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Emotions are closely related to human behavior, family, and society. Changes in
emotions can cause differences in electroencephalography (EEG) signals, which show
different emotional states and are not easy to disguise. EEG-based emotion recognition
has been widely used in human-computer interaction, medical diagnosis, military, and
other fields. In this paper, we describe the common steps of an emotion recognition
algorithm based on EEG from data acquisition, preprocessing, feature extraction, feature
selection to classifier. Then, we review the existing EEG-based emotional recognition
methods, as well as assess their classification effect. This paper will help researchers
quickly understand the basic theory of emotion recognition and provide references for
the future development of EEG. Moreover, emotion is an important representation of
safety psychology.
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INTRODUCTION

Emotions are not only physiological states of the various feelings, thoughts, and behaviors of
integrated humans but also psychological and physiological reactions produced by various external
stimulation. Emotions occupy an important position in daily life and work. It is significant to
recognize emotions correctly in many fields. Recently, the study of emotion recognition is mainly
used in psychology, emotional calculation, artificial intelligence, computer vision, and medical
treatment, etc. (Ramirez et al., 2010; Xin et al., 2019; Fiirbass et al., 2020). For example, emotion
recognition is helpful to the diagnosis of depression, schizophrenia, and other mental diseases. It
can assist doctors to understand the true emotions of patients. Furthermore, emotion recognition
by computers can bring human satisfactory user human-computer interaction experience.

In recent years, existing emotion recognition models were classified into two categories, the
methods based on physiological signals and the methods based on non-physiological signals.
Compared to non-physiological signals, physiological signals are not susceptible to subjective
factors, which can show human emotional states truly. Therefore, emotion recognition based
on physiological signals has great advantages in reliability and practicality. Current concerns
of scholars concentrate on physiological signaling at present. In emotion recognition, the
physiological signals include EEG, facial expression, Eye Movement (EM), Electrocardiogram
(ECG), and so on. We can judge the true emotions of the participants correctly according to
these physiological signals. In the field of research based on physiological signals, EEG is a
spontaneous, non-subjective physiological signal, which can objectively reflect human emotional
states (Mohamed et al., 2018). Therefore, EEG-based emotion recognition has become an important
research topic. Niemic (2004) verified EEG played a key role in emotion study and illustrated the
activity of different brain regions was closely related to some kind of emotional states.
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EEG-based emotion recognition methods are mainly
developed from two aspects: traditional machine learning
and deep learning. In emotion recognition methods based on
traditional machine learning, features are extracted manually
to input to Naive Bayes (NB), Support Vector Machine (SVM)
and other classifiers to classify and recognize. The emotion
recognition methods based on deep learning automatically learns
deep features and recognizes emotions through such models
as Long Short-Term Memory (LSTM) and Recurrent Neural
Network (RNN), thus effectively simplifying the process of
feature extraction. Lin et al. (2018) introduced the overall process
of the traditional machine learning method for EEG emotion
recognition, including emotion trigger, signal acquisition, feature
extraction, and classification recognition, etc. At the same
time, the problem of traditional machine learning methods was
revealed, which clarified the future direction in EEG emotion
recognition. Since the EEG signals have the characteristics
of being non-linear and high-dimensional, it is not easy to
distinguish EEG signals with a linear algorithm. Deep learning
can realize end-to-end mapping, which is helpful to solve
non-linear problems. Craik et al. (2019) given the effect of
emotion recognition by Deep Belief Network (DBN), RNN, and
Convolutional Neural Network (CNN). The superiority of deep
neural networks in the EEG classification tasks had been verified.

In recent years, CNN (Yea-Hoon et al., 2018; Dm et al., 2021;
Keelawat et al., 2021), LSTM (Li et al., 2017; Liu et al., 2017;
Sharma et al., 2020), Generative Adversarial Network (GAN)
(Luo, 2018), and other network models have been widely used
in EEG emotion recognition. In this paper, several selected
keywords were used to search related literature in Elsevier and
Springer and 645 published studies were retrieved. Among them,
102 were selected for review after removing duplicates and
incongruent literature. The selected keywords are: “EEG emotion
recognition” or “deep learning” or “classification,” “EEG emotion
classification” or “machine learning,” and “emotion recognition”
or “EEG feature extraction.”

OVERVIEW

Comprehension of the concepts and features of EEG signals,
emotion induction methods, and common emotion classification
models are necessary for emotion recognition based on EEG.
The following section provides a detailed introduction to each
of these aspects.

Electroencephalography Signal

As the most important organ and tissue in the human body, the
brain plays a key role in the stability of the central nervous system
(Chen and Mehmood, 2019), which can control and regulate
the body’s advanced functions such as learning, communication,
and thinking. In EEG emotion recognition, it is particularly
important for correctly recognizing the functions of the major
brain parts. The brain is mainly divided into three parts, which
are the brain nucleus, brain margin, and cerebral cortex. The
cerebral skin is also the most functional and advanced part of the
brain. It can be divided into four parts in space, which are the

parietal lobe, frontal lobe, temporal lobe, and occipital lobe, as
shown in Figure 1. Different regions control different functions.
The regions mutually cooperate to control people’s daily behavior
activities (Kyanamire and Yang, 2020).

The frontal lobe is located in the former region of the central
sulcus of the brain. It includes all the advanced features and
controls human emotional expression and thinking. The parietal
lobe is located in the middle of the brain, which is the primary
sensory area of the body. It is responsible for perceiving touch
pressure, temperature, sense of taste, and pain. The temporal lobe
is located below the brain sylvian fissure, which is an auditory
area. It is treated to external auditory information and has a
certain association with the memory and emotion of the body.
Located at the back of the skull, the occipital lobe is the visual
processing center of the body and can process visual information
such as color, light and shade, and motion speed. It is essential in
the integration process of received information.

Among various physiological signals, EEG signals are
spontaneous and difficult to camouflage and can reflect the
interaction between the brain and other parts. They can also
show the specific state of the brain. EEG plays a critical role in
emotional identification research (Eo et al., 2020).

EEG often shows rhythmic features. According to its
frequency range, EEG is generally divided into five basic bands
(Sarno et al., 2016; Thammasan et al., 2017; Zhuang et al., 2017;
Liu Y. etal, 2020). The frequency of § rhythm is usually between
0.5 and 3 Hz and the amplitude of that is about 20-200 w V. The
EEG of the mentioned frequency band appears when people are
in a state of drowsiness and very tired. The frequency of 6 rhythm
is between 4 and 8 Hz and the amplitude is approximately 10-
50 wV, which occurs under stress. The frequency of o rhythm
is between 9 and 13 Hz and the amplitude is about 20-100 pnV.
The frequency of B rhythm is between 14 and 30 Hz and the
amplitude is about 5-20 V. It appears when the human brain
is excited. The frequency of y rhythm ranges over 31 Hz and
appears when human attention is highly concentrated or for some
perceived behavior.

