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Due to the complex angular-spatial structure, light field (LF) image processing faces

more opportunities and challenges than ordinary image processing. The angular-spatial

structure loss of LF images can be reflected from their various representations. The

angular and spatial information penetrate each other, so it is necessary to extract

appropriate features to analyze the angular-spatial structure loss of distorted LF images.

In this paper, a LF image quality evaluation model, namely MPFS, is proposed based

on the prediction of global angular-spatial distortion of macro-pixels and the evaluation

of local angular-spatial quality of the focus stack. Specifically, the angular distortion of

the LF image is first evaluated through the luminance and chrominance of macro-pixels.

Then, we use the saliency of spatial texture structure to pool an array of predicted values

of angular distortion to obtain the predicted value of global distortion. Secondly, the local

angular-spatial quality of the LF image is analyzed through the principal components of

the focus stack. The focalizing structure damage caused by the angular-spatial distortion

is calculated using the features of corner and texture structures. Finally, the global and

local angular-spatial quality evaluation models are combined to realize the evaluation of

the overall quality of the LF image. Extensive comparative experiments show that the

proposed method has high efficiency and precision.

Keywords: light field, objective image quality assessment, focus stack, macro-pixels, corner

INTRODUCTION

Light field (LF) imaging technology is designed to record rich scenario information. Compared
with ordinary two-dimensional (2D) images and binocular stereoscopic images, LF images are
favored in researches like immersive stereoscopic display and object recognition because of their
particular characteristics of dense view and post-focusing (Huang et al., 2016; Ren et al., 2017a).
For these applications, image quality degradationwill directly affect the perception of the immersive
experience and the accuracy of object recognition. However, the quality assessment of LF images is
different from that of ordinary image types. It involves analyzing the complex imaging structure
relationships among dense multi-view LF images. Therefore, it is beneficial to consider the
characteristics of LF images, such as the relationship between dense viewpoints, perception of
human eyes to the structure of multi-view images, to accurately evaluate the quality. Traditional
image quality evaluation models are not suitable for LF because they do not consider the special
characteristics of LF images. It is of great significance for the development of LF to build an
objective quality evaluation model that effectively utilizes the characteristics of LF images.
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The characteristics of LF images are reflected in its various
expressions. The dense viewpoints of an LF image, hereinafter
referred to as subaperture images (SAIs), represent spatial
information of the captured scenes from different visual
angles. Adjacent SAIs have strong texture similarity, which
enables the compression operation to be better realized.
Compression algorithms of LF images can alleviate the problem
of inconvenience in transmission caused by a large amount of
data of LF images. Furthermore, the reconstruction algorithms
play an excellent role in recovering the loss of spatial
resolution or angular resolution in the LF image processing.
The compression and reconstruction algorithms are mainly
based on the multiple representations of LF images: hexagonal
lenslet image, rectangular decoded image, SAIs, focus stack, and
epipolar plane images (EPIs) (Huang et al., 2019a; Wu et al.,
2019). All of the above representations can reflect the angular and
spatial characteristics of LF images. Although both compression
and reconstruction operations promote the practical application
of LF images, they inevitably bring the problem of quality
degradation. Moreover, the performance of these algorithms
varies a lot, so the criteria to check out the optimal one
are necessary.

For situations where SAIs are used to evaluate the quality of
LF images, Tian et al. (2018) presented a multi-order derivative
feature-based model using the multi-order derivative features
extracted on the SAIs of LF images. However, their analysis
remains in the texture aspect of spatial information, lacking
the analysis of the connection between the angular and spatial
information. As an LF image can be regarded as a low-rank
4D tensor, Shi et al. (2019) adopted the tensor structure of the
cyclopean image array from the LF to explore the angular-spatial
characteristic. Zhou et al. (2020) used tensor decomposition
of view stack in four directions to extract the spatial-angular
features. To explore the angular-spatial characteristics of LF
images, Min et al. (2020) averaged the structural matching degree
of all viewpoints to compute the spatial quality and analyzed
the amplitude spectrum of near-edge mean square error along
viewpoints to express the angular quality. Xiang et al. (2020)
computed the mean difference image from SAIs to describe the
depth and structural information of LF images, and it used a
curvelet transform to reflect the multi-channel characteristics of
the human visual system.

The focus stack is constructed by stacking the refocused
images from the perspective of depth, which reflects both the
texture and depth information of LF images. Meng et al. (2019)
compared different objective metrics under SAIs and the focus
stack, which verified the superiority of the refocus characteristic
of LF images. Meng et al. (2019) utilized the LF angular-spatial
and human visual characteristics and verified the effectiveness
of the assumed optimal parallax range. Meng et al. (2021)
built a key refocused image extraction framework based on the
maximal spatial information contrast and the minimal angular
information variation to reduce the redundancy of quality
evaluation in the focus stack.

The depth feature makes the LF more popular in object
detection, three-dimensional reconstruction, and other
applications. Paudyal et al. (2019) compared different depth

extraction strategies and assessed the quality of LF through
the structural similarity of the depth map. It is proven that
the depth information is effective in reflecting the distortion
degree of LF images, but Paudyal et al. (2019) ignored the texture
structure information of LF images. Therefore, some studies have
attempted to combine depth features with the features from SAIs
to achieve better prediction results. Shan et al. (2019) combined
the ordinary 2D features of SAIs and sparse gradient dictionary
of LF depth map. Tian et al. (2020) performed radial symmetric
transformation on the luminance components of all dense
viewpoints to extract symmetric features and used depth maps
to measure the structural consistency between viewpoints, which
explored the way humans perceive structures and geometries.

To preferably explore the angular-spatial characteristics
of LF, many pieces of research are devoted to take
advantage of various LF expressions. For the form of
uniting multiple representations, Luo et al. (2019) used the
global entropy and uniform local binary pattern features
of a lenslet image to evaluate the angular consistency,
and adopted the information entropy of SAIs to measure
spatial quality. Fang et al. (2018) calculated the change in
visual quality by combining the gradient amplitude of SAIs
and EPIs.

In addition to traditional methods, as deep learning exhibits
excellent performance in other aspects of image processing, some
teams have worked to fill the research gap of deep learning in
the quality evaluation of LF images. Zhao et al. (2021) proposed
an LF-IQA method based on the multi-task convolutional neural
network (CNN), in which the EPI patches were taken as the
input of the CNN model and the model followed ResNet in
the convolution layer. Lamichhane et al. (2021) proposed an
LF-IQA metric based on a CNN that measures the distortion
of the saliency map. Lamichhane et al. (2021) confirmed that
there is a strong correlation between the distortion levels of
normalized images and the corresponding saliency maps. Guo
et al. (2021) proposed a deep neural network-based approach, in
which the relationship among SAIs was obtained by SAI fusion
and global context perception models. To solve the problem of
insufficient databases, they proposed a ranking-based method
to generate pseudo-labels to pre-train the quality assessment
network, and then fine-tuned the model at small-scale data sets
with real labels.

