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The human brain contains billions of neurons that flexibly interconnect to support local

and global computational spans. As neuronal activity propagates through the neural

medium, it approaches a critical state hedged between ordered and disordered system

regimes. Recent work demonstrates that this criticality coincides with the small-world

topology, a network arrangement that accommodates both local (subcritical) and global

(supercritical) system properties. On one hand, operating near criticality is thought

to offer several neurocomputational advantages, e.g., high-dynamic range, efficient

information capacity, and information transfer fidelity. On the other hand, aberrations

from the critical state have been linked to diverse pathologies of the brain, such as

post-traumatic epileptiform seizures and disorders of consciousness. Modulation of brain

activity, through neuromodulation, presents an attractive mode of treatment to alleviate

such neurological disorders, but a tractable neural framework is needed to facilitate

clinical progress. Using a variation on the generative small-world model of Watts and

Strogatz and Kuramoto’s model of coupled oscillators, we show that the topological

and dynamical properties of the small-world network are divided into two functional

domains based on the range of connectivity, and that these domains play distinct roles

in shaping the behavior of the critical state. We demonstrate that short-range network

connections shape the dynamics of the system, e.g., its volatility and metastability,

whereas long-range connections drive the system state, e.g., a seizure. Together, these

findings lend support to combinatorial neuromodulation approaches that synergistically

normalize the system dynamic while mobilizing the system state.

Keywords: small-world, neuromodulation, neural oscillations, topology, simulation, network, criticality

INTRODUCTION

The human brain is thought to contain billions of neurons that densely interconnect
across short and long spatial distances (von Bartheld et al., 2016). The pattern of neuronal
activity hinges on the anatomical and functional medium by which it is generated, and
in which it propagates (Figure 1) (Wolfram, 1984a,b; Perc, 2007; Wang et al., 2010). In a
hypothetical lattice, where nodes are highly ordered and hold no long-range shortcuts, signals
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FIGURE 1 | The small-world topology. Upper panel: By randomly rewiring an ordered lattice, it gradually transitions to a disordered graph. Within this transition, the

small-world arrangement defines a critical state. Green: clusters. Yellow: short-range connections. Blue: long-range connections. Red: the shortest path between

nodes x and y. Lower panel: with increasing randomness, the degree of separation between nodes in the network rapidly decreases (red), while clustering remains

practically unchanged within a wide limit (green). The small-world topology corresponds to the dashed area containing high-clustering and low-separation properties.

tend to fizzle out locally due to the resistance that high-
nodal separation exerts on global transmission (Shew and Plenz,
2012). This contrast with more disordered graphs where signals
tend to overwhelm the global network span through dense
interconnectivity. Intermediately, in the “small-world” network
formed by integrating just a few long-range shortcuts into an
otherwise ordered lattice (Watts and Strogatz, 1998), signals
tend to reverberate, perched on the edge of chaos in a so-called
“critical” state (Shew and Plenz, 2012; Kim and Lim, 2015).
Intriguingly, it is thought that the functional topology of the
brain tends to this criticality (Takagi, 2018), flexibly maneuvering
it based on an immediate operational needs; by dynamically
recruiting or abandoning short- and long-range functional
connections, e.g., through coherence of neuroelectric oscillations
(Singer, 1999; Buzsáki, 2006; Akam and Kullmann, 2014), or
neuroplasticity (Dan and Poo, 2004; Shin and Kim, 2006), the
brain maneuvers clustered and disordered topological phases
tuned to local and global operational spans, respectively. Within
this theoretical framework, the dynamics of the brain essentially
reflect a dialectic on one hand pulling the brain to its topological
extremes (Poil et al., 2012; Shew and Plenz, 2012; Hesse and
Gross, 2014), while, on the other hand, keeping it near the critical
state (Shin and Kim, 2006; Hesse and Gross, 2014; Priesemann,
2015; Takagi, 2018). Operating near criticality is thought to
offer several neurocomputational advantages, e.g., high-dynamic
range, efficient information capacity, and information transfer
fidelity. In turn, aberrations from criticality have been theorized
to underpin distinct neuropathologies, such as post-traumatic

