and produce ft1, C̃t1, it1, and ot1 values. In turn, they

generate output Eht1 which is then stored in a Memory Unit ht1.

1This research extends the thesis (Adam, 2018) taking into account a range of

practical variability of circuits. Further, the circuit blocks in this paper have been

redesigned and further optimised for power and area improvements.
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FIGURE 1 | The overall circuit design blocks for the proposed system. The design has No peephole (NP) LSTM with dense layers. The two columns represents a

single neuron in the crossbar as seen in left blue box and memory units configuration is shown in right blue box.

Similarly, at time step t2 the inputs are current input xt2 and

the previous unit’s output Eht1. A new output Eht2 is stored in a
Memory Unit ht2 and passed to the dense layer to produce xt3
which corresponds to Vpred. Here, the LSTM layer consists of two
cycles of operations before being captured at memory unit ht2
and computed at dense layer.

The positive and negative signs required for ht is obtained
by inversions performed by activation function circuit. The
optimised low-power three-stage Class-AB opamps (Saxena and
Baker, 2010) and squarer multipliers (Li, 2000) are used. These
designs helps to increase the accuracy of implementing LSTM in
analog hardware. The resistance ratios for R2/R1 and R4/R3 are
kept at 10, and the crossbar input voltage limited to [−0.1, 0.1].

2.2.1. The Multiply and Accumulate Circuit
The crossbar circuit has voltage as inputs along rows, the nodes
having conductance, and output as currents read out along
columns. The current here represents a weighted summation
operation reflecting a multiply and accumulate operation, or
otherwise also known as vector matrix multiplication (VMM).
The opamps are used as read out circuit along the columns,
and can be used as a current to voltage converter. The use of
single opamp with a single column limits the weight mapping
to positive values. To take into account negative weights, a
single node in crossbar is implemented using conductance of
two memristors in two adjacent columns. This translates to two
columns per neuron (Hasan et al., 2017). The two opamp design

that provides higher robustness is shown in Figure 1. The pass-
transistor switches are used to realise VMM sequentially. The yj
are the output nodes, with R = 1.25k� and Rf = 1k�/1.24k�.
The two opamp configuration uses inverting amplifier and
summing amplifier to implement a stable difference operation,
and voltage amplified with Rf settings.

In addition, it eliminates the usage of extra op-amp inverters
that are used for correcting input voltage signs. This is done
by swapping the memristance states of memristor pairs in a
row. Then the input to the row can be uninverted, if it has an
opposite sign. The crossbar design in Figure 1 is implemented
in sequential mode, with only the need for two opamps per
crossbar. This helps to reduce the area requirement on the chip
when implemented.

2.2.2. Activation Function Circuits
By adjusting the parameters of the circuit configuration shown in
Figure 2A we can realise both sigmoid and hyperbolic tangent
functions. The basic idea is to employ the characteristic of
differential amplifiers giving sigmoidal output shape in their
DC transfer characteristics when sweeping their input voltage
difference over a range. The sigmoid or hyperbolic tangent
functions are fitted by adjusting the range along the x-axis with
help of the bottom-part op-amp and voltage sources V1 and V2.
The matching along the y-axis is made using the top-part op-
amp and voltage source V3. The form or curvature is set by the
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FIGURE 2 | (A) Activation function circuit; (B) Sigmoid function obtained by circuit from (A); (C) Hyperbolic tangent function obtained by circuit from (A).

following parameters: supply voltageVdd, current I1, and the sizes
of NMOS transistors N1 and N2.

In this figure, Vout is equal to either V(sigm_out) or
V(tanh_out) which are output voltages depending on the selected
set of parameters. DC transfer characteristics (−V(sigm_out),
−V(tanh_out) against VIN) for sigmoid and hyperbolic
tangent function circuits along with ideal plots (V(sigm_ideal),
V(tanh_ideal) against VIN) for each function are shown in
Figures 2B,C. The negative part of each −V(sigm_out) and
−V(tanh_out) is canceled at later stages and was kept in mind
when designing the overall circuit design.