This paper attempts to build a quality evaluation index that
comprehensively considers the angular-spatial characteristics
of LF images and human vision characteristics. The angular
information of LF is directly expressed in the form of macro-
pixel, which has been widely used in LF compression (Schiopu
and Munteanu, 2018). Macro-pixels can be simply used to
compare changes in angular information and do not involve
a complex analysis of texture. For lenslet images, the array of
pixels beneath each microlens is named as a macro-pixel. As
shown in Figure 1, the second line is the enlarged local macro-
pixels of the referenced lenslet image and the corresponding
distorted macro-pixels. The enlarged part of the lenslet image
contains 7 × 7 macro-pixels, and each macro-pixel contains 9
× 9 pixels. It can be seen from Figure 1C that luminance and
chrominance have changed in the distorted macro-pixels. Hence,
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FIGURE 1 | (A) The referenced light field (LF) image in the form of decoded lenslet. (B) The first column is the enlarged local macro-pixels from (A), and the other two

columns correspond to macro-pixels with different degrees of distortion, which increased from left to right. (C) Each column corresponds to the grid distribution of

gray values of a single macro-pixel in the green block in (B).

we first utilize the angular information of all spatial positions
to globally analyze the angular-spatial quality of LF images.
As for spatial information, texture structure is an important
and a direct means for human eyes to perceive image quality.
Ingeniously, the focus stack not only reflects the texture structure
information but also partly maps the angular information. Min
et al. (2018) mentioned that quality degradations can cause local
image structure changes, and Min et al. (2017a,b) mentioned
that corners and edges are presumably the most important image
features that are sensitive to various image distortions. Therefore,
we construct a local LF angular-spatial quality evaluation model
based on the focus stack through the measurement of corner
and texture structures. Finally, the abovementioned two clues
are combined to represent the overall quality of LF images.
The contributions of this paper mainly include the following
three points.

• A prediction framework of global angular-spatial distortion
of LF images is established on the lenslet images. First, the
distortion of angular information is calculated by averaging the

changes in luminance and chrominance of each macro-pixel. All
the evaluated values are arranged according to the corresponding
spatial coordinates, forming an array of predicted values of
angular distortion. Then, the visual saliency of the central SAI,
which reflects the spatial information distribution with human
visual characteristics, is introduced to pool an array of predicted
values of angular distortion to obtain the predicted value of
global distortion.

• An evaluation framework of local angular-spatial distortion
of LF images is built on the principal components of the focus
stack. The loss of the focalizing structure and the distortion
of spatial texture structure are analyzed on the principal
components through the corner similarity and texture similarity,
respectively. The final local distortion is evaluated by fusing the
predicted values of the focalizing structure and texture structure.

• The proposed method is compared with multiple objective
metrics in the stitched multi-view image framework, and their
results are analyzed with three subjective LF-IQA databases to
verify their effectiveness and robustness.

Frontiers in Computational Neuroscience | www.frontiersin.org 3 January 2022 | Volume 15 | Article 768021

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Meng et al. Quality Evaluation of LF Images

FIGURE 2 | The proposed LF-IQA framework based on the angular-spatial feature information.

MATERIALS AND METHODS

Although the angular-spatial characteristics of LF are reflected
in various expressions of LF, it is still a great challenge
to extract and calculate the angular-spatial characteristics of
LF. The lenslet images not only macroscopically reflect the
global angular-spatial information of the LF images, but also
microscopically reflect the angular information distribution.
Inspired by this, we intend to start from the macro-pixels of
the lenslet images to evaluate the angular distortion at the
micro level, and then use the feature of spatial information to
pool the predicted values of angular distortion. In consideration
of the lack of analysis of useful texture and edge structure
in the scene, which has a great influence on the quality
perception, in the calculation of global distortion of LF
images, the study in this paper will combine with other
LF representations to supplement its deficiency. As each
refocused image in the focus stack contains both angular-spatial
information and texture structure, this paper chooses to analyze
the texture and edge structure of the LF images with the
focus stack.

According to the abovementioned analysis, we propose an
evaluation method to comprehensively predict the distortion of
LF images from both global and local aspects. The distribution
of global and local distortion is analyzed from the lenslet
images and focus stack, respectively. As illustrated in Figure 2,
the global distortion in lenslet images is analyzed at each
macro-pixel through the luminance and chroma channels. After
then, we utilize the visual salient feature of spatial information
to assign different weights to the measured values of each
distorted macro-pixel, so as to realize the fusion of spatial

information and angular information. Moreover, human visual
characteristic has been taken into account in the calculation of
visual saliency. As the single macro-pixel of a lenslet image lacks
the texture and edge information of the objects in the scene,
we complement the global distortion measurement by analyzing
the principal components in the focus stack. The prediction
processes of global and local distortion are described in sections
The Prediction of Global Angular-Spatial Distortion and The
Evaluation of Local Angular-Spatial Quality, respectively, and the
two complementary prediction frameworks are fused in section
The Evaluation of Union Angular-Spatial Quality.

The Prediction of Global Angular-Spatial
Distortion
A lenslet image is composed of an array of macro-pixels
embedded with angular information. The array of macro-
pixels reflects the distribution of angular-spatial distortion
macroscopically, while a single macro-pixel reflects the
distribution of angular distortion microscopically. The size of
a lenslet image is S × T units of macro-pixels, and the size of a
macro-pixel is I × J, where S × T is the spatial resolution of LF
images, and I × J is the angular resolution of LF images.

As it can be seen from Figures 1A,B, the distortion
of macro-pixels is manifested as the changes in luminance
and chrominance. Figure 1C describes the grid distribution
of referenced and different distorted macro-pixels, which
reflects the influence of distortion on the angular information.
Considering that a single macro-pixel involves all the angular
information of the corresponding spatial position, we first
compute the angular distortion within each macro-pixel.
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As a single macro-pixel does not involve the complex texture
and edge structure of the objects in the scene, we decided to study
the variation of luminance information and chroma information
in each macro-pixel. Without considering the image texture
structure information, the root mean squared error (RMSE)
method can simply and accurately calculate the error between
referenced and distorted macro-pixels. As people are more
sensitive to the change of luminance than that of chrominance
(Su, 2013), we mainly measure the distortion of each macro-pixel
on the luminance channel. Specifically, Equation (1) expresses the
RMSE of luminance (RMSEY ) of the referenced macro-pixel (YR)
and the distorted macro-pixel (YD):

RMSEY (xs,t) =

√

1

I � J

(

∑I

i=1

∑J

j=1

(

YR(xi,j)− YD(xi,j)
)2
)

(1)

where xs,t is the pixel value on the spatial coordinate (s, t). xi,j is
the pixel value on the angular coordinate (i, j). I and J are the
angular resolutions, in this paper, I = 9, J = 9.

In addition to the variation of luminance information in the
macro-pixel array, the distortion of chroma information will
also affect the perception of the overall quality of images. As
macro-pixels have no texture and edge structure of objects in
the scene, the measurement of chroma distortion of macro-
pixels can be simpler and more direct. Considering that the
chrominance information has a much smaller impact on the
overall quality than the luminance, we adopt the similarity
measurement method that is widely used in objective assessment
methods, as given in Equations (2) and (3). The chrominance
information is analyzed in the YUV color space. The similarity
map of each macro-pixel is averaged to calculate the quality value
of the corresponding spatial position (s, t).

SU(xs,t) =
1

I � J

(

∑I

i=1

∑J

j=1

2UR(xi,j) � UD(xi,j)+ C1

UR
2(xi,j)+ UD

2(xi,j)+ C1

)

(2)

SV (xs,t) =
1

I � J

(

∑I

i=1

∑J

j=1

2VR(xi,j) � VD(xi,j)+ C1

VR
2(xi,j)+ VD

2(xi,j)+ C1

)

(3)

where SU and SV are the color similarity of U and V channels.
UR and VR are referenced macro-pixels of U and V channels,
and UD and VD are distorted macro-pixels of U and V channels.
The constant C1 is used to maintain the stability of the similarity
measurement function (Zhang et al., 2011), we fixed C1 = 1
through the experiments.

