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In general, extraction and classification are used in various fields like image

processing, pattern recognition, signal processing, and so on. Extracting

effective characteristics from raw electroencephalogram (EEG) signals is a

crucial role of the brain-computer interface for motor imagery. Recently,

there has been a great deal of focus on motor imagery in the EEG signals

since they encode a person’s intent to do an action. Researchers have been

using MI signals to assist paralyzed people and even move them on their own

with certain equipment, like wheelchairs. As a result, proper decoding is an

important step required for the interconnection of the brain and the computer.

EEG decoding is a challenging process because of poor SNR, complexity,

and other reasons. However, choosing an appropriate method to extract the

features to improve the performance of motor imagery recognition is still a

research hotspot. To extract the features of the EEG signal in the classification

task, this paper proposes a Masking Empirical Mode Decomposition (MEMD)

based Feed Forward Back Propagation Neural Network (MEMD-FFBPNN). The

dataset consists of EEG signals which are first normalized using the minimax

method and given as input to the MEMD to extract the features and then given
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to the FFBPNN to classify the tasks. The accuracy of the proposed method

MEMD-FFBPNN has been measured using the confusion matrix, mean square

error and which has been recorded up to 99.9%. Thus, the proposed method

gives better accuracy than the other conventional methods.

KEYWORDS

brain computer interface, signal processing, masking empirical mode decomposition,
neural network with feed forward and back propagation, electroencephalography,
motor imagery recognition

Introduction

BCI stands for brain-computer interaction and is a
multidisciplinary as well as a multi-field interface between the
human and the computer modality that includes computer
science, neurology, the science of cognition and control,
and medical science (Han et al., 2022). An information and
command tunnel in the brain was established between the
brain and the outside environment (Kevric and Subasi, 2017).
Electroencephalography (EEG), a non-invasive scalp method, is
a simple and low-cost way to capture brain activity. Multiple
electrodes are implanted in certain scalp regions to record
the EEG signal (Chan et al., 2015; Jin et al., 2020; Wolpaw
et al., n.d.). The recent methods of an EEG signal include
computed tomography, having temporal resolution with high
resolution, even a millisecond. By this method, it is impossible
to achieve a high resolution and this method also includes
magnetic resonance imaging (Zhang et al., 2019; Hong et al.,
2020). Because of these characteristics, EEG is a valuable tool for
research and diagnosis in the field of brain function and diseases.

Motor imagery (MI) signals, one of the many different
types of EEG signals, have recently attracted significant research
interest since they are a relatively flexible EEG technique that
allows us to distinguish between diverse brain activations (Lee
and Choi, 2019; Ieracitano et al., 2021). When a person plans
to move their hands or feet, their brain activity is recorded
as motor imagery EEG. When you move your unilateral limb
either left or right, the brain will change from an active state
to an inactive state. Event-related synchronization (ERS) in
the perception cortex will be mirrored in the cerebral motor,
which includes event-related desynchronization (ERD) (Yuan
et al., 2008). It is primarily manifested by an increase in the
motor imagery cortex of the ipsilateral signal and a decrease
in rhythms such as mu and beta (Abdalsalam et al., 2018) of
the contralateral motor sensory cortex energy. The most basic
physiological premise for motor imagery EEG classification is
the one that is discussed above. As a result of these picturing
or thinking tasks, the sensorimotor region of an EEG signal
generates the motor imagery signal. The motor imagery signals
have been used by various researchers to distinguish between

various oscillatory brain activations for multiple tasks. Methods
like machine learning as well as deep learning are used to achieve
automated MI categorization (Ieracitano et al., 2021). Almost all
classic studies have focused on two primary components: feature
extraction and classification.

In the past, researchers used handmade features to identify
EEG data using traditional techniques based on machine
learning algorithms. Motor imagery signals have been used in
BCI technology to create systems that use machine learning
to assist stroke patients, including those with epilepsy, in
communicating, controlling their wheelchairs and external
devices, and more (Hramov et al., 2021). In addition to that,
cognitive behavior as well as artificial intelligence will be used
for EEG data in a deep understanding manner for human
intelligent systems. However, because motor imagery signal’s
spatial resolution and SNR will be very low, but the higher
dynamic characteristics have a low spatial resolution, a low
signal-to-noise ratio (SNR), and highly dynamic characteristics,
extracting the crucial features will be a critical step in creating
a brain-computer interface system (Schirrmeister et al., 2017).
The main activity of classifying EEG signals is to analyze
brain dynamics, which is a difficult undertaking due to these
difficulties and the existence of enormous levels of noise in the
data (Hernandez-Rojas et al., 2022; Hwaidi and Chen, 2022).