epilepsy and consciousness disorders (Colombo et al., 2016).
Certainly, the malfunction of long- and short-range functional
connections, by injury or otherwise, could have disastrous
effects on the dynamics of the brain (Pevzner et al., 2016). In
this Original Research article, we investigate specifically how
long- and short-range connections affect the topological and
dynamical properties of the small-world network. Our results
indicate that short-range connections shape the dynamics of
the system, whereas long-range connections define its state.
We discuss the implications of these differential effects on
clinical neuromodulation.

METHODS

See Table 1 for model parameters.

Network Generation
To keep a manageable number of free parameters, and to
reduce the artifacts of boundary conditions, we restricted our
analysis to a generative ring network model based on the small-
world model of Watts and Strogatz (1998). These ring networks
were generated using custom Python code based on the open-
source module networkx. Briefly, N = 1,000 nodes were each
wired to their h nearest neighbors, thus denoted “short-range”
connections (for h well below saturation, h << N). Next, each
node on average received an additional set of g random, yet
unique, wires, which were denoted “long-range” connections (as
wires of g did not equal those of h). Concretely, long-range
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TABLE 1 | Model parameters.

Description Notation Notes

Network topology

Short-range connections h, H [4–50]

Long-range connections g, G [0.001–10]

Adjacency matrix Amn

Small-world coefficient ω [−1–+1]

Kuramoto-type simulation

Oscillatory phase θm [0◦–360◦]

Network synchrony r [0–1]

Natural frequency ǫ Gaussian: µ = 0, σ = 1

Total nodes N 1,000

connectivity g was generated by a nested loop given by g = T×u,
where T is the maximum number of additional wires per node,
and u is the average fraction of these actuated. To approximate
biological gray-white matter ratios, while retaining a connected
graph, we kept the range of short-range connectivity ∼10 times
that of long-range connections (Bajada et al., 2019; Mota et al.,
2019).

Finally, each network was defined by its adjacency matrix,
Amn, which was used for network simulation analysis (see
Kuramoto’s Model of Coupled Oscillators).

Small-World Coefficient
To quantify the extent to which a network resembled a small-
world network, we computed the small-world coefficient ω

(Telesford et al., 2011). Essentially, the small-world coefficient
compares the resemblance of a network to a perfectly ordered vs.
a perfectly disordered arrangement based on the extent to which
the nodes of the network are clustered and the extent to which
they are separated. The small-world coefficient is defined as:

ω =
Ldisordered

L
−

C

Cordered
,

where L is the average shortest path length between nodes in
the network, and C is the degree of clustering (Figure 1). The
disordered and ordered networks were generated based on the
long-range connectivity given by g = T × u (see Network
Generation). For the perfectly ordered network, no long-range
connections were added, thus u= 0, and consequently g = 0. For
the perfectly disordered network, the maximum number of long-
range connections was introduced, thus u= 1, and consequently
g= T.

The network parameters C and L were computed using
common graph theory methods. Concretely, clustering C was
computed as the network transitivity, such that:

C =
3∇

Tr

where ∇ is the number of closed triplets in the network, and Tr
is the maximum number of triplets. The average shortest path
length L was given by:

L =
∑

s,t∈V

D (s, t)

N (N − 1)
,

where V is the set of nodes in the network, D(s,t) is the shortest
path length from node s to t, and N is the total number
of nodes. Thus, when network separation L ≈ Ldisordered, and
network clustering C << Cordered, the small-world coefficient
ω ≈ +1, meaning that the network approximates a perfectly
disordered graph. Similarly, for the perfectly ordered lattice,
when network clustering C ≈ Cordered and network separation L
>> Ldisordered, the small-world coefficient approximates ω ≈−1.
Crucially, the small-world topology is defined as the critical state
possessing both qualities, namely, network clustering similar to
an ordered lattice C ≈ Cordered,and network separation similar
to a disordered graph L ≈ Ldisordered; thus, the small-world
coefficient tends to ω ≈ 0 as the network tends to the critical
small-world arrangement.