The smaller RMSEY between the referenced and distorted
macro-pixel signifies the smaller error of the luminance
components between them, while the greater chrominance
similarity represents the smaller chroma error. For each macro-
pixel, we use Equation (4) to fuse the predicted values of
luminance and chrominance components. The values of RMSEY
are in the range of 0–255, tomake the contribution of chroma less
to the overall distortion prediction than the luminance, we set C2

to 0.01, so that the range of chroma error is 0.99–100.

PVDMP(xs, t) =
RMSEY (xs, t)

SU(xs, t) � SV (xs, t)+ C2
(4)

where PVDMP(xs ,t) is the fused prediction value of the distorted
macro-pixel in the spatial coordinate (s, t), sǫ[1, S], tǫ[1, T]. S
and T are the spatial resolution, in this paper, S = 434, J = 625.
The PVDMP values arranged in spatial coordinates form an array
of predicted values of angular distortion.

To integrate the angular information and spatial information
of LF images in the process of image quality assessment, we
intend to pool the predicted values of angular distortion using the
spatial information. The exciting thing is that the corresponding
spatial coordinates of macro-pixels reflect the significance of the
texture and contour of the LF images. As the central SAI is the
main perspective from which humans observe the scenes, we
choose to use the features of the central SAI to pool an array
of predicted values of angular distortion. The visual saliency
map of the central SAI, which reflects the spatial information
distribution with human visual characteristics, is introduced to
pool the predicted values of all distorted macro-pixels, as given
in Equation (5):

PVGD =

∑S
s=1

∑T
t=1 PVDMP

(

xs, t
)

� VSm
(

xs, t
)

∑S
s=1

∑T
t=1 VSm

(

xs, t
)

(5)

where PVGD is the predicted value of global angular-spatial
distortion of LF images. VSm (xs,t) = max [VSr(xs,t), VSd(xs,t)],
VSr(xs,t), and VSd(xs,t) are visual saliency maps of the central
SAIs of referenced and distorted LF images, respectively. In this
paper, we use the simple saliency model in Zhang et al. (2013),
which integrates the frequency prior, color prior, and location
prior and has been proven to be a simple and an effective visual
saliency model that simulates the perceptual characteristics of
human eyes to the images (Zhang et al., 2014).

The Evaluation of Local Angular-Spatial
Quality
As mentioned earlier, the prediction of global angular-spatial
distortion lacks direct measurements of the texture and edge
structure of the objects in the scenes. This section aims to
complement the global distortion measurement by analyzing the
principal components in the focus stack. The focus stack consists
of a series of refocused images arranged in the direction of
depth. A refocused image is obtained by shifting and summing
the SAIs at a given slope. Therefore, the refocused images
only contain the local angular-spatial information of LF images.
Specifically, the distortion of the angular information is directly
manifested as the loss of the focalizing structure in the focus
stack, while the distortion of the spatial information is manifested
as various forms of destruction of the texture and edge structure
in the scenes.

The loss of the focalizing structure is reflected as the disorder
of the focus state. As shown in Figure 3A, the red and green boxes
correspond to the cross and vertical sections of the focus stack.
The sections of the referenced focus stack show that the focalizing
structure is orderly, while the focusing state of the distorted focus
stack is chaotic. Specifically, the foremost focusing position of
the referenced focus stack is located on the wood plate, while the
forefront refocused slice of the distorted focus stack is not in the
focus state.Moreover, Figure 3B shows that the backmost refocus
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FIGURE 3 | Focus stack. (A) The focus stack of reference and distortion from

left to right. The red and green boxes are the cross and vertical sections of the

focus stack, respectively. (B) The partial focus stack of reference and distortion

from left to right.

slice of the referenced focus stack focused on the text, while the
corresponding distorted refocus slice was not focused on the text
that should be focused due to the angular-spatial distortion. In
a word, the energy distribution of the distorted focus stack is
scattered throughout the whole depth range, and the original
focalizing structure is destroyed.

We also noticed from Figure 3 that there is a defocused blur
in the unfocused parts of the focus stack. When human eyes
focus on a point of the scene, the object points at other depths
of the field become blurred. The focus stack simulates the human
eyes’ habit of viewing a scene, so a defocused blur is inevitably
introduced. To alleviate the effect of a defocused blur, we attempt
to use principal component analysis (PCA) to extract the main
components from the focus stack, as shown in the first and third
rows of Figure 4. As we have analyzed the effect of chrominance
on the prediction of global distortion (section Databases for
Validation), the principal components are extracted only in the
grayscale of the focus stack (Ren et al., 2017b).

Principal component analysis is a means of dimension
reduction. The advantage is that PCA not only reduce the
calculation amount for the focus stack but also alleviate the
influence of a defocused blur in the analysis of the focalizing
structure. By sorting the eigenvalues and corresponding
eigenvectors of the covariance matrix of gray refocused slices
in the focus stack, the focus stack can be rearranged according
to the proportion of information content. As for the number of
selected principal components, the experimental comparison
and analysis are conducted (section 4.6). In this paper, the first
three principal components are selected to predict the local
angular-spatial quality for accuracy and simplicity.

For the principal components of the focus stack, we analyze
the loss of focalizing structure and texture damage caused by the

FIGURE 4 | The first and third rows are the principal components of the

referenced and distorted focus stack, respectively. The second and fourth

rows are the corners of referenced and distorted principal components,

respectively. (A) The first principal component; (B) the second principal

component; and (C) the third principal component.

angular-spatial distortion. Firstly, the corner structure based on
phase congruency (PC-corner) is used to evaluate the focalizing
structure loss. As shown in the second and fourth rows of
Figure 4, the PC-corner operator detects the features as points
in an image with a high-phase component order in the Fourier
domain, and it is not affected by luminance, contrast, and scale.
The PC-corner feature operator can detect a wide range of
features, such as angle, line, and texture information of images.

The corner response function is developed based on the
covariance matrix of PC (Kovesi, 2003), as given in Equation (6):

CM =

[

PCx
2 PCx � PCy

PCx � PCy PCy
2

]

(6)

where PCx and PCy are PC-corner at horizontal and vertical
directions. The phase consistency utilizes the log-Gabor filter of
multi-scale and multi-direction. The final covariance matrix is
normalized with the orientations used in the log-Gabor filter. In
this paper, we use three scales (n= 1, 2, 3) and six orientations (θ
= 0, π /6, π /3, π /2, 2π /3, 5π /6).

Frontiers in Computational Neuroscience | www.frontiersin.org 6 January 2022 | Volume 15 | Article 768021

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Meng et al. Quality Evaluation of LF Images

Being different from the structural loss of ordinary image,
the structural loss of the focus stack includes the reduction
and increment of structure due to the angular-spatial distortion.
Therefore, we use the form of Equation (7) to calculate
the corner similarity SC between referenced and distorted
principal components.

SC =
NR
⋂

ND

NR
⋃

ND + 1
(7)

where NR and ND are the number of corners in referenced and
distorted principal components, respectively.∩ is the intersection
of NR and ND, and ∪ is the union of NR and ND. The constant 1
is added to avoid the denominators being 0.