Traditional machine learning approaches have been
successful in classifying motor imagery signals to some extent,
but they were unsuccessful in their excellent decoding accuracy
with customized features (Varsehi and Firoozabadi, 2021). Deep
learning’s recent success has inspired academics to apply it
to the signal classification of an EEG, and better results can
be achieved for the extracted features, which can be extracted
automatically by using deep learning techniques. Deep learning
has produced results in several areas, including the classification
of images and speech, and also detecting forgeries in various
fields. From the signals, the stable spatial characteristics can
be obtained by using convolutional neural networks (Lv et al.,
2021). For applications such as video and audio classification,
and to extract the temporal features to yield better results
than the other models, recurrent neural networks has applied
(Gong et al., 2022).
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In the feature extraction methods, various domains are
applicable such as frequency, time, time-frequency, and space-
time-frequency. In added that, this can be classified as basic and
advanced. The features of frequency and time are considered
to be basic and the remaining two can be considered advanced
(Lee et al., 2020; Bang et al., 2022). Combining time domain and
frequency domain data, as well as adding spatial characteristics,
can improve recognition ability. Furthermore, the neural
network can adaptively extract EEG characteristics and a
complete model can be achieved by the combination of extracted
features into the classification of a signal. In the recognition
of an EEG signal, two methods are used rapidly, exactly past
10 years. One is Linear Discriminant Analysis. Another one
is the Support vector machine (Aggarwal and Chugh, 2019).
To differentiate electroencephalogram data from the different
interactions between the brain and the computer, a developed
EEGNET and also DCNN are used for accurate evaluation.
The result of the developed EEGNET has the best effect
compared with the other algorithms used in the classification
stage (Lawhern et al., 2018).

A combination of a CSP and CNN as a CSP-CNN
achieves good accuracy on many motor imaging datasets
(Yang et al., 2015). The classification training used the PSD
of the signal as input, and the greater recognition rate was
achieved by comprising both the characteristics of the time
and frequency domains. In most cases, the characteristics
of the frequency domain have been neglected (Tang Q.
et al., 2022). Researchers suggested a new method for EEG
categorization (Xu et al., 2019). Using the continuous wavelet
transform (CWT), when compared to the STFT, the CWT
has better time-frequency resolution. The images of the time-
frequency have been used and can be obtained from the
original electroencephalogram signals. Although the features
of both time and frequency of an EEG have been used as
an image instead of the signal by conversion, such images
have lost some specific characteristics, which include the
temporal and also the spatial. All the following research
strategies manually extracted features using the usual feature
extraction method. However, the only main issues with past
investigations have been the low classification rate and also the
poor SNR (Chaudhary et al., 2019; Tang Z. et al., 2022). It
was challenging to achieve EEG end-to-end learning due to the
above disadvantages.

The paper is organized as follows. In section “Related
study,” we describe the motor imagery concept. In section
“Materials and methods,” we describe the materials and
techniques. In section “Proposed MEMD-FFBPNN method,”
we describe the proposed method of masking empirical
mode decomposition (MEMD)-based neural networks with
feed-forward and backpropagation. In section “Results and
discussion,” we describe the obtained results and the various
comparison schemes with the existing methods, and in section

“Conclusion,” we present the conclusion. The flowchart of the
proposed scheme is shown in Figure 1.

Related study

This section describes some features of the EEG signal and
also the different machine learning techniques that have been
used for feature extraction and classification.

Motor imagery

For the decoding and extraction of MI signal features
available in an EEG signal, various machine learning methods
have been developed, and most of the methods are conventional.

Among the various approaches available for the extraction,
a CSP-based approach of Filter bank common spatial patterns
(Grosse-Wentrup and Buss, 2008; Ang et al., 2012) has
produced the optimum outcomes. Many scientists have utilized
many methods for classification, which include support vector
machines (Rawashdeh et al., 2018). In noise removal, ICA and
PCA methods are available, and these methods are also used for
dimensionality reduction.