Kuramoto’s Model of Coupled Oscillators
Each node of the network was modeled as a coupled Kuramoto-
type oscillator (Yamamoto et al., 2018), described by the set of
N-coupled differential equations (Breakspear et al., 2010):

θ̇n = εn +
K

N

N∑

m=1

Amn sin (θm − θn), n = 1, . . . , N,

where the nth oscillator with a natural frequency εn adjusts
its phase velocity θ̇n based on the pair-wise phase interactions
with its coupled peers (provided by the adjacency matrix Amn,
see Network Generation). The internodal coupling was K = 3,
and the natural frequencies were distributed according to the
Gaussian probability density with mean ε0 = 0. The state of
the node (n = 1, . . . , N) was thus defined by its phase θ , which
was calculated by the Livermore Solver for Ordinary Differential
Equations (LSODA) method with a dynamic time step.

The degree of synchrony in the network was quantified by the
order parameter r, given by:

r (θm) = reiψ =
1

N

N∑

m=1

eiθm ,

where ψ is the mean phase of the set of oscillators N, and
the scalar r represents the order, or phase uniformity, of
the network. An open-source Python implementation of the
Kuramoto oscillatory system is available online, which was used
to generate the simulation data presented here (Damicelli, 2021).

Stability and Attractiveness Analysis
To compute the stability of different network states, we set the
initial synchrony level of the network via the initial nodal phases
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θm0. Thus, for initial synchrony r0 = 0.5, on average 50% of the
nodes of network had equal phases in the initial state. Then, at
a predefined time-step 1t = 250, not necessarily in the steady-
state, the deviation of the network from the initial synchrony
level was computed, revealing the stability of the initial state.
Specifically, larger deviations reflect weaker stability. Repeating
this process for all combinations of initial synchrony levels
and connectivity parameters produces the stability heat maps
depicted in Figure 4A.

To calculate the attractiveness of different network states, we
checked which synchrony levels the networks shifted to during
the simulations and scored the end synchrony level based on
the size of the shift. For instance, for initial synchrony r0 = 0.5,
and long-range connectivity g = 0.001, one network might end
up in end synchrony level r1 = 0.0. This adds a score of s =
|r0 – r1| = 0.5 to the end synchrony state r1. The synchrony
states holding the highest cumulative scores had the highest
attractiveness. Repeating this process for all the combinations of
initial synchrony levels and connectivity parameters produces the
attractiveness heat maps given in Figure 4B.

RESULTS

To examine the effects of long- and short-range connections
on the topological and dynamical properties of the small-
world network, we applied a variation on small-world model
of Watts and Strogatz (1998) and the Kuramoto model of
coupled oscillators (Kuramoto, 1984). Concretely, we generated
an ordered ring lattice consisting of N = 1,000 nodes, each
node connected to its h nearest neighbors. To this base, we
added, on average, g unique long-range connections per node.
Thus, by definition, long-range connections g were topologically
distinct from their short-range correlates h, holding true for
short-range connectivity well below network saturation, h <<

N. Then, to quantify the extent to which a network resembled
a small-world network, we computed the small-world coefficient
ω (Telesford et al., 2011). Essentially, the small-world coefficient
compares the resemblance of a network to a perfectly ordered
vs. a perfectly disordered arrangement based on the extent to
which the nodes of the network are clustered and the extent to
which they are separated. More specifically, ordered, subcritical
lattices tend to ω ≈ –1, having high-clustering and high-
separation parameters; disordered, supercritical graphs tend to ω

≈+1, having low-clustering and low-separation parameters; and
critical small-world topologies tend to ω ≈ 0, having both the
ordered and disordered tendencies balanced out (see Methods).
Within this definition, we visualized the topological behavior
of the network by plotting the small-world coefficient ω as a
function of the long- and short-range connectivity g and h,
respectively (Figure 2). Finally, we used the same topological
framework to generate networks of coupled Kuramoto-type
oscillators (Kuramoto, 1984).