Parietal
Frontal lobe
lobe

Occipital
lobe

=

Temporal
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FIGURE 1 | Differential brain map.
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Emotion Recognition Model

Psychologists believe that emotion is a subjective attitude
generated by a person’s experience of external things, as well as
an instinctive coordinated response made by the body, which
may include the joint effects of language, behavior, and spirit
(Behm et al., 2002). Thoits (Cabanac, 2002) interpreted emotions
as a continuous process of subjective feelings. At present, the
definition of emotions has not been unified. In many cases,
emotions are usually associated with the personality, mood, and
desire of an individual person (Kumar and Kumar, 2015; laza-
Del-Arco et al., 2019). The division and induction of emotion
recognition models will be specifically described as follows.

Emotion Model

The emotion recognition model plays a key role in emotion
recognition research, which includes discrete models and
continuous models. The discrete model theory outlines that
people’s emotions are composed of basic emotions. In one
study (Plutchik, 2001), emotions were categorized into eight
basic states, love, anger, sadness, joy, expectation, hatred, fear,
and surprise. All human emotions can be formed through a
combination of one or more of these basic emotions. Ekman et al.
(1987) divided basic emotions into fear, anger, sadness, and likes.
The continuous model theory is a dimensional theory proposed
by Lang et al. (1990) and Russel (2003). It classifies emotions from
dimensional space. The dimensional theory outlines that emotion
is constantly changing, such as the two-dimension emotion
model composed of valence and arousal and the three-dimension
emotion model composed of valence, arousal, and dominance.
As shown in Figure 2, in the two-dimension emotion model, the
ordinate represents arousal, and the abscissa represents valence.
Different emotions can be represented by different coordinate
positions in the figure. Continuous model theory can divide more
emotion statuses and distinguish between different emotions
more intuitively.

Arousal
3
terrified | surprised
nervous sk~ | Y excitement
a”XiOUS}{ delighted
rieved cheerful
: T LVHA HVHA *;
: : » Valence
LVLA HVLA .
sad relieved
boredom k* /*satisfy
languid ~ % _ | K relaxed
fatigue drowsiness

FIGURE 2 | The emotion model of valence and arousal.

Emotion Induction

In emotion recognition, we need to acquire the EEG signals of the
corresponding emotional state, which inspires the corresponding
emotional state to acquire the recorded EEG signals. There are
currently several mainstream emotion methods, such as picture
induction, video induction, and music induction.

Picture induction (Constantinescu et al., 2017) uses different
pictures to inspire different emotion states and then records
participants’ EEG signals. The pictures are required to have some
significant emotional features or produce strong stimulation,
such as the well-known International Affective Picture System
(IAPS), which has a significantly different emotional expression
after strict screening and which provides helpful assistance in
emotional research.

Video induction (Soleymani et al., 2014; Huo et al., 20165
Zheng and Lu, 2016; Hu et al., 2020) uses different types of
videos for emotion induction. Compared with picture induction,
video induction requires a shorter time to obtain different
emotions and has more obvious effects. However, different
facial expressions appear when the subjects watch the videos
in video induction, which will produce a large number of
different noise interference, such as Electromyography (EMG)
and Electrooculogram (EOG) which increases the difficulty of
experimental data preprocessing.

Music induction (Soleymani et al., 2013; Greco et al., 2017)
needs a quiet environment and the subjects are required to listen
to different types of music. The music is then associated with
corresponding emotional states reached whilst listening, such as
joy, calmness, sadness, and so on. However, music induction
is not suitable for everyone. It requires subjects to accurately
experience the rhythm of the music. For people who have little
contact with music, music induction cannot achieve consistent
results.

METHOD

In the task of emotion recognition based on EEG signals,
the collected EEG signals need to be pre-processed, which
involves feature extraction, feature selection, and classification,
as described in the section that follows.

Datasets

Many researchers have recently carried out relevant experiments
and published several open datasets of affective computing. In
emotion recognition, the public datasets based on EEG are DEAP
(Database for Emotion Analysis using Physiological Signals),
SEED, and DREAMER.

DEAP dataset (Verma and Tiwary, 2014) is a multi-channel
dataset that is used to study human emotional states. The
dataset includes a variety of physiological signals such as
physiological signals, psychological scales, and facial expressions.
These physiological signals are recorded by 32 subjects by
watching a 40-min music video. The dataset includes 32-channel
EEG, 2-channel EOG, and 2-channel EMG. A 3-s silence time
was set before each signal is recorded. This dataset can be used
to study physiological signals under multi-modality.
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SEED dataset (Duan et al., 2013; Zheng and Lu, 2015) is an
EEG dataset collected by the Brain-like Computing and Machine
Intelligence laboratory (BCMI). The experiment recorded EEG
from 15 subjects. Each participant was asked to watch 15 clips of
the film three times. The detailed process of the SEED collection is
shown in Figure 3. The dataset has 62 channels and its sampling
frequency is 200 Hz.

The DREAMER (Katsigiannis and Ramzan, 2017) dataset,
published by the University of the West of Scotland, used
18 movie clips as stimuli to evoke emotion. The experiment
recorded 14 channels of EEG from 23 subjects, who also
self-evaluated their emotion including valence, arousal, and
dominance. The sampling frequency was 128 Hz.

Preprocessing
Original EEG signals are a series of curves that change over time.
Due to the interference generated by the EEG device itself or
the transmission line itself, original data includes many noises
and interference in the process of acquisition, which affect the
classification. To improve the classification performance, the
original EEG signal should be denoised and deinterfered. After
a reasonable preprocessing, a relatively clean signal is obtained
(Pedroni et al., 2019). EEGLAB is a popular preprocessing toolkit
for EEG data (Delorme and Makeig, 2004). The preprocessing of
EEG original signal included channel location, filtering, baseline
correction, independent principal component analysis, and so on.
After the original EEG data importing into EEGLAB, we
can use filtering to suppress the noise of the signal. Then, we
use Butterworth band-pass filter to remove the electromagnetic
interference. There are different kinds of artifact interference
in EEG, such as eyeball movements and eye movements from
blinking, muscle artifacts from muscle extension or contraction,
ECG artifacts from heartbeat expansion and contraction, and
power frequency interference. Although filtering can remove
most of the noise, it is still difficult to remove all the artifacts
mentioned. This section lists some ways that artifacts can be
removed (Maiorana et al., 2016).