2.2.3. Four-Quadrant Analog Multiplier Circuit
The circuit schematic (Li, 2000) of the multiplier is shown in two
parts in Figures 3A,B. Its DC transfer characteristics is shown in
Figure 3.

In Figure 3A, the left-hand side transistors M1 to M6

constitute an analog voltage square circuit and a symmetric
complementary push-pull source follower (Li, 2000). Transistors
M5 and M6 are in linear mode of operation with drain currents
ID5 and ID6 and the symmetric output currents Io+ and Io− as:

ID5 = β

[

(VGS5 − VTn)VDS5 −
1

2
V2DS5

]

, (1)

ID6 = β

[

(VGS6 − VTn)VDS6 −
1

2
V2
DS6

]

, (2)

Io+ = ID5 + ID6 = −β(A+ B)2, (3)

Io− = ID11 + ID12 = −β(A− B)2. (4)

where β = µnCox(
W

L
)n. The difference of the above two

output currents is proportional to the multiplication of the input
voltages A and B:

Io = Io+ − Io− = −4βAB. (5)

2.2.4. Operational Amplifier and Memory Units
Figure 4A represents a low-power operational amplifier
circuit utilised in voltage-driven LSTM. Its transistor-
level implementation is described in section 4 of the
Supplementary Material. Memory unit shown in Figure 4B

holds values of the state Ct−1 and output ht−1 from previous
time steps of LSTM. Inside circuitry of memory units and
some of the control voltages used can be observed in the
same Figure 1. The control voltages to the sample and
hold, and pass transistor switches are varied for NP LSTM
(problem 1) memory units. The transistors have W/L ratios
of 45µm/0.18µm. The capacitance of each capacitors is
10 pF. When the look-back number is equal to two, i.e.,
for problems 1 and 2, the same Figure 1 circuit blocks
are used. When there look-back number is more than
two such as for Problem 3, two-stage memory units are
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FIGURE 3 | (A) The analog 4-quadrant multiplier with Vg = 1.5V;R = 1k�, and voltage range ±0.5V. (B) its output.

FIGURE 4 | (A) Three-stage operational amplifier; (B) The illustration of capacitive memory units voltage buffer, and pass transistor switches used in the proposed

LSTM design. The transistors has a W/L ratio 45 µm / 0.18 µm.

required. This additional memory unit is required to store
current cell states while being able to retrieve previous cell
states. As only first layer of LSTM is affected, addition is
required only for “Ct1” and “ht1.” More details on the
operation of the memory unit are provided in section 4
of the Supplementary Material.

2.3. Inference
In the inference stage, the weights from the training stage are
fixed, and the models evaluated for the given set of problems
it was trained. The proposed LSTM configuration was tested
with discrete as well as continuous memristance values on all
three problems. Using the memristor (Yu et al., 2011), in case
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TABLE 2 | The overall system comparison of LSTM architectures (*Inf. implies inference).

Problem 1 Problem 2 Problem 3

# RNNs
Test

RMSE

Train

RMSE

*Inf.

time

(ms)

Para-

meter

count

Test

RMSE

Train

RMSE

*Inf.

time

(ms)

Para-

meter

count

Test

accu-

racy

Train

accu-

racy

*Inf.

time

(s)

Para-

meter

count

1 NP 0.102 0.0437 1.16 101 0.0465 0.0427 1.17 101 0.925 0.936 1.25 101

2 Vanilla 0.101 0.0429 1.31 113 0.0457 0.0412 1.30 113 0.935 0.943 1.31 113

3 NOG 0.106 0.0402 1.37 85 0.0443 0.0345 1.39 85 0.951 0.958 1.12 85

4 NIG 0.104 0.0410 1.58 85 0.0445 0.0343 1.53 85 0.891 0.907 1.13 85

5 NFG 0.107 0.0462 1.68 85 0.0555 0.0475 1.74 85 0.891 0.907 1.17 85

6 NIAF 0.106 0.0423 1.85 113 0.0564 0.0412 1.87 113 0.936 0.945 1.31 113

7 NOAF 0.097 0.0424 2.05 113 0.0457 0.0400 2.15 113 0.920 0.932 1.32 113

8 FGR 0.110 0.0414 2.46 257 0.0456 0.0331 2.39 257 0.936 0.945 1.94 257

9 GRU 0.111 0.0403 1.19 77 0.0439 0.0345 1.10 77 0.898 0.913 1.06 77

10 S-RNN 0.113 0.0413 1.16 29 0.0551 0.0334 1.02 29 0.891 0.907 0.69 29

Bold values indicate the best results.