Long-Range Connections Dominate the
Topological State
We first examined the roles of short- and long-range connections
in defining the topological state of the network, specifically by

keeping one parameter static (uppercase letters H and G) while
modulating the other (lowercase letters h and g) (Figure 2).
We found that modulations of the long-range connectivity g
offered a near full topological range despite the underlying
static short-range connectivity H (Figure 2A; ∼70% ± 0.05;
mean ± SEM). Yet, the opposite was not the case: Invariant
to the underlying long-range connectivity G, increases to the
short-range connectivity h all converged to the critical state
(Figures 2A,B). In general, less than half of the topological range
was attainable by short-range modulation alone. Thus, short-
range connections appear to be poorly suited as a modulator of
the topological state.

For further examination, we computed the first derivative
of the topological state to reveal the state mobility 1ω of
the network, i.e., how readily the network moved from one
topological state to another via changes to its connectivity
parameters h and g (Figure 2C). We found that across all
underlying long-range connectivities G, modulation of the short-
range connectivity h had near null effects on the topological state.
Modulation of the long-range connectivity g of the network,
however, offered potent state mobilization within the subcritical
and critical regimes, but near null mobility approaching
supercriticality. The dominant role of long-range connections on
the topological state was confirmed by dominance analysis (R2 ∼
0.648 for long-range vs. R2 ∼ 0.003 for short-range connections).

These results together indicate that the topological state of
the small-world network is dominantly defined by the long-
range connectivity (Watts and Strogatz, 1998) and that the
topological mobility of the network is the most potent well below
supercriticality (Carhart-Harris et al., 2014).

Short-Range Connections Shape the
Topological Dynamics
Next, we evaluated how the underlying short-range connectivity
H affects the topological behavior of the network, as reflected by
the shape of the topological state curves (Figure 2). We found
that as the static short-range connectivity H was reduced, the
state curve steepened about the critical point, thus, contracting
and “right-shifting” the critical regime to higher values of the
long-range connectivity g (Figure 2A). This indicates that, to
sustain the small-world criticality, poorly clustered networks (low
H) must integrate long-range connections to a greater extent, yet
within a narrower limit.

We then calculated the difference in state mobility of
networks that had a high-static short-range connectivity (H
= 100) and a low-static short-range connectivity (H = 10)
(Figure 2C). In this difference plot, negative values reflect a
reduction in the state mobility of the network, which essentially
equates to a stabilization of the topological state (and oppositely
for the positive values). Intriguingly, we found that, as the
static short-range connectivity H was reduced, the stability
of the topological state shifted to the subcritical regime,
strongly destabilizing the small-world criticality (Figure 2D).
This indicates that the short-range connectivity of the network
has fundamental effects on the stability of the network across
diverse topological regimes.
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FIGURE 2 | The small-worldness of networks with varying long- and short-range connectivity values. (A) Small-world coefficients in a N = 1,000 graph with static

short-range connectivity H = 10, 50, 100 averaged over 100 samples, shown in semilogarithmic x-axis. Inset, shown in non-logarithmic x-axis. The vertical dotted

lines represent the bounds of the critical regime for networks H = 10 and H = 100. Note that the criticality contracts as the static short-range connectivity decreases.

(B) Small-world coefficients in a N = 1,000 graph with static long-range connectivity G (G ≈ 0.001, 0.03, 0.8, 10) averaged over 100 samples. Note that the

short-range state curves converge to the critical state despite the underlying static long-range connectivity G. (C) The first derivative of the state curves, shown in A

and B, constitutes state mobility of the network, i.e., how well it transitions from one topological state to another. Note that modulation of short-range connections h

provides near null mobility of the topological state, vs. modulation of long-range connections g. Mobility of the topological state is mainly situated within subcritical and

critical spaces, leaving near null mobility at high-connectivity values. (D) Difference in state mobility between networks with static short-range connectivity H = 10 and

H = 100. The diagram shows that the topological state is stabilized in the subcritical space (negative values) and destabilized near criticality (positive values). Note that

all plots have logarithmic x-axes. Data points are mean ± standard error of the mean.