Regression Method

The recorded EEG is composed of true EEG signals and artifacts.
A regression filter is used to calculate the proportion of reference
signals in a single EEG channel based on the reference channel
constructed by EOG. Then, these artifacts are removed from

2004). The regression method is the most commonly used
method for removing EOG artifacts.

Adaptive Filtering Method

Adaptive filtering is used to eliminate the EOG. He et al. (2004)
used recursive least-mean-square adaptive filtering to remove
EOG. Adaptive filtering can effectively remove multiple EOG
artifacts with stability and fast convergence.

Feature Extraction

After EEG signal preprocessing, it is necessary to extract and
select the features of the preprocessed signals. Feature extraction
refers to the process of transforming the signal, separating
the relevant signal features from the irrelevant components,
calculating the features related to the target task, and expressing
them in a compact or meaningful form. Feature selection can
improve the performance of emotion recognition by selecting
the most representative feature subset, meaning the process of
extraction and the selection of EEG features is more important
than anything else. We introduced the EEG-based emotion
feature extraction as follows.

Time Domain Features

Time domain feature extraction is used to extract the statistical
parameters of EEG from the time domain as the features of EEG.
Time domain analysis mainly describes the waveform features of
EEG signals. From the perspective of the time domain, we can
extract time domain features such as Zero Crossing Rate (ZCR),
Slope Sign Change (SSC), and Willison Amplitude (WAMP)
from EEG signals (Riedl et al., 2013; Namazi et al, 2019).
These representative time domain features are described in the
following chapters.

1. Zero Crossing Rate

Zero Crossing Rate is the number that the frequency of the
EEG waveform passes through the zero axis in unit time, and
can be used to map the spectral information. To reduce the
effect of random noise on ZCR, the threshold ¢ is introduced.
Let x; () and x;4; (f) denote the EEG signal samples obtained
by continuous sampling, if Eqs 1, 2 are satisfied, the ZCR will
increase.

{xi(t) <0 and xj+1(t) > O0}or{x;(t) > 0 and xi+1(t) <0} (1)

contaminated EEG by regression method (Wallstrom et al., xi(t) — xip1 ()] = & )
Hint of Moyie Self- Rest
start clip assessment
5 sec 4 min 45 sec 15 sec
Trial N-2 > Trial N-1 =» Trial N > Trial N+1 > Trial N+2
FIGURE 3 | The collection process of the SEED dataset.
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1. Slope Sign Change

Slope Sign Change is the number of times that the slope of
the recognition waveform changes its sign in definition, which
reflects the frequency features of the EEG signal indirectly. To
reduce the influence of random noise on SSC, the appropriate
threshold € should be set. For a given continuous sample x;(t),
xit1(f), and x;_1 (¢), if Eqs 3, 4 are satisfied, the SSC will increase.

{xi(t) < xip1(t) and x;(t) < xi—1(D}or{x;(t) > xi11(¢)
and x;(t) > xi—1(t)} (3)

xi(t) — xip1 ()] = & and |xi(t) — xi-1 ()| = ¢ 4)
1. Willison Amplitude

Willison Amplitude means the number of times the difference
value between the absolute values of amplitudes of two
consecutive EEG samples exceeds the predetermined threshold.
It reflects the variation law of the amplitude of EEG signals. It can
be calculated according to Eqs 5, 6.

N-1
WAMP = )" f(x(t)) (5)
i=1
L kO —x000 > ¢
JE®) = [O, otherwise ©

where N is the length of the signal, x;(f) and x4 (f) represents the
samples obtained by continuous sampling, and ¢ is the threshold.

Frequency Domain Features

In comparison with time domain analysis, frequency domain
analysis can reveal the various components of the signal
frequency. The frequency domain features mainly include power
spectrum, approximate entropy (ApEn), and sort entropy. The
basic process of frequency domain analysis is described as
follows. Firstly, the EEG signal is separated into five rhythm
signals. Then, we extract each feature of the rhythmic signal
by using Fourier transform. The exemplified elaboration of the
typical brain frequency domain features is described as follows.

1. Power spectrum

Power spectrum estimation (Zhou et al., 2013) is a tool
for estimating the power spectral density (PSD) of signals. It
turns the original signal into a power spectrum that changes
with frequency. The frequency components of the signal can be
observed clearly and intuitively. The most common method of
power spectrum estimation is classic spectrum estimation (Xin
and Qv, 2010), which is achieved by Fourier transform. Let EEG
signal be x(t), its autocorrelation function is r(k), the power
spectral density function P(w) is defined as:

+00
P(w)= Y r(ke 7)

k=—o00

The most common method of classic spectrum estimation is
the direct method (periodical graphic), which gives a periodic
spectrum estimate by Eq. 8.

N
P) = 21> x(e P (®)
t=1

where N is the signal length. Although the direct method can
improve the resolution of the power spectrum, the variance is
large, and there may be a random fluctuation for too long a
length of signal.

1. Approximate entropy

ApEn is a typical method of quantifying the complexity of
finite length physiological signals (Namazi et al., 2019). The larger
ApEn is, the stronger and higher the randomness and complexity
of the time series are. The calculation process of approximate
entropy is described as follows.

For the original signal x(¢), the signal length is N(1 < t < N).
A signal x(f) is turned into high-dimension feature space to
obtain a sequence of m-dimension vectors, that is

X () = {x(@), x(t+ 1), ..., x(t+m— 1)} 9)

Let dZ’( indicate the maximum distance between two vectors,
where k =0, 1, ..., m, that is

dy = dIX;", X'l = max(|x(t +2) —x(G—2)|)  (10)

Let ¢ represent a fixed threshold and Cj*(¢) indicates the
probability of distance between the vector X,,(t) and X, (k),
that is

N—m+1
2. 0di —e)
= N w

where t =1,2,..,N—m+1, C]"(¢) less thane. 6(x) can be
defined as
1, x>0

12
0, x<0 (12)

0(x) = [

Let ¢ (¢) represents the average of the logarithms of C"(¢),
as shown in Eq. 13.