of continuous values, the Ron and Roff were set to 10 k� and
10 M�. In case of simulations with discrete values, hafnium
oxide (HfO2) memristor (Li et al., 2018) having Ron and Roff ,
the values of 1.1 k� and 10 k� were used based on hafnium
oxide (HfO2) memristor having 1.1 k� and 10 k� were used.
The discrete simulations are more realistic as memristors (Li
et al., 2018), show only limited stable states, for example 68
levels in Li et al. (2018). The circuit simulations are performed
using TEAM memristive device model and 180 nm CMOS
SPICE models.

2.4. Selected Models
Since the first problem was already solved algorithm wise
in Brownlee (2016), using a two levels, i.e., LSTM followed
by fully-connected dense layer. The LSTM used hidden units
giving out four outputs and dense layer that gives a single
predicted value. The look back number was kept as two as
shown in He et al. (2000). Given the discontinuities of the data
in problem 1 is more than that in problem 2 and 3, look-
back value of two was empirically found to be more optimal.
The networks were trained with Adam optimiser (Kingma
and Ba, 2014) using the default parameters in Keras (2018).
Our simulations used a much higher number of epoch (i.e.,
500) as opposed to 100 as performed in Brownlee (2016).
The higher number of epochs were required to match with
the range of weights suitable to be implemented in hardware,
with a weight variation tolerance of ±1. This is essential to
match up with limitations of voltage inputs that can be applied
to crossbar.

3. RESULTS AND DISCUSSIONS

3.1. System-Level Simulations Results
The Monte Carlo (MC) simulations were used to compare the
average inference time, training and test metrics for LSTM

architectures. The LSTM is compared also with the simple-RNN
(S-RNN) implementation.

The simulation results for each problem are tabulated in
Table 2. Root Mean Square Error (RMSE) provides information
on the standard deviation of prediction errors. It is noted that the
performance of train RMSE, need not correspond always to test
RMSE. On problem 3, however, the RMSE for the test and train
correlate better than in problem 1 and 2, most probably due to
variations captured train covers the range of variations in test.
In this table, it also includes the number of parameters (weights)
used in each architecture. Table 2 results can be summarised as
follows. We can see from three cases that the conventional LSTM
(NP) is better than the simple RNN. However, NP LSTM itself is
not the best among its variations in terms of test scores. In fact,
for each problem we have three different LSTM architectures as
best-performing in test-score columns.

The architectures for analog-hardware implementation were
chosen using these column results. It should be noted that
parameters such as number of weights and inference time were
not taken into account. In fact, they are primarily tabulated
to showcase that in digital hardware these indicators play a
great role.

In other words, in digital domain we choose one algorithm
over others as it requires lower latency and less memory while
yielding good prediction or accuracy scores. Whereas, in analog
hardware using memristive crossbars, these indicators become
irrelevant since each time-step cycle takes the same amount of
time (regardless of the number of weight parameters) and there
is no data transfer delay to-and-from memory (regardless of the
number of parameters to store).

In the former case, this is because VMM operations happen
instantly (accumulation of currents) and in parallel when using
memristive crossbars. As for the second case, since memristors
can hold their states there is no need for separate memory space
and consequently no need of transferring to-and-from a memory
space. In addition, memristors have very small on-chip footprint
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FIGURE 5 | Comparison of NP and NOAF LSTM for both memristor with infinite and discrete states. For problem 1, time taken for inference is 3.96 ms taking 45

samples. *Represents impact of wire resistance.

which further emphasises the advantage of analog-memristive
crossbar circuits over the digital hardware when dealing with very
large weight matrices.