Secondly, in addition to assessing the loss of the focalizing
structure, the angular-spatial distortion can also lead to an
obvious texture damage of the focus stack. Similar to the
evaluation of focalizing structure, the prediction of texture
distortion is conducted on the principal components of the focus
stack. The vertebrate retina can be mathematically represented
by the Laplacian of Gaussian, which is an effective method of
texture calculation reflecting the characteristics of human vision.
Considering that the waveform distribution of DoG algorithm
is similar to that of Laplacian of Gaussian, and the complexity
of DoG is much smaller, we choose DoG to calculate the
texture feature.

The DoG is the difference of the image signal I(xs ,t) convolved
with the two different Gaussian scales σ1, σ2:

L(xs,t , σ1) = G(xs,t , σ1) ∗ I(xs,t) (8)

L(xs,t , σ2) = G(xs,t , σ2) ∗ I(xs,t) (9)

DoG(xs,t) = L(xs,t , σ1)− L
(

xs,t , σ2
)

(10)

where L (xs ,t, σ 1) and L (xs ,t, σ 2) are convolutions of the
image signal I (xs ,t) with Gaussian functions at the two different
Gaussian scales (σ1, σ2).

Equation (11) was initially used in the calculation of structure
similarity (SSIM) (Wang et al., 2004), and then widely used
for the distance calculation of feature similarity (FSIM) in
objective assessment methods. Hence, the texture similarity of
referenced and distorted principal components is calculated by
Equation (11).

SDoG(xs,t) =
2DoGR(xs,t) · DoGD(xs,t)+ C3

DoGR
2(xs,t)+ DoGD

2(xs,t)+ C3
(11)

where DoGR and DoGD are differences of Gaussian feature
of referenced and distorted principal components, respectively.
The constant C3 is used to maintain the stability of the
similarity measurement function, we fixed C3 = 0.1 through
the experiments.

Concretely, the similarity map of DoG is pooled through the
feature of visual saliency to obtain the quality of texture QT , as
given in Equation (12). The calculation method of visual saliency
is the same (as mentioned in section Databases for Validation):

QT =

∑S
s=1

∑T
t=1 SDoG

(

xs,t
)

� VSm
(

xs,t
)

∑S
s=1

∑T
t=1 VSm

(

xs,t
)

(12)

FIGURE 5 | The light flow in the focus stack and the visual saliency map. (A)

The light flow of referenced focus stack. (B) The light flow of distorted focus

stack. (C) The visual saliency map based on the sum of light flow of focus

stack.

We define the light flow in the focus stack as the sum of the
differences between adjacent refocus slices. The feature of visual
saliency VSm is computed with the light flow of the focus stack,
as shown in Figure 5 and Equation (13).

VSm = max(VSLif -R,VSLif -D) (13)

where VSLif−R and VSLif−D are visual saliency maps of the light
flow of referenced and distorted focus stack, respectively.

Finally, the local angular-spatial quality QL is obtained by
averaging the fused quality of the focalizing structure and texture.
M in Equation (14) is the number of principal components,
which is analyzed in section 4.6 at differentM values.

QL =
1

M

∑M

m=1
SC � QT (14)

The Evaluation of Union Angular-Spatial
Quality
According to sections Databases for Validation and Performance
Analysis of ImageQualityMetrics, a smaller PVGD value indicates
the smaller global distortion, which corresponds to the higher
global quality, while a smallerQL value indicates the smaller local
quality. The overall quality of LF images is calculated by fusing
the predicted value of global angular-spatial distortion PVGDand
local angular-spatial quality QL. Considering that PVGD and QL

are inversely and directly proportional to the overall quality,
respectively, we use Equation (15) to calculate the overall quality
of the LF images.

Q = log(
QL

PVGD + ε
+ ε) (15)

where log operation is added to increase the linearity of the
results, which conforms to the human eyes’ ability to recognize
the light intensity (Min et al., 2020). PVGD is given by Equation
(5), and QL is given by Equation (14). ε is a constant for equation
stability, which is set as 0.0001.
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TABLE 1 | The detailed information of LF-IQA databases used in the experiment.

Database Distortion types Distortion levels

SHU Traditional

Distortion

JPEG

JPEG2000:

Motion Blur:

Gaussian Blur:

White Noise:

QLs: 1, 10, 15, 20, 50, 90

CRs: 10, 70, 150, 200, 250,

400, 600

MLs: 10, 20, 60, 100, 150, 200

SDs: 0.5, 2, 4, 5, 10, 20

SDs: 0.05, 0.1, 0.3, 0.5, 1, 2

VALID-

10bit

Video & LF

Compression

HEVC, VP9, Ahmad

et al., 2017; Tabus

et al., 2017; Zhao

and Chen, 2017

Bpp: 0.005, 0.02, 0.1, 0.75.

NBU-

LF1.0

LF

Reconstruction

NN, BI, EPICNN

DR

VDSR

RFs: 5, 3, 2

RFs: 7, 5, 3

RFs: 2, 3, 4

RESULTS

Databases for Validation
Resource identification initiative. To verify the performance
of the proposed method, experiments were conducted on
three subjective quality assessment databases of LF images,
including the database of traditional distortion types: SHU
(Shan et al., 2019), video compression, and LF compression
types: VALID-10bit (Viola and Ebrahimi, 2018), and LF
reconstruction types: NBU-LF1.0 (Huang et al., 2019b).
The detailed information of these databases is listed in
Table 1.

1) SHU database: traditional distortion types. The SHU database
is composed of 8 referenced LF images and 240 distorted
LF images. There are five distortion types, including the
classical compression artifacts (JPEG and JPEG2000) and
other distortions (motion blur, Gaussian blur, and white
noise). Each type of distortion has six distortion levels. The
database is visualized by pseudo-sequence video of SAIs to
the subjects.

2) VALID-10bit database: video compression and LF compression
distortion types. There are two general compression schemes
(HEVC and VP9) and three compression schemes specifically
designed for LF (Ahmad et al., 2017; Tabus et al., 2017; Zhao
and Chen, 2017). For each compression type, 4 levels of
compression are introduced, and a total of 100 compressed
LFs are included in this data set. It has five referenced LF
contents and is evaluated in the passive methodology. For
the passive evaluation, the perspective views were shown as
animation and followed by the refocused views (Viola et al.,
2017).

3) NBU-LF1.0 data set: reconstruction distortion types. It includes
five LF reconstruction schemes: neighbor interpolation (NN),
bicubic interpolation (BI), learning-based reconstruction
(EPICNN), disparity-map-based reconstruction (DR),
and spatial super-resolution reconstruction (SSRR).
It has 14 referenced LF contents and 210 distorted
LF images. Each reconstruction type has three levels
of reconstruction.

To reduce the complexity, the number of multiple views selected
from the databases in Table 1 is 9 × 9, and the image resolution
is 434× 625.

Performance Analysis of Image Quality
Metrics
There are three main representations of LF with whole global
information: EPIs, lenslet images, and SAIs. First of all, the
oblique texture structure in EPIs is not similar to the texture
structure of objects in ordinary images, which is not conducive
to the realization of traditional image quality evaluation
methods. Except for the statistical IQA method at pixel-level,
such as peak signal-to-noise ratio (PSNR), most traditional
image quality evaluation methods cannot take the advantage
of their simulation in image structure and human visual
characteristics. Secondly, lenslet images have discontinuities
of scene texture due to the angular information, which is
not conducive to the application of algorithms based on
human visual characteristics. Thirdly, SAIs can be regarded
as a matrix of 2D images distributed in different angular
directions. The superiority of traditional algorithms can be
developed in the stitched SAIs, which is due to the fact that
the stitched SAIs can be seen as a large 2D image with
texture redundancy. Hence, we decide to apply the traditional
algorithms to the stitched SAIs to carry out the following
comparison experiments.