Multiple restricted Boltzmann machines (RBM) were
employed to extract powerful features for the motor imagery
dataset by researchers (Plis et al., 2014). For assessing spatial
aspects and categorizing EEG signals, CNN has proven to be
a popular choice (Huang and Wang, 2006; Cecotti and Gräser,
2011; Yang et al., 2015). As EEG recordings are time-series
signals, DBN is used to extract the characteristics that are
temporal (Yang et al., 2015; Lawhern et al., 2018; Zheng et al.,
2020). Some studies show that CNN merged with RNN to
extract the spatial as well as the temporal features (Huang and
Wang, 2006; Cecotti and Gräser, 2011). In a study using EEG
signals, CNN and autoencoders were employed to recognize
emotions (Muhammad et al., 2017). Another study (Yang et al.,
2015) used the short-time Fourier transform to turn the EEG
information into pictures (STFT). Some researchers used mu
and beta band characteristics for MI classification using CNN.
In addition to that, the stacked autoencoder (SAE) is also used
(Bengio et al., n.d.).

Features of electroencephalography
signal

In our proposed method, four different types of EEG signal
features are covered in this paper. Such as energy, morphological
features, fuzzy approximate entropy, and AR coefficients.

The sequence h (n) is written as follows:

h(n) = {h(1), h(2), . . . , h(N)} (2.2.1)
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FIGURE 1

Flowchart of the proposed scheme.

The length of the signal is denoted as N.

Energy

Energy has been considered as a significant measure of left-
right MI EEG signal determination.

E =
N−1∑
n=0

|Ht (n)|2 (2.2.2)

Morphological features

The considered EEG signal is denoted by X(t), and its
morphological properties are the following: (Kalatzis et al.,
2004):

Absolute Area (AA) = max |x(t)| (2.2.3)

Positive Area (PA) =
∑
t

0.5× [x (t)+ |x(t)|] (2.2.4)

Negative Area (NA) =
∑
t

0.5× [x (t)− |x(t)|] (2.2.5)

Total Area (TT) = PA + NA (2.2.6)

Total Absolute Area (TAA) = PA + |NA| (2.2.7)

Fuzzy approximate entropy

The following steps are used to get the fuzzy approximate
entropy (FAP) (Pfurtscheller et al., 1998).
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(A) The structure Xm
i vector can be obtained by using a

signal x(i)

xmi = {x(i), x(i+ 1), . . . , x(i+m− 1)} − x0(i) (2.2.8)

where i=1, 2, . . . , N–m+1
where,

x0(i) is defined below,

x0(i) =
1
m

m−1∑
j=0

x(i+ j) (2.2.9)

where m is the sample length.
(B) To calculate the maximal distance dmij , a fuzzy

membership function has been decided by using the
tolerance factor r.

Dm
ij = exp (−

d2
ij

r
) (2.2.10)

(C) The fuzzy approximate entropy given as follows:
The function 8m is defined as,

8m (n, r) =
1

N −m− 1

N−m+1∑
j=1,j6=i

lnCm
r (i) (2.2.11)

Where,
Cm
r (i) is defined as the centroid of the fuzzy membership

function and it is calculated by

Cm
r (i) = (N−m+ 1)−1 (2.2.12)

Then,

FAP (m, n, r, N) = 8m(r)− 8m+1(r) (2.2.13)

AR coefficients

AR models have been frequently employed in BCI research
and have been shown and it has proven to be a useful feature
in MI recognition tasks (Fang et al., 2015). The AR coefficients
are used to represent the time-varying characteristics of signals
(Zhou et al., 2008). Simultaneously, AR excels in modeling
the EEG as filtered white noise with specific desired energy
bands, making it ideal for EEG signal analysis, particularly for
EEG signals. The Equation of the AR coefficient is given as,

X(t) =
p∑

i=0

a (i)X (t − i)+ e(t) (2.2.14)

Added white noise is denoted as,
e(t). The correct Auto-regressive model

order given as seven.

Materials and methods

Datasets

The BCI competition IV dataset 2a (Brunner et al., n.d.)
are used in this paper. In the BCI competition IV, dataset
2a provides a 4-class motor imagery EEG signal given by the
Knowledge Discovery Institute and the technology of Graz. The
complete details of the datasets were described in the website of
brain competition.