3.2. Circuit-Level Inference Results
In this part, the best performing LSTM architectures from
the Table 2 were chosen for implementation in hardware.
They include following configurations: No peephole (NP) and
No Output Activation Function (NOAF) to solve problem 1;
Coupled Input and Forget Gate (GRU) to solve problem 2; and
No Output Gate (NOG) to solve problem 3. Each hidden unit
requires one sample and hold circuit in its memory units. The
control signals ensure a sequential operation, resulting in reduced
area on chip but with increased inference time. About 40 µs is
required for evaluating through all the four LSTM hidden layers,
and total inference time of 88 µs for prediction problem 1 and
2 on a single dataset. While for problem 3, it takes 6.38 ms to
evaluate 152 time steps of predictions.

Based on data from Supplementary Table 2, Figure 5 shows
different implementation results of Problem 1 which is solved
by both NP and NOAF LSTMs. Figure 5 shows the comparison
of circuit performance on infinite (continuous) and discrete
conductance states. These two cases are juxtaposed with
software implementation results and the desired target values.
In addition, Figure 5 shows the comparison of analog discrete-
memristance-state implementations with and without crossbar
wire resistances. The numerical comparison of the waves in
this figure is provided in Supplementary Table 2. In the same
manner as described above, Problem 2 results, obtained by GRU
LSTM, are plotted in Figure 6.

In Figure 7, we compare LSTM hidden unit values (four
values per time step) obtained from different implementation
ways. This obtained subplots only correspond to the classification
of a single randomly chosen wafer (test wafer 23). That is they

are obtained by running single dataset through the selected
neural-network model. Due to the large volume of the testing
data (6,164 datasets) and many (152) time-step operations in
Problem 3, running through SPICE all of the test datasets is
prohibitive. Therefore, we captured and plotted the intermediate
results (four sub-results) of a single test case. As for Problem
3, solved by NOG LSTM, Additionally, Supplementary Table 2

presents comparisons of predicted and target values for ten
different wafers.

3.3. Variability Analysis
The widespread utilisation of memristive devices is hindered
by a number of issues. These include thermal noise, retention,
limited endurance, and other device imperfections. Although
the inference stage runs at DC, the input of the crossbar
arrays are time-dependent voltage pulses. Therefore, it
increases memristors’ susceptibility to the noise and cause
conductance drift. Analysis in the section 3.2 did not take
into account possible variations in the conductance of the
memristors and in the crossbars. Random Gaussian noise
with mean zero and σ of (5, 10, 20) percentages are added to
memristance to emulate and study impact of variability on LSTM
performance. The experiments are performed with 30 Monte
Carlo simulations that results in degradation of performance
(see Supplementary Table 4). The impact of wire resistance is
also studied by adding memristor offsets. Their effect can be
minimal if using back-end-of-the-line (BEOL) process (Li et al.,
2019) which can give as low as 0.3 � wire resistance values
between memristors. Using this experimental knowledge, the
variability analysis with only the effect of the wire resistances
was done by (1) choosing the mean value of wire resistances as
0.3 �; (2) adding random Gaussian noise and (3) running 30
Monte Carlo simulations. Figure 8 summarises these results for
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FIGURE 6 | The comparison of GRU LSTM implementations of ideal algorithm, memtistors with infinite, and discrete states are shown for problem 2. *Indicates

incorporation of crossbar wire resistances.

FIGURE 7 | Classification of the Wafer 23: the comparison of NOG LSTM layer outputs for analog and algorithmic implementations. * indicates incorporation of

crossbar wire resistances.

NOAF LSTM architecture, while additional results are shown in
Supplementary Table 4 and Supplementary Figures 5, 6.

As it can be seen, there are seven metrics in total and six of
them (i.e., MSE, RSE, MAE, MAPE, RMSE, RRSE) show similar
dynamics to noise level changes in memristors. Particularly, error
rate grows with the growth of the noise. In contrast, when noise
introduced to the crossbar’s wire resistance, the error rate for each
metric is same regardless of noise level. This can be observed in
Figure 8C. And therefore, as Figure 8E illustrates, the resulting
combined effect from memristors’ and crossbar’s resistance
variability has similar pattern as memristors’ variability. Similar
graphs for NP and GRU configurations of LSTM are presented in
the Supplementary Materials. They exhibit similar behavior as
NOAF architecture.