In general, the objective evaluation includes three categories
according to their dependence on the reference image: full
reference (FR), reduced reference (RR), and no reference (NR)
(Wang and Bovik, 2006). In Table 2, the performance of the
proposed MPFS is broadly compared with the classical FR,
RR, and NR metrics over three subjective LF-IQA databases.
The metrics mainly include classical traditional IQA metrics
and the state-of-the-art LF-IQA metrics. 2D FR IQA metrics
include PSNR, SSIM (Wang et al., 2004), multi-scale SSIM (MS-
SSIM) (Wang et al., 2003), information weighting SSIM (IW-
SSIM) (Wang and Li, 2010), FSIM (Zhang et al., 2011), FSIM
based on Riesz transforms (RFSIM) (Zhang et al., 2010), noise
quality measure (NQM) (Damera-Venkata et al., 2000), gradient
similarity (GSM) (Liu et al., 2011), visual signal noise ratio
(VSNR) (Chandler andHemami, 2007), most apparent distortion
(MAD) (Larson and Chandler, 2010), gradient magnitude
similarity deviation (GMSD) (Xue et al., 2013), and HDRVDP
(Mantiuk et al., 2011). Sparse feature fidelity (SFF) (Chang
et al., 2013), universal image quality index (UQI) (Wang and
Bovik, 2002), visual saliency-induced index (VSI) (Zhang et al.,
2014), 2D RR IQAmetrics include wavelet-domain natural image
statistic model (WNISM) (Wang and Simoncelli, 2005), wavelet-
based contourlet transform (WBCT) (Gao et al., 2008), and
contourlet (Tao et al., 2009). Multi-view FR IQA metrics include
morphological pyramids PSNR (MP-PSNR) (Sandić-Stanković
et al., 2015), morphological wavelets PSNR (MW-PSNR) (Sandić-
Stanković et al., 2015), MW-PSNRreduc (Sandić-Stanković et al.,
2015), and 3DSwIM (Battisti et al., 2015). LFI FR IQA metrics
include the algorithms in Min et al. (2020) and Meng et al.
(2020). LFI NR IQA metrics include BELIF (Shi et al., 2019),
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TABLE 2 | The performance comparison of classical IQA indexes on three benchmark databases.

Database SHU VALID-10bit NBU-LF1.0 Overall

Metric RMSE PLCC SROCC KROCC RMSE PLCC SROCC KROCC RMSE PLCC SROCC KROCC WSROCC MSROCC

2D-FR PSNR 0.6316 0.8190 0.8859 0.7315 0.4122 0.9036 0.8868 0.7158 0.5982 0.7627 0.7609 0.5640 0.8383 0.8295

SSIM 0.6422 0.8121 0.8262 0.6567 0.3481 0.9323 0.9273 0.7614 0.6197 0.7424 0.7223 0.5218 0.8049 0.8253

MS-SSIM 0.5192 0.8817 0.8909 0.7150 0.3155 0.9447 0.9348 0.7793 0.5447 0.8083 0.8125 0.6078 0.8689 0.8794

IW-SSIM 0.5129 0.8848 0.8892 0.7181 0.2781 0.9573 0.9441 0.7957 0.5461 0.8071 0.8045 0.6032 0.8668 0.8793

FSIMc 0.5362 0.8733 0.8928 0.7168 0.2907 0.9533 0.9477 0.8006 0.5351 0.8157 0.8106 0.6055 0.8714 0.8837

RFSIM 0.5977 0.8397 0.8473 0.6686 0.5738 0.8028 0.7915 0.6006 0.7877 0.5242 0.5352 0.3857 0.7180 0.7247

NQM 0.6507 0.8065 0.8129 0.6330 0.7043 0.6815 0.6675 0.4867 0.7369 0.6044 0.5938 0.4264 0.7028 0.6914

GSM 0.6381 0.8148 0.8209 0.6410 0.4159 0.9018 0.8686 0.7139 0.6890 0.6671 0.6583 0.4914 0.7675 0.7826

VSNR 0.6255 0.8228 0.8408 0.6547 0.5425 0.8260 0.8049 0.6234 0.6199 0.7422 0.7497 0.5497 0.7995 0.7985

MAD 0.5311 0.8759 0.8652 0.6869 0.2744 0.9585 0.9327 0.7776 0.4798 0.8549 0.8583 0.6614 0.8748 0.8854

GMSD 0.5353 0.8737 0.8782 0.7003 0.2604 0.9627 0.9465 0.8037 0.5669 0.7902 0.7900 0.5916 0.8569 0.8716

HDRVDP 0.6668 0.7955 0.7754 0.5935 0.4254 0.8970 0.8799 0.6963 0.7358 0.6059 0.5247 0.3744 0.6987 0.7267

SFF 0.4594 0.9087 0.9196 0.7597 0.3299 0.9394 0.9245 0.7662 0.5554 0.7997 0.8009 0.6050 0.8752 0.8817

UQI 0.8322 0.6544 0.6004 0.4424 0.4148 0.9024 0.8578 0.7049 0.7729 0.5493 0.5630 0.4066 0.6329 0.6737

VSI 0.5755 0.8524 0.8556 0.6819 0.5122 0.8466 0.8191 0.6438 0.7044 0.6481 0.6399 0.4774 0.7666 0.7715

2D-RR WNISM 0.7477 0.7338 0.7250 0.5578 0.3341 0.9378 0.9394 0.7846 0.8057 0.4911 0.4710 0.3229 0.6670 0.7118

WBCT 0.7582 0.7248 0.7617 0.5861 0.5122 0.8466 0.8191 0.6438 0.6869 0.6697 0.6393 0.4636 0.7254 0.7400

Contourlet 0.6985 0.7728 0.7498 0.5812 0.4473 0.8854 0.8704 0.6919 0.6595 0.7012 0.6605 0.4786 0.7376 0.7602

Multi- view FR MP-PSNR 0.5983 0.8393 0.8599 0.6694 0.3633 0.9260 0.9239 0.7614 0.6885 0.6678 0.6611 0.4799 0.7956 0.8150

MW-PSNR 0.5970 0.8401 0.8548 0.6658 0.3597 0.9275 0.9219 0.7561 0.6600 0.7007 0.6934 0.5019 0.8054 0.8234

MW-PSNRreduc 0.6452 0.8101 0.8337 0.6433 0.3833 0.9172 0.9100 0.7369 0.7034 0.6494 0.6492 0.4653 0.7771 0.7976

3DSwIM 0.5958 0.8408 0.8849 0.7135 0.2762 0.9579 0.9513 0.8185 0.7594 0.5709 0.5506 0.3890 0.7693 0.7956

LFI NR BELIF 0.4847 0.8985 0.8697 0.6953 0.2431 0.9643 0.9454 0.8211 0.7072 0.6489 0.5983 0.4304 0.7798 0.8045

Tensor-NLFQ 0.3494 0.9469 0.9392 0.8020 0.3163 0.9476 0.9074 0.7586 0.6603 0.6988 0.6064 0.4318 0.8063 0.8177

VBLFI 0.4025 0.9354 0.9135 0.7613 0.2268 0.9705 0.9414 0.8042 0.5568 0.7934 0.7439 0.5549 0.8538 0.8663

LFI FR Min et al., 2020 0.5951 0.8412 0.8460 0.6745 0.3335 0.9380 0.8524 0.7052 0.6843 0.6728 0.6659 0.4773 0.7784 0.7881

Meng et al., 2020 0.4291 0.9208 0.9067 0.7427 0.2692 0.9601 0.9484 0.8043 0.5823 0.7770 0.7040 0.5133 0.8369 0.8530

MPFS 0.3436 0.9500 0.9534 0.8183 0.2207 0.9734 0.9599 0.8305 0.4336 0.8833 0.8754 0.6908 0.9248 0.9296

Tensor-NLFQ (Zhou et al., 2020), and VBLIF (Xiang et al.,
2020).