Making empirical mode decomposition

Empirical Mode Decomposition (EMD), introduced
by Huang, is a method for decomposing non-linear,
multicomponent signals. The data-driven approach of empirical
mode decomposition (EMD) decomposes a motor imagery
EEG signal into a finite collection of band-limited functions
known as intrinsic mode functions (IMFs). Each intrinsic mode
function is the sequence of AM-FM frequency modulation.
One of the intrinsic modes has been generated by using an
EMD for signals along with an intermittent oscillation that can
include the various kinds of wavelengths at distinct positions.
A mode mixing problem occurs when these diverse oscillations
exist at the same time, complicating analysis, and physical
meanings that are not obvious. To mitigate the effects of
mixing the modes, an algorithm is proposed, named as MEMD
(Wang et al., 2014). In MEMD, an intrinsic mode function
has been obtained from the input signal, and to obtain the
frequency as well as the amplitude that is instantaneous, a
method called the Hilbert transform is used (Deering and
Kaiser, 2005).

Feed forward back propagation neural
network

In the brain-computer interface, an efficient system in
the classification stage is employed in this work to classify
two or more classes of motor imagery using supervised
learning. The goal of categorization is to separate data from
preprocessing into distinct categories. Furthermore, the EEG
signal is recorded by the BCI system, and to reduce the
error, the supervised learning algorithm has been used for
the trained samples (Cecotti and Gräser, 2011; Cano-Izquierdo
et al., 2012; Chai et al., 2014; Gandhi et al., 2014; Zhang et al.,
2014; Ahirwal et al., 2016; Liu et al., 2016). Because of their
capacity to learn implicitly, supervised learning algorithms are
popular and to find intricate non-linear correlations of the
variables with both dependent and independent components,
and the possible interactions can be detected using independent
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variables between the predictor variables (Swetapadma and
Yadav, 2015, 2016).

Because of its capability to detect the correct patterns
and classify the task, the neural network with feedforward
and back-propagation has been used among several types
of neural networks. The Widrow-Hoff learning algorithm
is generalized to multiple-layer networks and non-linear
differentiable transfer functions in a neural network with
feedforward and back-propagation (FFBPNN). A network
is trained using input vectors and their matching target
vectors when the vectors of both the input and output
functions have been matched approximately. Figure 2 depicts
a simple FFBPNN with inputs, hidden layers, outputs, and
so on. In Figure 2, I1 to I5 denote the input layer, HL
denotes the hidden layer, OL denotes the output layer, EBP
denotes the error backpropagation, and a denotes the overall
output.

Proposed MEMD-FFBPNN method

Our proposed method for MEMD-FFBPNN is composed
of normalization using a min-max method, feature extraction
using MEMD, and the feedforward back propagation neural
network. In the first phase, the EEG data was preprocessed
by normalization using the min-max method. Normalize the
signals in the [+ 1, –1] range by using the Equation (4.1). The
normalized data is denoted as, which has been described in the
Equation below,

Zi =
(
ymax − ymin

)
× (x− xmin)

(xmax − xmin)
+ ymin (4.1)

where ymax = + 1 and ymin = –1; x = (x1 , . . . , xn )
where i = 1, 2,., n.

Then, the normalized signal is used to extract the
features including the energy, fuzzy approximate entropy, AR
coefficients, and morphological features using the MEMD.
MEMD considers the decomposed signal as x(n), and the
intrinsic mode functions have been obtained. The Hilbert
Transform was then applied to the first IMF to extract the
amplitude, aIMF1 and frequency fIMF1 .

The instantaneous amplitude az can be obtained by using
the instantaneous amplitude of the intrinsic mode function of
the frequency masking signal given by,

az =
1.6
N

N∑
i=1

aIMF1 (i) (4.2)

fz =
N∑
i=1

aIMF1 (i)f 2
IMF(i) /

N∑
i=1

aIMF1(i)fIMF1 (i) (4.3)

Then, the masking signal has been inserted into x(n), then
the,

x+(n) = x(n) + z(n) (4.4)

x−(n) = x(n)− z(n) (4.5)

Thus, the above two sequences are obtained. These two
sequences were used to obtain the IMFs, y+(n) of x+(n) as well
as y−(n) of x−(n) by performing EMD. At last, the IMF y(n) of
x(n) using MEMD as calculated and the Final MEMD output
signal has been obtained by using the below Equation,

y(n) = (y+ (n)+ y− (n))/2 (4.6)

I3

I4

I5

I1

I2

EBP

IL
HL

OL

a

FIGURE 2

The structure of the Feed Forward Back Propagation Neural Network (FFBPNN).
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And then, finally, the extracted features are fed into
the classifier. Here we used a feedforward neural network
using backpropagation for classification. The following
three steps are the feedforward neural network with
backpropagation.