N—m+1
> InCl'(e)
mes 1=l
80 = (13)

when the dimension increases to m + 1, the above operation
is repeated to obtain ¢! (¢), that is

N—m
S InC"t(e)

") = =

N—m (14)

The approximate entropy at this moment is the difference
between ¢ (&) and ¢+ (¢), that is

ApEn(m, &, N) = ¢ (&) — ¢"F'(¢) (15)
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The approximate entropy is often affected by parameter ¢
and parameter N. The value of the parameter ¢ is approximately
0.1 SD ~0.2 SD, where SD represents the standard deviation.

1. Permutation entropy

Similar to approximate entropy, permutation entropy (PeEn)
is also a measurement algorithm using the complexity of time
series with advantages of strong anti-interference ability and fast
computation speed (Riedl et al., 2013). It has been widely used in
speech detection, epileptic EEG classification, and other fields.

The original signal can be denoted as x(¢) (1 < t < N), and the
signal x(t) is embedded into the high-dimension feature space to
construct the m-dimension vector X;, that is

X = {x(t), x(t + 1), ..., x(t + (m —1)1)} (16)

wheret =1,2, ..., N —m + 1, and t is the delay time.

In m-dimension space, vector X; is sorted in ascending order,
and we can get m! kinds of sorting methods. Let the sorting mode
of X; be g, andk = 1, 2, ..., m!. The appearing probability of 7
is p(mty), then

N—m+1
. k=1 {T[k}
P = m!(N—m+1) (17

The permutation entropy of the time series can be expressed

as
m!

PeEn(m) = — ZP(TCk) log p(7y)

k=1

(18)

Considering the uncertainty and disorder of EEG signals, the
value of parameter m ranges from 3 to 10. The permutation
entropy intuitively reflects the complexity of the signal. The
smaller the permutation entropy is, the more regular the signal
is. On the contrary, the signal disorder is higher.

Time-Frequency Domain Features

Since the collected EEG signals are unstable, with the
development of EEG analysis, only analyzing the signal in
the time domain or frequency domain cannot extract the feature
information at present. Features of the time-frequency domain
extracted for EEG analysis can be used for comprehensive
analysis (Toole, 2013; Alazrai et al., 2018).

In various signal processing, time-frequency analysis uses a
variety of time-frequency transformation tools to interpret a
time series simultaneously in the frequency domain and the
time domain. This not only provides a way to expand the
angle of signal analysis but also deepens people’s knowledge
and understanding of the signal description. The common time-
frequency analysis tools include Hilbert transform and Short-
time Fourier transform (STFT) (Koenig and Dunn, 2005), etc.
The basic process of time-frequency analysis is described as
follows. Firstly, the time-frequency analysis tool is used and
the signal of amplitude varying from time is converted to a
time varying from frequency. Then, the time-frequency domain
features are extracted by feature extraction tools. The typical
time-frequency features include wavelet entropy and wavelet
package coefficient entropy (Gao Q. et al., 2020). The wavelet
entropy (Rosso et al., 2001) specifically is described as follows.

Original EEG is decomposed into n-layer by wavelet transform
and several different frequency components are obtained. Let
N denote the signal length, x(f) denotes the original signal,
Ey denotes the energy of each frequency component of each
node k, that is

Ly
Ep =Y d(j)’ (19)
j=1
where t = 1, 2, ..., N. j is the summation exponent of the signal
at each node k, L. is the number of coefficients.

The total frequency energy of the signal x(t) is Ey,¢,), which can
be expressed as

(20)

Ly
Eotar = zEk = z de(])z
k

k j=1

The relative wavelet energy Py is available from the above
steps, that is

L ;
Ex Ej ji1 d(])z

P = = =
Etotal Zk Ek Zk Z]Lil dk (])2

According to the principle that the sum of the wavelet energy
is 1, the wavelet entropy can be expressed as

Swarn = — ), prIn(pr) (22)
k

Wavelet entropy is a similar concept of information entropy
constructed according to the wavelet transform, which can
describe the energy features more accurately in the time-
frequency domain. It also reveals the sparsity of the degree of the
wavelet transform coefficient matrix.

Deep Domain Features

Deep learning does not need to manually extract features, and
can automatically filtrate data and extract the high-dimension
features of data. In addition, the deep neural network can
be used to process EEG signals to train feature extraction
models and perform classification or regression tasks at the
same time (Roy et al, 2019). Pre-training of deep neural
networks is used to fine-tune specific EEG tasks aiming
for providing better initialization or regularization effects.
Controlling its complexity is the primary goal of regularization
so that it can achieve better generalization performance and
enhance the robustness of the network. Weight decay, early
stopping, dropout, and label smoothing are the most common
regularization methods.

The recurrent neural network is applied frequently as network
architecture. After improving on RNN (As et al., 2021), a network
called the Long Short-Term Memory network is created. LSTM
can learn which information is important and which information
should be deleted from memory. Forget gate, input gate, and
output gate are the parts of LSTM, as shown in Figure 4.

In LSTM, the first step is to determine which information can
be left according to the output of the previous moment and the
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h
€ N
> X —iT- | >
X
ff L a 7 X
tanh
hy -

FIGURE 4 | The structure of LSTM.

input of this time, which can be controlled by the sigmoid from
the forget gate, as shown in Eq. 23.

fo=0 Wy - [he-1, 3] + by) (23)

The next step is to generate new information which needed
to be updated. From the input gate layer, the needed update
values are determined by sigmoid. They then generate new
candidate values to add using the tanh layer, so that unnecessary
information can be removed. Eq. 24 is the process of adding new
information. N

C=ffC1+if G (24)

Finally, the output of the model can be calculated. The initial

output is obtained through the sigmoid layer first, that is

0t =0 (WD [ht—ly Xt] + bo) (25)

Then, the value is scaled to the value between -1 and 1. The
product of and the value is the output of the model, that is

hy = o} tanh(Cy) (26)
Feature Selection

Feature selection can simplify the model and make a model more
lucid. It also can speed up the training time, avoid dimension
disaster and enhance the generalization ability by reducing
overfitting (Jenke et al., 2017).

Principal component analysis (PCA) (Shlens, 2003) occupies
the widest area of application among many data dimensionality
reduction algorithms. The core of PCA is to map n-dimension
features to k-dimension features. The k-dimension well as main
component features are new orthogonal features as well as
main components. Depending on the original n-dimension
features, they are reconstructed. Assuming there are n rows
of m-dimension data, the solving steps of PCA are shown as
follows: (1) make the original data form n-row and m-column
matrix named X; (2) each row of X subtracts the mean of
this row; (3) the result of the covariance matrix C = %XXT
is achieved; (4) calculate the covariance matrixs eigenvalues
and its corresponding eigenvectors; (5) arrange the eigenvectors
from top to bottom into a matrix according to the value of
the corresponding eigenvalues. Take the top k rows to form
the matrix ; (6) the data after dimension reduction is turned to
k-dimension by Y = PX.