This paper used four IQA indexes to measure the fitting
of the degree of objective scores and subjective scores. The
Pearson linear correlation coefficient (PLCC) and the RMSE
denote the accuracy of correlation between mean opinion scores
(MOS) and predict scores. The Spearman rank order correlation
coefficient (SROCC) and the Kendall rank order correlation
coefficient (KROCC) can measure the prediction monotonicity
of IQA metrics.

Table 2 presents the performance of classical objective metrics
on SHU, VALID-10bit, and NBU-LF1.0 databases, where the
values in bold indicate the best performance. The results
show that the proposed MPFS method consistently fits well
with MOS in both accuracy and monotonicity over the
databases of traditional distortion, compressed distortion, and
reconstructed distortion.

It can be seen from Table 2 that the performance of traditional
algorithms varies in different databases. Although these three
databases contain different distortion types, their effects on
angular and spatial information are reciprocal. First of all, some
traditional algorithms perform well in the VALID-10bit database.

This may be due to the fact that angular and spatial distortions
in the VALID-10bit database are evenly distributed. Secondly,
although the distortion of the SHU database is not derived from
LF processing, it is still difficult to estimate the effects of these
distortions on LF contents. For example, traditional algorithms
do not take advantages they should have for traditional types
of distortion. This is due to the fact that traditional algorithms
fail to consider the relationship between the angular and spatial
quality. In addition, most objective metrics cannot achieve good
results in the NBU-LF1.0 database. This may be due to the
complex distribution of angular-spatial distortion, for example,
the cross effects of angular-spatial distortion vary greatly in
different perspectives.

The performance of the multi-view algorithms is similar
to that of the traditional 2D algorithms. They perform well
when the distribution of the angular-spatial distortion is not
complex, but worse for the NBU-LF1.0 database containing the
distortion of reconstructed types. It somewhat indicates that the
angular-spatial distortion caused by reconstruction algorithms is
more complex.

The NR LF-IQA models were trained with 80% contents from
each data set used in this paper, and 20% of contents were used
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TABLE 3 | PLCC performance of different distortion types on VALID-10bit, SHU and NBU-LF1.0 databases.

Database VALID-10bit SHU NBU-LF1.0

Type Metric HEVC VP9 P1 P2 P3 GB JPEG2k JPEG MB WN NN BI EPICNN DR VDSR

2D-FR PSNR 0.9522 0.9392 0.9282 0.9361 0.8569 0.9198 0.9502 0.9752 0.8674 0.9570 0.7740 0.9345 0.8794 0.7030 0.7176

SSIM 0.9493 0.9407 0.9531 0.9453 0.9289 0.9133 0.8697 0.9724 0.8446 0.9420 0.7951 0.8654 0.8502 0.4157 0.8415

MS-SSIM 0.9625 0.9522 0.9444 0.9464 0.9360 0.9070 0.9321 0.9725 0.8983 0.9548 0.7695 0.9083 0.9294 0.6854 0.9056

IW-SSIM 0.9727 0.9674 0.9567 0.9561 0.9599 0.9366 0.9375 0.9688 0.9430 0.9549 0.7409 0.9108 0.9360 0.7219 0.6393

FSIMc 0.9667 0.9651 0.9569 0.9619 0.9409 0.9394 0.9389 0.9797 0.9134 0.9157 0.7810 0.9201 0.9213 0.6561 0.8912

RFSIM 0.9368 0.9219 0.9220 0.7790 0.8378 0.8057 0.8593 0.9162 0.6631 0.9439 0.9189 0.8742 0.2057 0.8104 0.6917

NQM 0.7686 0.6794 0.7272 0.6573 0.6725 0.7450 0.8479 0.8890 0.5832 0.9322 0.7128 0.8002 0.6220 0.7248 0.5475

GSM 0.9761 0.9555 0.9677 0.9367 0.8530 0.8351 0.8257 0.9377 0.5277 0.9316 0.9507 0.8943 0.7124 0.8552 0.6360

VSNR 0.8820 0.8273 0.8644 0.8747 0.8119 0.8363 0.6665 0.8758 0.6889 0.8569 0.8079 0.8498 0.8144 0.6629 0.7619

MAD 0.9793 0.9674 0.9774 0.9504 0.9366 0.8769 0.9174 0.9186 0.8498 0.9551 0.9095 0.9501 0.9429 0.8496 0.8973

GMSD 0.9782 0.9701 0.9731 0.9738 0.9520 0.9210 0.9637 0.9716 0.9260 0.9009 0.7216 0.9170 0.9265 0.7432 0.9314

HDRVDP 0.9530 0.8827 0.9135 0.9016 0.8796 0.7197 0.8695 0.9523 0.5510 0.9600 0.8910 0.9418 0.9396 0.8500 0.7857

SFF 0.9646 0.9528 0.9646 0.9678 0.8787 0.8799 0.9408 0.9734 0.8470 0.9308 0.7845 0.9462 0.9271 0.7273 0.9466

UQI 0.9699 0.9680 0.9749 0.8785 0.9207 0.6885 0.4614 0.2193 0.5023 0.8736 0.7082 0.8691 0.1932 0.7449 0.0975

VSI 0.9669 0.9503 0.9668 0.7954 0.8796 0.8413 0.8489 0.9525 0.5385 0.9378 0.9355 0.8994 0.7243 0.8505 0.6240

2D-RR WNISM 0.9651 0.9537 0.9522 0.9282 0.9038 0.8924 0.6937 0.8170 0.8839 0.8508 0.7289 0.6830 0.7778 0.4444 0.8648

WBCT 0.9128 0.8492 0.9105 0.9079 0.8648 0.8075 0.7910 0.7716 0.7744 0.9101 0.5781 0.8303 0.9144 0.6609 0.8089

Contourlet 0.9288 0.9007 0.9373 0.9231 0.8498 0.8579 0.8528 0.7922 0.7789 0.9471 0.7039 0.8098 0.9218 0.6773 0.8650

Multi-view FR MP-PSNR 0.9818 0.9766 0.9725 0.9701 0.9508 0.8475 0.8758 0.9391 0.7919 0.8190 0.8414 0.8441 0.6679 0.7210 0.7039

MW-PSNR 0.9709 0.9619 0.9641 0.9610 0.9435 0.8221 0.8760 0.9622 0.6799 0.9074 0.8137 0.8917 0.6805 0.7601 0.6554

MW-PSNRreduc 0.9784 0.9760 0.9749 0.9626 0.9539 0.7508 0.8706 0.9512 0.6076 0.8345 0.8159 0.8427 0.6096 0.7392 0.6788