Network Synchronizability
To extend our topological findings, we examined the
synchronization properties offered by small-world networks
of varying short- and long-range connectivity parameters
(Figure 3). To this end, we quantified the global network
synchrony at the steady-state using Kuramoto’s order parameter
r, which reflects that the global phase uniformity of the network
nodes (see Methods).

By gradually integrating long-range connections into
the network structure, our simulations show that the

synchronizability abruptly reaches a critical point at which the
network shifts from a state of low synchrony to near-complete
synchrony (Figure 3A). Such “explosive synchronization,” a
critical transitioning, is characteristic for the Kuramoto-type
coupled oscillators (Kuramoto, 1984; Gómez-Gardeñes et al.,
2011; Boccaletti et al., 2016), and mirrors the topological
criticality of small-world networks (Figure 1) (Watts and
Strogatz, 1998).

Next, we modeled the synchronizability using four-parameter
logistic regression (Figure 3B). Like in our topological findings,
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we found that the slope of the critical transitioning b steepened
as the static short-range connectivity H was reduced, indicating
a destabilization and narrowing of the critical regime (Figure 3B,
inset). The minimal synchronizability a of the network moreover
related proportionally to the static short-range connectivity,
indicating baseline synchronization hinged separately on short-
range interactions. Indeed, as more short-range connections are
introduced, the network ultimately reaches a point of saturation
where global synchronization becomes deterministic, invariant to
topological modulations (Barahona and Pecora, 2002).

Finally, by calculating the divergence of the network from a
predefined initial synchrony level (see Methods), we examined
the stability and attractiveness of different network states
(Figure 4). First, these data confirm that the stability of the
critical regime narrows as short-range connectivity decreases.
Second, as short-range connections are removed, we find
that the network becomes increasingly attracted to subcritical
synchrony states (Figure 4B), which aligns with the topological
destabilization that favors subcriticality presented earlier (cf. red
curves in Figures 2D, 4D, and inset).

Network Metastability Depends on
Short-Range Connections
Our data show that the functional interactions of the network
converge as the static short-range connectivity decreases
(Figure 3B, note narrowing standard deviation). Accordingly, we
found that the long-range connectivity g in the poorly clustered
network (low H) had a very high predictive power (PPS) on
the global synchrony r of the network, whereas highly clustered
networks (high H) were generally poorly predictable (H = 10,
PPS = 0.93; H = 100, PPS = 0.43) (Wetschoreck et al., 2020).
Furthermore, as the short-range connectivity of the networks
tends to saturation (H to N = 1,000), the PPS drops to 0. More
specifically, we find that the PPS is linearly proportional to the
short-range connectivity of the network (PPS = −0.010H +

0.985; R2 = 0.99) (Supplementary Figure 1).
The PPS can be used to assess themetastability of the network.

Thought to be inherent to cognition (Alderson et al., 2020),
metastability defines a dynamical regime that accommodates
flexible interactions of network nodes without stagnating in the
fixed positions (Hellyer et al., 2015). Thus, our results show that
metastability of the network depends linearly on the underlying
short-range connectivity (by dominance analysis, R2 = 0.438
for the short-range vs. R2 = 0.136 for long-range connections).
These simulation data altogether mirror our topological findings
by suggesting that short-range connections are pivotal for the
network’s system dynamics (Figure 4).

DISCUSSION

We have investigated the effects of short- and long-range
connections on the topological and dynamical properties of the
small-world network. Converging with previous work (Watts
and Strogatz, 1998), we demonstrate, first, that long-range
connections determine the topological and functional state of the
network. Second, we show that short-range connections shape

the dynamics of the system, i.e., the stability of the system across
diverse topological regimes (Figures 2, 4). Our findings together
provide evidence that short- and long-range connections play
distinct roles in shaping the behavior of the small-world network.