Independent component analysis (ICA) (Amari, 2001) is a way
of finding potential factors or components from multi-dimension
data. It converts random multivariate signals into independent
components, which works to remove artifacts from the EEG
signal. It indicates that information executed by one component
is unable to be indirectly related to other components. Therefore,
ICA can extract features from mixed signals.

Linear discriminant analysis (LDA) (Schlogl et al., 2009)
is a supervised data dimensionality reduction method that is
used to identify a given data pattern. It can be used either for
dimensionality reduction or classification. The basic idea of LDA
is to project the sample data onto a straight line and make
the projection points after the projection as close as possible,
and make the intra-class gap as small as possible and the inter-
class gap as large as possible. Then the new sample category is
determined. It is up to the position of projection points.

Classifier

After selecting the feature that provides the best classification
accuracy, the selected features are sent to the classifier to achieve
classification. A classifier can draw a boundary between two
or more categories and then label the category based on the
features it chooses. The boundary can be regarded as a separate
hyperplane belonging to a multidimensional feature space. In a
word, the better the classifier, the better the hyperplane, and the
larger the distance from all categories. These features are further
classified by using machine learning or a deep network to group
similar features into one category. Common machine learning
classifiers include support vector machine (SVM), K-means
clustering (K-means), K-nearest neighbor (K-NN), and Random
forest (RF) (Alarcdo and Fonseca, 2017).

As shown in Figure 5, the basic principle of SVM (Smola
and Scholkopf, 2004; Zhang et al., 2016) can be summarized as
mapping the indivisible data to the high-dimension space, then
finding the hyperplane that classifies the data correctly and takes
the distance from this plane to all the data to the maximum.

FIGURE 5 | Principle of support vector machine.
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K-means clustering (Asghar et al., 2019; Wagh and Vasanth,
2019) is a kind of unsupervised learning method, which is
mainly used to solve clustering problems. It is a simple iterative
clustering algorithm, which separating the nearest mean of the
sample points constantly. This algorithm divides a given sample
set into clusters based on clustering centers, where the center of
each class is obtained according to the mean of all the values in
the class. This process is achieved by minimizing the Euclidean
distance between the sample point and the cluster center. The
association of each classification result belongs to a given cluster
with the nearest cluster center and then repeats it in each iteration
to achieve a new cluster and calculate the new cluster center. For
given data X and categories number k, the minimization formula
that minimizes the sum of clustering squares of all categories of
the clustering target is shown in Eq. 27.

K n
J=222 xi—al?

k=1 i=1

27)

where x; is the sample point and ¢ is the clustering center.

K nearest neighbor (Sreeshakthy et al.,, 2016) is a method,
specifically supervised learning. For a given test sample, the
closest k training samples in the training set are found using some
distance measurements. After that, based on the information of
these k "neighbors," the prediction is made. As shown in Figure 6,
the different values of k result in different classification results.

The steps of the K-NN algorithm are as follows: (1) calculate
the distance between the test samples and each training sample;
(2) sort the test samples by distance incrementally; (3) k points
with the smallest distance are selected as k "neighbors"; (4)
determine the occurrence frequency of the category of the first
k points; and (5) the category with the most occurrence times
in the first k points is returned as the prediction classification of
the test sample.

Random forest (RF) (Breiman, 2001) is composed of several
unrelated decision trees and the ultima classification result is
up to the voting of the decision tree. The random forest has
good noise resistance and is not easy to overfit. In the traditional
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FIGURE 6 | KNN classifier results with different values.

decision tree, it is assumed that there are d attributes. When
dividing the attribute, the optimal attribute is selected in the
current node attributes. However, in a random forest, for each
node of the decision tree, a subset containing k attributes is
randomly selected from the attribute set of the node, and then
the optimal attribute is selected from this subset for partition.

Softmax classifier (Zhang D. et al., 2020) can be used for
both dichotomy and multi-classification. The SVM loss function
is used to get a score and we can classify the original data by
comparing the scores. Softmax can expand the score gap, even
if there is little difference between the score results obtained by
the score function. Through the Softmax classifier, the score gap
can be further widened and the classification effect will be more
obvious. Softmax classifier outputs the distribution probability of
output categories, as shown in Eq. 28.

softmax(x;) = ;pr (28)
> exp(x))
j=1
where x; is the input, softmax(-) is the Softmax

activation function.

The Sigmoid classifier (Alhagry et al., 2017) is generally used
for dichotomy. The definition of the Sigmoid activation function
is shown in Eq. 29.

1

1+ exp (—x;) (29)

Sigmoid(x;) =
where Sigmoid(-) represents the Sigmoid activation function. The
output of the function is between 0 and 1. If a certain output is
greater than a threshold, it is considered to belong to a certain
category, otherwise, it is not.

REVIEW OF EMOTION RECOGNITION

This section describes recent studies on EEG emotion recognition
based on DEAP, SEED, and DREAMER public datasets. In total,
35 studies and experimental methods are described and the
majority of the literature is based on deep learning for feature
extraction and recognition of emotions. Finally, the effect of
different methods on sentiment classification is summarized.

Emotion Recognition Based on Database
for Emotion Analysis Using Physiological
Signals

Pane et al. (2019) proposed a strategy combining emotion
lateralization and ensemble learning. Under four different
channel sequences and combinations, time domain features,
frequency domain features, and wavelet features of EEG signals
were extracted. Then, the DEAP datasets were classified by
random forest with a classification accuracy of 75.6%. Cheng
et al. (2020) preprocessed EEG data and constructed a 2D
frame sequence by using the spatial position relationship between
channels and classified EEG emotion by deep forest. In the DEAP
dataset, the average accuracy of valence and arousal was gained.
Respectively, one was 97.69% and the other was 97.53%.
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Ya et al. (2021) first extracted differential entropy to construct
feature blocks and then used each segmented feature block as
the input of a new deep learning model. The new deep learning
model was constructed by fusing graph convolutional neural
network (GCNN) and LSTM. Finally, extensive experiments are
conducted for the DEAP dataset. Good results were obtained in
experiments related to the subjects. Huang et al. (2021) proposed
the Bi-Hemisphere Discrepancy Convolutional Neural Network
Model (BiDCNN). It can effectively learn the different reaction
patterns between the left and right hemispheres of the brain and
construct a three-input and single-output network structure with
three convolutional neural network layers. Putting the model into
use in the DEAP datasets, its accuracy of potency and arousal is
94.38 and 94.72%, respectively.