3DSwIM 0.9801 0.9780 0.9728 0.9640 0.9459 0.9522 0.9458 0.8893 0.9344 0.9139 0.8997 0.8746 0.8392 0.8333 0.8720

LFI NR BELIF – – – – – 0.9045 0.8308 0.9585 0.9388 0.9665 0.9026 0.9100 0.7182 0.7520 0.9134

Tensor-NLFQ – – – – – 0.9399 0.9284 0.9849 0.9411 0.9749 0.9243 0.8819 0.8430 0.8096 0.7926

VBLIF – – – – – 0.9578 0.7452 0.9694 0.9632 0.9854 0.8820 0.8905 0.8421 0.7051 0.8885

LFI FR Min et al., 2020 0.9338 0.9667 0.9540 0.9801 0.9616 0.9288 0.9643 0.9397 0.9534 0.9581 0.7851 0.8303 0.7428 0.7492 0.9219

Meng et al., 2020 0.9825 0.9739 0.9665 0.9486 0.9473 0.9647 0.8398 0.9772 0.9815 0.9586 0.8258 0.8812 0.8758 0.1380 0.9234

MPFS 0.9828 0.9789 0.9765 0.9702 0.9722 0.9480 0.9456 0.9774 0.9682 0.9505 0.8766 0.9677 0.9435 0.7765 0.9389

for prediction. The optimal training parameters were obtained by
multiple adjustments, and the result of each adjustment was the
median value of 1,000 experiments. It can be seen from Table 2

that they achieved preferable results at the first two databases, but
perform worse for the reconstruction distortions with complex
angular-spatial artifacts.

For the FR LF-IQA, the concept of optimal parallax range
of human eyes is introduced into the focus stack to calculate
the quality of LF images. Meng et al. (2019) used some
camera parameters provided by the EPFL database (Honauer
et al., 2016) when calculating the optimal parallax range, while
some databases do not have these parameters. Therefore, in
combinationwith the experiments of refocusing factors in section
4.7, we set the focusing range of Meng et al. (2020) as [−3, 3] over
all databases for the sake of fairness. Min et al. (2020) computed
the quality of LF images through the global–local spatial quality
and the angular consistency measurement. It is necessary to note
that the angular resolution of all databases is set as 9 × 9 in the
comparison experiment for fairness. Therefore, the performance
of both Meng et al. (2020) and Min et al. (2020) presented in
Tables 2, 3 is not optimal.

It should be known that the performance of the same objective
algorithm is slightly different in different databases. As suggested
in Wang and Li (2010) and Zhang et al. (2014) we analyze the

objective IQAmetrics with the weighted average results across all
databases for the overall performance. The weighted average ρ is
computed as follows:

ρ=

∑

i ρi · ωi
∑

i ωi
(16)

where ρi (i = 1, 2, 3, 4) is the fitting performance for each
database. The weight coefficient of each database depends on the
number of distorted images in the respective database. Table 2
presents the overall performance and the ranking of weighted-
average SROCC of LF-IQA metrics over all databases.

The last two columns in Table 2 are the weight-average
SROCC (WSROCC) and the mean SROCC (MSROCC) for each
objective metric over all databases, respectively. It can be seen
that MPFS performs much better than the other metrics on the
WSROCC and the MSROCC.

Robustness Against Distortion Types
The robustness of the proposed objective IQA model against
various distortion types is verified. Table 3 presents the
performance comparison of classical objective models on the
abovementioned three databases, covering various distortion
types. Specifically, the VALID-10bit database contains two
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classical video compression schemes and three compression
schemes specialized for LF images. The SHU database contains
classical compression distortion and display distortion, and
the NBU-LF1.0 database contains a variety of reconstructed
distortion types specialized for LF images.

In Table 3, the values in bold indicate the first three best PLCC
values for each distortion type. The performance of different
objective algorithms for different distortion types is analyzed
through PLCC, which can reflect the fitting accuracy of two
sets of data. The results show that many algorithms have the
optimal scope of application, and can only be sensitive to some
specific distortion types. For example, most algorithms have a
good predicted effect on the compressed distortion types in the
VALID-10bit database, but are not effective for the reconstructed
distortion types in the NBU-LF1.0 database or the traditional
distortion types in the SHU database. The reason may be that
the angular and spatial distortion in the VALID-10bit database is
evenly distributed, while the cross effects of angular and spatial
distortion of the other two databases vary greatly in different
perspectives. The proposed method cannot achieve the best
prediction for each distortion, but it performs relatively stable
for all distortion types. The robustness of MPFS is superior to
other metrics.

The Validity of the MPFS Model
The proposedMPFS method has two applications: the prediction
of global angular-spatial distortion and the evaluation of
local angular-spatial quality. The prediction framework
of global angular-spatial distortion is established on the
lenslet images. The angular distortion is first predicted at
each macro-pixel. Then, the visual saliency of the central
SAI is introduced to combine the angular and spatial
information. The evaluation framework of local angular-
spatial quality utilized the PC-corner and DoG algorisms
to evaluate the loss of the focalizing structure and texture
structure on the principal components of the focusing
stack, respectively.

Table 4 compares the performance of the proposed MPFS
in three cases: only the prediction framework of global
angular-spatial distortion, only the local angular-spatial quality
framework, and the combination of global and local frameworks.
It can be seen that both local and global frameworks are effective
in the VALID-10bit database, and they have reverse effects on the
other two databases. The local angular-spatial quality evaluation
framework based on the focus stack is more effective for both the
spatial texture distortion and the focalizing structure loss caused
by the angular distortion. Because the global framework is mainly
based on the prediction of angular distortion, it will be mediocre
when the distribution of the angular-spatial distortion is more
complex. But the combination of the two frameworks works well,
benefiting from their complementarity. Besides, Table 5 lists the
time complexity of the proposed MPFS method. The listed time
under each data set is calculated by averaging the run time of all
LF images. Although the size of some LF images in the NBU-
LF1.0 database is slightly different from those in the other two
databases, the running time is similar.

TABLE 4 | Performance of individual case on SHU, VALID-10bit, and NBU-LF1.0

databases.

Database VALID-10bit SHU NBU-LF1.0

PLCC SROCC PLCC SROCC PLCC SROCC

Local 0.9662 0.9551 0.8477 0.8286 0.8462 0.8356

Global 0.9493 0.9412 0.8610 0.8633 0.7854 0.7780

Local_Global 0.9734 0.9599 0.9500 0.9534 0.8833 0.8754

TABLE 5 | Time complexity on SHU, VALID-10bit, and NBU-LF1.0 databases.

Database VALID-10bit SHU NBU-LF1.0

Time (second) 76.4793 74.0516 74.0665

TABLE 6 | Performance of individual features on SHU, VALID-10bit, and

NBU-LF1.0 databases.

Database VALID-10bit SHU NBU-LF1.0

Features PLCC SROCC PLCC SROCC PLCC SROCC

PC-corner 0.9643 0.9528 0.8339 0.8203 0.8336 0.8301

PC-corner-DoG 0.9662 0.9551 0.8477 0.8286 0.8462 0.8356

PC-corner-DoG-Y 0.9664 0.9534 0.8896 0.8785 0.8757 0.8684

PC-corner-DoG-YUV 0.9734 0.9599 0.9500 0.9534 0.8833 0.8754

The Validity of Individual Quality
Component
After analyzing the contributions of the local/global angular-
spatial quality framework, Table 6 presents various features used
in the proposed MPFS algorithm, the first two features measure
the loss of focalizing structure and texture structure in the
local angular-spatial quality framework. It can be seen that the
combination of PC-corner and DoG features can better evaluate
the angular-spatial distortion of the focus stack. However, due to
the complex distribution of angular-spatial distortion, it does not
work well in the SHU database.