The topological properties of a network have fundamental
effects on the activity taking place on it (Strogatz, 2001). Several
works have, for instance, analyzed the spread of infectious disease
in small-world networks, finding fluctuations between sporadic
endemic and self-sustaining epidemic infectious cycles based
on network disorder (Kuperman and Abramson, 2001; Rüdiger
et al., 2020). Others have examined the synchronizability of
coupled oscillators on small-world graphs (Barahona and Pecora,
2002; Nishikawa et al., 2003). Later, such simulations have been
expanded to examine cortical oscillations and neuroplasticity
(Maistrenko et al., 2007; Breakspear et al., 2010).

The human brain is a complex system sustained by the
interactions of billions of neurons across local and global
spatial scales. Previous work has shown that the functional
topology of the brain tends to a small-world-like criticality that
accommodates both local (subcritical) and global (supercritical)
system properties (Bassett and Bullmore, 2017; Takagi, 2018).
The hypothesis that the brain maintains a proximity to the
critical state stems from the premise of superior computational
adaptability to rapidly changing operational demands (Massobrio
et al., 2015a). Contention posits, however, that signatures for
criticality, e.g., power-law distributions, could be artifacts of
sampling (Touboul and Destexhe, 2010; Marsili et al., 2013),
multiplicative noise (Sornette, 1998) or emerge from “hidden
variables” not necessarily linked to network topology (Aitchison
et al., 2016; Morrell et al., 2021). While an exhaustive review is
beyond the scope of this discussion (Beggs and Timme, 2012), we
note that diverse data supports the relationship between critical
neural dynamics and small-world topologies (Massobrio et al.,
2015b; Tan and Cheong, 2017; Takagi, 2018) and the presence of
critical signatures in human fMRI (Kitzbichler et al., 2009), local
field potentials (Petermann et al., 2009), spike data (Friedman
et al., 2012), human brain oscillations (Poil et al., 2008),
and artificial neural networks (Shin and Kim, 2006). Indeed,
congruent with a near-critical regime (Priesemann, 2015), the
brain operates within a wide dynamic range that accommodate
high-level cognition through global neural coordination (Taylor
et al., 2015), and low-activity states, such as anesthesia (Brown
et al., 2010), and, to some extent, sleeping (Priesemann et al.,
2013; Tagliazucchi and van Someren, 2017), marked by weaker,
more fragmented interactions outside the local milieu.

It is believed that neural oscillations, or “brain waves,”
mediate short- and long-range neural connectivity through high-
and low-frequency wavebands, respectively (Kopell et al., 2000;
Buzsáki, 2006; Tiesinga and Sejnowski, 2009). In essence, the
wave interference of oscillating neural populations facilitates the
selective transfer of information (Singer, 1999; Buzsáki, 2006;
Akam and Kullmann, 2010). Thus, it has been hypothesized
that the malfunction of such neural interactions may have
deleterious effects on the brain’s system dynamics (Uhlhaas
and Singer, 2006; Pevzner et al., 2016). In agreement with this
premise, our results indicate that impairments to the network’s
short-range connectivity destabilize the small-world criticality in
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FIGURE 3 | Simulations of Kuramoto’s coupled oscillators in small-world networks. (A) Upper panel shows the network activity over time. Colormap represents the

phase of the nodes (faint: hyperpolarized–strong: depolarized). g, long-range connectivity. Lower panel shows the global synchrony of the network over time. The

network activity, sampled in the upper panel, was mapped by r(θm) to reveal the network synchrony/order r given the set of oscillatory phases θm. The lines represent

individual trials, color-shaded to increase visual separability. Red, H = 10, low short-range connectivity. Green, H = 50, intermediate short-range connectivity. Blue, H