Mokatren et al. (2021) used wavelet packet decomposition
(WPD) to divide EEG signal into five sub-bands and extracted
wavelet energy and wavelet entropy. The channel mapping matrix
is constituted in accordance with the position of the EEG
electrode. The extracted features are classified by CNN. In the
DEAP dataset, the classification accuracy of valence and arousal
was 91.85 and 91.06%, respectively. Moon et al. (2020) proposed a
new classification system by using CNN for brain connectivity. In
this method, Pearson correlation coeflicient (PCC), phase locking
value (PLV), and transfer entropy (TE) were used to complete
the connectivity matrix and the effectiveness of the algorithm was
verified on the DEAP dataset.

Liu J. et al. (2020) combined CNN, sparse autoencoder
(SAE), and deep neural network (DNN) to propose a deep neural
network for emotion recognition of EEG signals. On the DEAP
dataset, the recognition accuracy of valence and arousal were
89.49 and 92.86%, respectively. Jca et al. (2020) converted the
1D chain-like EEG vector sequence into a 2D grid-like matrix
sequence to extract the spatial correlation of the EEG signals
between adjacent electrodes. Then, emotion can be recognized
by combining the cascaded and parallel hybrid convolutional
recurrent neural network. The binary classification experiments
of valence and arousal emotion were carried out on the DEAP
dataset and obtained accuracy of 93.64 and 93.26%, respectively.
Yin et al. (2020) proposed a new locally-robust feature selection
(LRFS) method. The method first used probability density to
model the extracted EEG features. Then, the similarity of all
density functions that existed in every two subjects was evaluated
to describe the inter-individual consistency of EEG features, and
the local robust EEG features were derived. Finally, ensemble
learning was used to fuse selected features from a subset of
multiple subjects. The accuracy of valence and arousal on the
DEAP dataset was 67.97 and 65.10%, respectively.

Based on EEG segmentation for short-term change detection
of facial markers, Tan et al. (2021) constructed a subject
related short-term EEG emotion recognition framework based on
spiking neural network (SNN) and optimized super parameters
of the data representation of pulse coding and dynamic evolving
SNN (deSNN). The accuracy of valence and arousal classification
on the DEAP dataset was 67.76 and 78.97%, respectively. Salankar
et al. (2021) put forward an emotion recognition algorithm
dependent on empirical mode decomposition (EMD), which
extracts the area, mean value, and central tendency measure of the

elliptical region from second order difference plots (SODP) and
classifies them by artificial neural networks (ANN). The accuracy
rates of valence and arousal were 96.00 and 100.00%, respectively.

Zhou et al. (2020) proposed an EEG sample selection
algorithm on the foundation of average Frechet distance to
improve the sample quality. An EEG feature transfer algorithm
based on transfer component analysis was developed to expand
the sample size. Then, an EEG sample classification model
based on echo state network (ESN) was constructed and the
classification accuracy on the DEAP dataset was 68.06%. Pandey
and Seeja (2019) first calculated the intrinsic mode functions
(IMF) of each EEG signal by using the variational mode
decomposition (VMD), then extracted the peak value of PSD
and first difference according to the IMF, and finally input them
to the deep neural network for classification. The accuracy of
valence and arousal were 62.50 and 61.25%, respectively in the
DEAP dataset. Liang et al. (2019) first extracted the features of
EEG signal in the time domain, frequency domain, and wavelet
domain, constructed hypergraph representation, and proposed
an unsupervised learning classification method for classification
on the DEAP dataset. The classification accuracy of valence and
arousal were 54.45 and 62.34%, respectively.

Naser and Saha (2021) extracted the frequency domain
features of EEG signals and proposed a feature-level fusion
network for emotion classification by using dual-tree complex
wavelet packet transform (DT-CWPT) and SVM. The accuracy
of valence and arousal on the DEAP dataset was 69.33 and
69.49%, respectively. Sengiir and Siuly (2020) first filtered and
denoised EEG to extract rhythm. Then, the extracted rhythm
signal was used to make a conversion from the rhythm signal to
EEG rhythm images by continuous wavelet transform (CWT).
Furthermore, the deep features of EEG rhythm images were
extracted by convolution neural network, and the depth features
were selected by MobileNetv2. Finally, LSTM was applied to
emotion recognition. The accuracy of valence and arousal on the
DEAP dataset were 96.1 and 99.6%, respectively.

Zhang S. et al. (2020) showed an emotion recognition
method based on sample entropy (SE) and functional connection
network. Firstly, WPT was used to decompose the EEG data
of DEAP. Then, EEG features were constructed based on the
functional connectivity network of phase synchronization index
(PSI). Finally, RF was used for classification. The accuracy of
valence and arousal was 86.67 and 88.58%, respectively on the
DEAP dataset. Gao Y. et al. (2020) used information interaction
between brain channels as a feature for classifying emotion
states. In this paper, the transfer entropy (TE) relation matrix
was combined with the Granger Causality (GC) and histogram
of oriented gradient (HOG) to extract EEG features by image
processing. The average classification accuracy of this method on
the DEAP dataset was 88.93 and 95.21%, respectively.

Table 1 presents the conclusion of the above algorithms.
This table summarizes the research methods and results of
EEG emotion classification on the DEAP dataset. The feature
extraction of EEG was carried out on the time domain,
frequency domain, time-frequency domain, and deep learning
domain. Researchers mainly used deep learning to identify
and extract signals through various networks. Most of them
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TABLE 1 | Research results based on DEAP.