In addition to the PC-corner and DoG features, Table 6

also presents the performance after adding the luminance and
chrominance features. These two features improve the accuracy
of the evaluation algorithm. It can be seen that the chroma
information contributes greatly to improve the performance of
the proposed method in the SHU database because of the high
chromaticity distortion of JPEG.

The Impact of Principal Components on
the MPFS Model
The order of the principal components of the focus stack
is obtained by sorting the eigenvalues and the corresponding
eigenvectors of its covariance. The eigenvectors with larger
eigenvalues reflect a larger amount of information. As can be seen
from Figure 4, the first-order principal component reflects most
of the low-frequency information in the focus stack, in which the
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FIGURE 6 | The distribution of Pearson linear correlation coefficient

(PLCC)/Spearman rank order correlation coefficient (SROCC) of the MPFS

method at different numbers of the principal components in the focus stack

over the three databases.

defocused blur of the focus stack is mainly distributed in the first-
order principal component. The other principal components
mainly reflect the high-frequency information of the focus stack,
and the distortion of focalizing structure is obvious in the higher-
order principal components.

Although the PCA is carried out in the local angular-spatial
quality evaluation framework, we analyze the impact of different
numbers of principal components on the overall algorithm
due to the complementarity of the two frameworks. Figure 6
describes the distribution of PLCC/SROCC of the proposed
MPFS method at different numbers of the principal components
in the focus stack over the three databases. It can be seen
that the variation trend of the final evaluation results over the
three databases is inconsistent with an increase of the number
of principal components, which is related to the completely
different distortion types of the three databases.We finally choose
the first three principal components to calculate the local angular-
spatial quality for accuracy and simplicity.

The Impact of Refocusing Factors on the
MPFS Model
The evaluation framework of local angular-spatial quality is based
on the focus stack, while the refocusing factors will affect the
evaluated final results. Specifically, the refocusing factors contain
the refocus scope and refocus step. This paper conducts the
refocus operation in the spatial domain. The refocused images
are obtained by the LFFiltShiftSum function in LFToolbox0.4,
which acts on shifting and summing the SAIs within a given slope
scope to obtain the focus stack. Different slopes correspond to
different depth planes. A step between the two slopes determines
the number of refocused images within the given refocus scope.

Table 7 lists the PLCC and SROCC in multiple refocus scopes
over the three databases. We set 15 intervals for all to refocus
scopes in Table 7, that is, 16 refocus images are obtained. Table 8

TABLE 7 | PLCC and SROCC of different refocus scopes on VALID-10bit, SHU,

and NBU-LF1.0 databases.

Database VALID-10bit SHU NBU-LF1.0

Scope PLCC SROCC PLCC SROCC PLCC SROCC

[-1, 1] 0.9694 0.9544 0.9475 0.9503 0.8802 0.8727

[-2, 2] 0.9691 0.9560 0.9475 0.9499 0.8802 0.8721

[-3, 3] 0.9734 0.9599 0.9500 0.9534 0.8833 0.8754

[-4, 4] 0.9723 0.9583 0.9473 0.9514 0.8735 0.8582

TABLE 8 | PLCC and SROCC of different refocus intervals on VALID-10bit, SHU,

and NBU-LF1.0 databases.

Database VALID-10bit SHU NBU-LF1.0

Scope PLCC SROCC PLCC SROCC PLCC SROCC

[-3, 3, 10] 0.9655 0.9488 0.9433 0.9475 0.8743 0.8642

[-3, 3, 15] 0.9734 0.9599 0.9500 0.9534 0.8833 0.8754

[-3, 3, 20] 0.9718 0.9583 0.9495 0.9525 0.8765 0.8616

illustrates the effect of different intervals on the local angular-
spatial quality under the optimal refocused scope in Table 7.

The results show that the optimal refocus scope of the focus
stack is [−3, 3] in the local angular-spatial quality evaluation
framework, and the optimal number of refocusing intervals is 15.
However, the change of the refocus scope and step cannot cause
a great influence, which indicates that the local angular-spatial
quality framework based on the focus stack is relatively stable.

DISCUSSION

The quality evaluation for LF images is a new challenge due
to the abundant scene information and the complex imaging
structure. The existing objective methods are mainly carried
out on the classical representations of LF images, especially
SAIs, focus stack, and EPIs. It should be noted that different
LF representations usually place different emphasis on the
distribution of angular and spatial information. Comparatively
speaking, the lenslet image and EPIs directly reflect the distortion
of angular information, while the focus stack and SAIs directly
reflect the distortion of spatial information. The advantages of
angular-spatial information distribution in each representation
can be better utilized by combining these LF representations, but
the disadvantage is increased computational complexity.

The key to quality evaluation of LF images lies on how
to combine the human visual perception and the LF angular-
spatial characteristics. In this paper, we propose a new LF quality
evaluation method through the global angular-spatial quality
framework based on macro-pixels and the local angular-spatial
quality framework based on the focus stack. The global angular-
spatial quality framework evaluates the distortion of luminance
and chrominance at each macro-pixel, primarily representing
the angular distortion. Then, the visual saliency of human
eyes to spatial texture structure is introduced to pool an array
of predicted values of angular distortion. However, although
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the macro-pixel array reflects the global information of LF
images, the single macro-pixel lacks the texture information of
objects in the scene. Fortunately, the focus stack can help to
measure the damage of spatial texture structure and the loss
of the focalizing structure caused by the angular distortion.
Therefore, a local angular-spatial quality framework based on the
principal component of the focus stack is adopted to complement
the global framework. The losses of the focalizing structure
and texture structure are analyzed through the PC-corner
similarity and DoG texture similarity, respectively. Extensive
experimental results show that better performance can be
obtained by combining the complementary local/global angular-
spatial quality evaluation framework.

In the future work, we decide to explore ways to reduce
the computational complexity of evaluating global angular-
spatial distortion distribution, such as introducing the random
sampling mechanism into the distortion prediction of macro-
pixels. Moreover, how to achieve better integration of LF angular-
spatial characteristics and human visual characteristics under the
condition of low computational complexity is still a challenge for
the quality evaluation of LF images. The application of human
visual characteristics in this paper is divided into two types.
First, the global framework uses the saliency distribution of
spatial information as the weight to realize the integration of the
distribution of angular distortion and spatial structure. Second,
feature extraction operators of PC-corner and DoG, which
simulate human visual characteristics, are, respectively, applied
to the calculation of focalizing structure and texture structure.
In general, the application of human visual characteristics in

the quality evaluation of LF images mainly lies on the fusion
of angular and spatial distortion prediction, or the feature

extraction in the prediction of angular distortion and spatial
distortion. It is difficult to achieve the perfect fusion of LF
angular-spatial characteristics and human visual characteristics
in the traditional algorithms, while the deep learning methods
have strong ability to learn the relationship between the angular
information and spatial information, as well as the relationship
between the human visual characteristics and LF angular-
spatial characteristics.
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