= 100, high short-range connectivity. (B) Averaged over 15 trials, this diagram shows the steady-state synchronizability of the network as the long-range connectivity

g increases. Data points are mean ± SD of the mean. The shaded area corresponds to the SD of the mean, fitted to the logistic function. The SD of the mean is

equivalent to metastability of the network, defining a dynamical regime that facilitates flexible nodal interactions without stagnating in fixed positions (Hellyer et al.,

2015). Logistic curve parameters: a, minimum synchronizability; b, critical slope; d, maximum synchronizability; H, short-range connectivity. Red, H = 10, low

short-range connectivity. Green, H = 50, intermediate short-range connectivity. Blue, H = 100, high short-range connectivity.

favor of extreme network regimes, i.e., sub- and supercriticality
(Figures 2D, 4C). Such departure from criticality has been linked
to large-scale fMRI signatures of unconsciousness (Tagliazucchi
et al., 2016).

Subcritical networks tend to be states of desynchronization
and clustering that perturb global network processing, e.g.,
cognition (Roozenbeek et al., 2013). Congruently, our
simulations show that sparsely clustered networks, with
poor short-range connectivity, exhibit weak metastability
(Supplementary Figure 1), which has been correlated with
deficits in cognitive flexibility (Hellyer et al., 2015).

Notably, our stability analysis indicates that damage to
the short-range connectivity of the network could produce a
“repellant peak” that effectively barricades the critical regime,
trapping the network activity in a subcritical trough (Figure 4D).
Such “subcritical entrapment” aligns with the behavioral

heterogeneity of persistent disorders of consciousness (Giacino
et al., 2014), e.g., partial retainment of cognitive processing,
and lends theoretical support to the rehabilitation of the system
dynamic, e.g., through short-range neural potentiation.

The supercritical network, on the other hand, tends to
hypersynchrony, broadly resembling the state of seizures
(Szaflarski et al., 2014; Zimmern, 2020). Indeed, researchers have
argued that epileptiform seizures reflect a critical–supercritical
transition (Arviv et al., 2016; Bauer et al., 2017; Freestone
et al., 2017), which was recently supported by a strong
electroencephalographic sign in human patients (Scheffer et al.,
2009; Maturana et al., 2020). Similarly, Gerster et al. report that
artificial neuronal oscillators on supercritical small-world graphs
mirror electroencephalographic epileptic patterns (Gerster et al.,
2020). The refractoriness of some types of epilepsy could thus
reflect an underlying destabilization of the critical regime by
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FIGURE 4 | Network stability. (A) Heat map of the stability of different network states. Note the narrowing stability of the critical regime in the sparsely clustered

network H = 10, vs. H = 50, 100. H, short-range connectivity; g, long-range connectivity; r, network synchrony; Blue, stable; Yellow, unstable. (B) Heat map of the

attractiveness of different network states. Note the increased attractiveness of extreme network regimes, particularly subcriticality, in the sparsely clustered network H

= 10. H, short-range connectivity; g, long-range connectivity; r, network synchrony; Blue, highly attractive; Yellow, less attractive; White, unattractive. (C) Difference in

state attractiveness between low (H = 10) and intermediate (H = 50) short-range connectivity networks. H, short-range connectivity; g, long-range connectivity; r,

network synchrony; Red, increased attractiveness; Green, decreased attractiveness; Faint, unchanged attractiveness. (D) The difference in attractiveness between

differently clustered networks, meaned along the long-range connectivity g-axis. Note the repellant peak at the critical–subcritical boundary, and the subcritical trough,

which together could facilitate subcritical entrapment. Inset shows the main plot data in a transposed view AT , which makes its similarity to the topological

destabilization pattern clearer (Figure 2D). Red, dashed curve shows the attractiveness difference of sparsely clustered H = 10 and densely clustered H = 100

networks. Green, solid curve shows the attractiveness difference of sparsely clustered H = 10 and intermediately clustered H = 100 networks.
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elimination of the short-range connections, such as through
cortical dysgenesis or brain trauma (Semah et al., 1998).
Interestingly, recent work on the Kuramoto model has shown
that generalized resource constraints seed the network to self-
terminating supercritical episodes (Frolov and Hramov, 2021),
consistent with epileptic recurrences.