For additional results, the Supplementary Tables 2, 3 shows
a singular case of 20% crossbar wire resistance variability was
used. Finally, the combined effect of both non-idealities was
performed and the results are shown in Supplementary Table 4.
For this case each memristor’s resistance was added as before

with Gaussian noise σ = (5, 10, 20) percentages and each
crossbar wire’s resistance was added Gaussian noise with σ = 20
percentage. For the final two sets of variability simulations, the
input voltages were scaled up to ±0.2 Volts to overcome the
voltage drops caused by the wire resistances. This voltage range
was chosen, because it does not disturb the conductances of the
memristors (Li et al., 2018).

3.4. Area and Power Consumption
Power consumption and chip area calculations for the
implemented architectures in this work are tabulated in Table 3.
The area column lists the total area including the corresponding
LSTM layer, dense layer, and the memory units inside them. The
power consumption column only lists the maximum possible
power needed in LSTM layer excluding the power consumed by
memory units. This is done to keep consistent comparisons since
depending on a problem different number of memory units are
required and each of them can store different maximum possible
values. However, in this work, the maximum possible power
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FIGURE 8 | The mean performance on Problem 1 with NOAF LSTM (for 30 Monte Carlo SPICE circuit level simulations): an impact of 5, 10, and 20% Gaussian noise

(A) in the memristors; (B) σ changes with variation of noise level in the memristors; (C) impact of noise level in the crossbar’s resistance on averaged error; (D) σ

changes with variation of noise level in the crossbar; (E) combined effect of (A,C); (F) combined effect of (B,D).

TABLE 3 | Area and power consumption comparison.

#
LSTM

layer

Area

(µm2)

Power

(mW)

Input

Range (V)

Roff(�)

/Ron(�)

Which

problem

1 NP 143,090 233.35 [−0.2, 0.2] 10k/1.1k Problem 1

2 NOAF 140,145 216.15 [−0.1, 0.1] 10k/1.1k Problem 1

3 GRU 129,314 202.97 [−0.2, 0.2] 10k/1.1k Problem 2

4 NOG 136,766 176.03 [−0.2, 0.2] 10k/1.1k Problem 3

consumption by a memory unit (containing four sample and
hold circuits) is 40.9 mW. This is more probable to happen when
solving problem 3. The memristor is a non-volatile device with
nanoscale size and therefore it does not significantly affect the
total area and power consumption.

In addition, it is important to note that the power
consumption calculation for the NOAF architecture used input
range of ±0.1 V, because the lack of output activation function
forces the output of the LSTM layer go beyond 0.2 V when using
input range of±0.2 V. Voltages higher 0.2 V in magnitude would
disturb the memristor states in both LSTM and Dense layers.
However, during the variability simulations involving crossbar
wires, input voltages were increased to the range of ±0.2 V for
NOAF architecture. This, however, did not result in the case
where LSTM layer outputs going beyond 0.2 V in magnitude,
because in realistic case all the inputs to the network would
not equal 0.2 V at the same time and during the 2-time step
processing cell state is not accumulated much.

4. CONCLUSION

To conclude, three practical problems were used in system-
level and circuit-level simulations for demonstrating the use
of proposed analog LSTM system for inference. Such system
can be incorporated into sensors thereby allowing distributed
analog computing for prediction and industrial information
processing applications in real-time settings. Four different
LSTM architectures, NP, NOAF, GRU, and NOG, were analysed
with analog hardware using SPICE. The variability tests was
performed by circuit simulations incorporating memristance
variability, and crossbar wire resistance variability. The system
was benchmarked for robustness to variability using 5, 10, and
20% of themean values to generate Gaussian noises. The accuracy
of the obtained results and the tolerance to circuit errors can
be further increased by conducting more training epochs and
consideration of hardware issues.
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