References Method Emotion Accuracy
Valence  Arousal
Pane et al., 2019 Hybrid features extraction (time, frequency, and wavelet), RF Valence 0.7560 -
Cheng et al., 2020 2D frame sequences, spatial position relationship, deep forest Valence, 0.9769 0.9753
Arousal
Ya et al., 2021 Differential entropy, graph convolutional neural network (GCNN), LSTM, Softmax Valence, 0.8481 0.8527
Arousal
Huang et al., 2021 Three different EEG feature matrices, Bi-hemisphere discrepancy convolutional neural network Valence, 0.9438 0.9472
model (BIDCNN), Softmax Arousal
Mokatren et al., 2021 Wavelet packet decomposition (WPD), wavelet energy, wavelet entropy, mapping matrix of the Valence, 0.9185 0.9106
EEG channels, CNN Arousal
Moon et al., 2020 Phase-locking value (PLV), Pearson correlation coefficient (PCC), transfer entropy (TE), Valence 0.8736 -
connectivity matrices, CNN, Softmax
Liu J. et al., 2020 Convolutional Neural Network (CNN), Sparse Autoencoder (SAE), Deep Neural Network (DNN), Valence, 0.8949 0.9286
Sigmoid Arousal
Jca et al., 2020 1D chain-like EEG vector, 2D meshlike matrix sequences, cascaded and parallel hybrid Valence, 0.9364 0.9326
convolutional recurrent neural network, Softmax Arousal
Yin et al., 2020 Locally-robust feature selection (LRFS), emotion classifier committee, ensemble learning Valence, 0.6797 0.6510
Arousal
Tan et al., 2021 Dynamic evolving SNN (deSNN), Valence, 0.6776 0.7897
spike-timing-dependent plasticity (STDP) Arousal
Salankar et al., 2021 Empirical Mode Decomposition (EMD), second order difference plots (SODP), artificial neural Valence, 0.9600 1.0000
networks (ANN) Arousal
Zhou et al., 2020 Frechet distance, echo state network (ESN), transfer learning (TL) Valence 0.6806 -
Pandey and Seeja, 2019  Peak value of PSD, first difference, variational mode decomposition (VMD), intrinsic mode Valence, 0.6250 0.6125
functions (IMF), deep neural network Arousal
Liang et al., 2019 Statistical features (7 features), Hjorth features (3 features), fractal dimension (FD), hypergraph Valence, 0.5445 0.6234
theory, unsupervised learning Arousal
Naser and Saha, 2021 Dual-tree complex wavelet packet transform (DT-CWPT), feature-level fusion, SVM Valence, 0.6933 0.6949
Arousal
Sengur and Siuly, 2020 Continuous wavelet transform (CWT), MobilNetv2, LSTM Valence, 0.9610 0.9960
Arousal
Zhang S. et al., 2020 Sample entropy (SE), Functional connection network, Wavelet Packet Transform (WPT), Phase Valence, 0.8667 0.8858
synchronization index (PSI), global clustering coefficient, local clustering coefficient, etc., phase Arousal
synchronization index, FR
Gao Y. et al., 2020 Histogram of Oriented Gradient (HOG), Granger Causality (GC), Transfer Entropy (TE), SVM Arousal, GC:0.8893
Valence
Liking, TE:0.9521
Dominance

— "means that this experiment was not done in this research.

are valence and arousal two-dimensional emotion models in
emotion classification.

Emotion Recognition Based on SEED
Asa et al. (2021) extracted six features of each wavelet sub-band
based on tunable Q wavelet transform (TQWT) and used six
different methods for dimensionality reduction. Finally, rotation
forest ensemble (RFE) was used for different classification
algorithms to classify the SEED dataset and the SVM classifier
achieved the highest classification accuracy of 93.1%. Wei et al.
(2020) decomposed the original EEG into five sub-bands through
DT-CWT. Then, these sub-band features of time domain,
frequency domain, and non-linear were extracted. At last, three
integration tactics were adopted to integrate the simple recurrent
units (SRU) model to obtain final classification performance.
Topic and Russo (2021) proposed topographic feature maps
(TOPO-FM) and holographic feature maps (HOLO-FM) based
on nine EEG signal features. Then, the features were extracted

and fused with CNN. Wang et al. (2019) determined the pattern
of functional connectivity related to emotion in the application of
PLV connectivity of EEG signals. In different emotional states, the
internal relationship between EEG channels was expressed. The
neural network was used for training to distinguish emotional
states, and the classification accuracy on the SEED dataset was
84.35%. Li et al. (2021) proposed a kind of transferable attention
neural network (TANN) for EEG emotion recognition. The
network took into account the internal structure information
of electrodes and adaptively highlights the data and samples
of transferable EEG brain regions through local and global
attention mechanisms to learn emotion recognition information.
The accuracy in the SEED data set was 84.41%.

Wang F. et al. (2020) proposed a concept of electrode-
frequency distribution maps (EFDM) based on short-time
Fourier transform. Then, four residual-block-based CNN was
constructed with EFDM as input for emotion classification.
The classification accuracy on the SEED dataset was 90.59%.
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TABLE 2 | Research results based on SEED.

References Method Emotion Accuracy
Asa et al., 2021 Mean absolute value, Average power, etc., A tunable Q wavelet Negative, 0.9310
transform (TQWT), rotation forest ensemble (RFE), SVM, K-NN Positive, Neutral
Wei et al., 2020 Mean absolute value (MAV), PSD, etc. Simple Recurrent Units (SRU), Negative, 0.8313
Dual-tree Complex Wavelet Transform (DT-CWT) Positive, Neutral
Topic and Russo, 2021 Hjorth activity, mobility and complexity, peak-to-peak, etc. 9 Negative, 0.7311
features, topographic feature map (TOPO-FM), holographic feature Positive, Neutral
map (HOLO-FM), CNN, SVM
Wang et al., 2019 Phase-locking value graph convolution neural networks (P-GCNN) Negative, 0.8435
Positive, Neutral
Lietal., 2021 Intrinsic structural information of electrodes, RNN, transferable Negative, 0.8441
attention neural network (TANN), local attention, global attention Positive, Neutral
Wang F. et al., 2020 Short-time Fourier transform (STFT), Electrode-frequency distribution Negative, 0.9059
maps (EFDM), residual block based deep CNN Positive, Neutral
Asghar et al., 2021 Intensive multivariate empirical mode decomposition (IMEMD), Negative, 0.9630
Complex Continuous Wavelet Transform (CCWT), deep neural Positive, Neutral
network, SVM
Luetal, 2019 Dynamic entropy, SVM Negative, 0.8511
Positive
Rahman et al., 2020 Standard deviation, mean absolute deviation, power spectral Positive, 0.8430
density, PCA, t-statistics, SVM Negative,
Neutral
Joshi, 2021 Linear Formulation of Differential Entropy (LFDE), Bi-directional Long Positive, 0.8064
Short-Term Memory (BILSTM) Negative,
Neutral
Fu et al., 2021 Conditional generative adversarial network(CGAN) Positive, 0.9202
Negative
Cheah et al., 2021 Residual networks (ResNet), Visual Geometry Group(VGG) Positive, 0.9342
Negative,
Neutral
"— " means that this experiment was not done in this research.
TABLE 3 | Research results based on DREAMER.
References Method Emotion Accuracy
Valence Arousal Dominance
Cui et al., 2020 Regional-Asymmetric Convolution Neural Network (RACNN), Valence, 0.9555 0.9701 —
Asymmetric Differential Layer (ADL), softmax Arousal
Cheng et al., 2020 2D frame sequences, spatial position relationship, deep forest Valence, 0.8903 0.9041 0.8989
Arousal
Liu V. et al., 2020 Multi-level features guided capsule network (MLF-CapsNet) Valence, 0.9459 0.9526 0.9513
Arousal,
Dominance
Wang V. et al., 2020 SPD matrix network (daSPDnet) Valence, 0.6799 0.7657 0.8177
Arousal,
Dominance
Dm et al., 2021 Multi-channel, rhythm selection, CNN, softmax Valence, 0.9717 0.9681 0.9724
Arousal,
Dominance
Song et al., 2018 Dynamic graph convolution neural network (DGCNN), Softmax Valence, 0.8623 0.8454 0.8502
Arousal,
Dominance