One potential mechanism for the disruption of short-range
neural connectivity may be an injury to key brain hubs that
contain a high-cumulative weight of short-range connections
(Gratton et al., 2012; Zhou et al., 2012; Haimovici et al., 2016;
Yuan et al., 2017). Indeed, hubs, e.g., the cingulate cortex,
have been shown to be instrumental for cognitive performance
(Fagerholm et al., 2015; Li et al., 2019), and have profound
effects on the functional connectivity of simulated networks
(Aerts et al., 2016). It is interesting to note that compensation
to injury could thus predictably be offered by the recruitment,
or hyperactivity, of dense hub regions, which has been widely
hypothesized (Hillary et al., 2011, 2015; Tang et al., 2012; Iraji
et al., 2016), e.g., in components of the default mode network
(Zhou et al., 2012).

Our findings altogether lend support to combinatorial
neuromodulation strategies that target short- and long-range
neural connectivity differentially, to normalize the system
dynamic and mobilize the system state, respectively. Future
work will target components of short- and long-range neural
communication, e.g., through pharmacological neurostimulation
via amantadine to preferentially enhance low-frequency brain
oscillations (Ott et al., 2018; Ma and Zafonte, 2020), direct
current stimulation of deep brain structures, e.g., hippocampal
theta (Lee et al., 2013), or modulation of cerebral cortex gamma
(Pink et al., 2019), e.g., using cell-type-specific optogenetic or
pharmacogenetic modulation (Liu et al., 2020), or non-invasive
transcranial magnetic stimulation at low frequencies (Farzan
et al., 2012).

STUDY LIMITATIONS

There are several limitations to this study. First, while providing
a useful conceptual framework, Watts and Strogatz’s ring model
does not reflect real brain connectivity known to contain non-
random edge distributions, e.g., “rich hubs” (van den Heuvel
and Sporns, 2011), and a scale-free degree distribution (Eguíluz
et al., 2005). Still, reduced topologies, e.g., generative small-
worlds (Netoff et al., 2004; Perc, 2007; Tekin and Tagluk,
2017), and randomized graphs (van Vreeswijk and Sompolinsky,
1996; Tsodyks et al., 2000) remain valuable to neural network
analysis by offering a controlled computational environment
with manageable parameters and optimized network conditions.

Second, Kuramoto’s oscillatory model represents a reduction
of the complex interactions of distributed neural populations
(Singer, 1999; Buzsáki, 2006). It is plausible that fuller
physiological models would provide deeper insights into the
precise mechanisms of such neural interactions. In support of the

applicability of Kuramoto’s equations, however, simulations have
previously been applied to macaque (Honey and Sporns, 2008),
and human brain research (Kitzbichler et al., 2009; Cabral et al.,
2014), showing high congruence between simulation data and
resting-state activity (Cabral et al., 2014; Vuksanović and Hövel,
2014). More broadly, reduced models (Siettos and Starke, 2016),
such as two-state units (van Vreeswijk and Sompolinsky, 1996),
and the FitzHugh–Nagumo model (Perc, 2007; Gerster et al.,
2020), have been used extensively to examine complex network
behaviors, such as self-organized balanced states (van Vreeswijk
and Sompolinsky, 1996). Similarly, the abstraction offered by
Kuramoto’s model allows tractable simulations and analyses,
holding high value for the investigation of more fundamental
principles of oscillatory dynamics (Breakspear et al., 2010), such
as the functional division of network connectivity examined here.

Despite these limitations, this study provides important
insights into the relationship between network connectivity and
critical system dynamics, which are broadly consistent with
empirical reports and previous work (Haimovici et al., 2016).
Future research should apply brain connectomic data and fuller
network simulations to extend these findings.
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