"—"means that this experiment was not done in this research.

Asghar et al. (2021) firstly decomposed the original EEG
signal to empirical coeflicients by using intensive multivariant
empirical mode decomposition (IMEMD). Then, the empirical
coefficients were analyzed by collecting all the information
in the time domain and frequency domain by using
complex continuous Wavelet transform (CCWT). Finally,
combining with three deep neural networks, SVM was used

for classification. The classification accuracy rate on the SEED
dataset reached 96.3%.

Lu et al. (2019) proposed a new pattern learning framework
based on dynamic entropy. Firstly, continuous entropy
was extracted from EEG. Then, the continuous entropy is
concatenated to form a feature vector and pattern learning based
on dynamic entropy can realize the emotion recognition across
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individuals to get excellent emotion recognition precision. The
accuracy of the two kinds of emotion recognition was 85.11%
when tested on the SEED dataset. Rahman et al. (2020) first used
PCA that can reduce the dimension of EEG signal, then extracted
the standard deviation, mean absolute deviation, and power
spectral density of EEG signal as classification features, and used
t-statistic to select distinctive features. Finally, SVM and other
classifiers were used to recognize emotions on the SEED dataset
and the accuracy reached 84.3%. Joshi (2021) proposed an
emotion recognition algorithm based on the linear formulation
of differential entropy (LFDE) and bi-directional long short-term
memory (BiLSTM) network. The average classification accuracy
of this algorithm on the SEED dataset was 80.64%.

An emotion recognition algorithm based on conditional
generative adversarial network (cGAN) was proposed by Fu et al.
(2021), which realized fine-grained estimation and visualization
of emotion based on EEG. Two experiments were carried out
on the SEED dataset and the average classification accuracy was
92.02 and 82.14%. Cheah et al. (2021) proposed an EEG emotion
recognition algorithm based on residual networks (ResNet),
which achieved 93.42% accuracy on the SEED dataset.

The above algorithms are summarized in Table 2. This
table summarizes the algorithms and results of EEG emotion
classification by using the SEED dataset. The feature extraction
of EEG is completed in four aspects: time domain, frequency
domain, time-frequency domain, and deep learning. In terms of
signal classification, it is mainly based on positive, negative, and
neutral emotions.

Emotion Recognition Based on
DREAMER

Because of asymmetry between the left and right hemispheres
of the brain, discriminative features are obtained. With it as
the foundation, Cui et al. (2020) proposed a feature extraction
algorithm. Emotion was then identified by constructing an
end-to-end asymmetric regional-asymmetric convolution neural
network (RACNN). The valence and arousal accuracy of the
algorithm on the DREAMER dataset were 95.55 and 97.01%,
respectively. Cheng et al. (2020) proposed an EEG emotion
recognition algorithm based on the multi-grained cascade forest
(gcForest) model. The average classification accuracy of this
algorithm on the DREAMER dataset reached 89.03, 90.41, and
89.89%, respectively.

Liu Y. et al. (2020) proposed a multi-level features guided
capsule network (MLF-CapsNet) for emotion recognition based
on multi-channel EEG. Its function was to simultaneously
extract features from raw EEG signals and determine emotional
states. The average accuracy rates of valence, arousal, and
dominance in the DREAMER dataset were 94.59, 95.26, and
95.13%, respectively. Wang Y. et al. (2020) proposed a
new EEG emotion recognition algorithm based on domain
adaptive SPD matrix network (daSPDnet). Making use of
feature adaptation with distribution confusion and the sample
adaptation with centroid alignment, this algorithm computed
the sample point diffusion matrix based on covariance and
combined prototype learning with the Riemannian metric. The

shared emotional representation among different subjects can be
captured successfully. The average accuracy rates of the proposed
method were 67.99, 76.57, and 81.77% on the DREAMER
dataset, respectively.

Dm et al. (2021) proposed a multi-channel EEG emotion
recognition algorithm that takes advantage of a rhythm-
specific convolutional neural network. The accuracy of valence,
arousal, and dominance in the DREAMER dataset were 97.17,
96.81, and 97.24%, respectively. Song et al. (2018) gave a
multi-channel emotion recognition method based on a new
dynamic graph convolutional neural network (DGCNN). The
average recognition accuracy of valence, arousal, and dominance
classification in the DREAMER database were 86.23, 84.54, and
85.02%, respectively.

The conclusion of the above algorithms is shown in
Table 3. This table summarizes the algorithms and results
of EEG emotion classification on the DREAMER dataset.
At present, there are relatively few experiments using this
dataset, most of which are comparative experiments. The
researchers mainly use deep learning to extract features of
EEG. In the aspect of signal classification, it includes a two-
dimension emotion classification model of valence and arousal
and a three-dimension emotion classification model of valence,
arousal, and domination.

CONCLUSION

This paper summarizes existing research about emotion
recognition based of EEG. Firstly, the mechanism of EEG,
emotion trigger mode, and classification model are introduced in
detail. Then, we elaborate the existing EEG emotion recognition
algorithms from three aspects, which are feature extraction,
feature selection, and classifier. Finally, the results of various
emotion classification methods are discussed and compared
by reviewing the literature. In the practical application of EEG
emotion recognition, many problems are still waiting to be
solved, such as few emotion categories and datasets, which are
also the focus of future research in this field.
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