The input of the signal must propagate forward (Demuth
and de Jesús, n.d.), which is the first and foremost step in
FFBPNN, and the output is calculated by using the Equation
(4.4),

an+1
= f n+1(Wn+1an+1

+ bn+1) (4.7)

n = 0, 1, . . ., L – 1
where a is network output

f is the transfer function
Weight of the several layers is denoted as W
Bias matrices of several layers is denoted as B
In the back propagation procedure, the network’s backward

propagation of the sensitivity begins with the bottom layer.

sL = − 2FL(xL)(t − a) (4.8)

where s is the sensitivity and FL is described as in Jana et al.
(2018).

x is the net input
t is the target

sn = Fn(xn)(Wn+1)Tsn+1 (4.9)

In the final phase of the back propagation procedure, the
weight has been updated using a steepest decent condition.

Wn(k + 1) = Wn(k) − αsn(an−1)T (4.10)

where the rate of the learning is denoted as α .
the final phase of the back propagation, biases can be

updated by using the Equation 4.9.

bn(k + 1) = bn(k)− αsn (4.11)

Then, we measured an error rate and accuracy of the
classification at the end of the classifier.

MATLAB has been used for each algorithm’s creation
and signal processing. The Figure 3 shows that the results
in 3-dimensional structure (i.e.) Normalized value of signal
amplitude, feature values and the number of subjects of the
feature extraction method— MEMD. The Figure 4 shows that
the results in 3-dimensional structure (i.e.) Normalized value
of signal amplitude, feature values and the number of subjects
of the feature extraction as well as the classification method—
MEMD—Feed Forward Back Propagation Neural Network. The
Figure 5 shows that the performance of the feature comparison
of both MEMD and MEMD_FFBPNN, where the features
include energy, morphological features, fuzzy approximate
entropy, and AR coefficient values. The Figure 6 shows the
performance comparison of both MEMD and MEMD_FFBP.
Here, classification accuracy and classification error are the
parameters taken. The classification accuracy of 92.28 and

FIGURE 3

MEMD feature.
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FIGURE 4

MEMD-FFBPNN feature.
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FIGURE 5

Feature value comparison of MEMD and MEMD-FFBPNN.

99.94% achieved in MEMD and MEMD_FFBPNN, respectively.
The classification error of 7.72 and 0.06% achieved in MEMD
and MEMD_FFBPNN, respectively.

Results and discussion

Performance evaluation of the
MEMD-FFBPNN technique with
variable error rate

The motor imagery signal has been tested with the
MEMD-FFBPNN technique by varying the error rate (mean

square error). The analysis of the MEMD-FFBPNN is shown
in Table 1 varying the error goals 10−1, 10−2, 10−3, and
10−4. The proposed method yields 99.9% accuracy with an
error goal of 10−2. Thus, the proposed MEMD-FFBPNN
method can more accurately categorize the motor imagery
signals.

Performance evaluation of the
MEMD-FFBPNN using transfer function

Various transfer functions are examined with the MEMD-
FFBPNN for the performance evaluation. Performances of
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FIGURE 6

Comparison of the performance of MEMD and MEMD-FFBPNN.

the MEMD-FFBPNN for various transfer functions, including
purelin, log-sig, tan-sig, etc., are shown in Table 2. When
a network is trained with a tan-sig transfer function, testing
accuracy is improved. As a result, the neural network

TABLE 1 Performance evaluation of the MEMD-FFBPNN technique
with variable error rate.

Sl. No. Error rate Accuracy

1 10−1 96%

2 10−2 99.9%

3 10−3 98.2%

4 10−4 97.8%

TABLE 2 Performance evaluation of the MEMD-FFBPNN using
transfer function.

Sl. No. Transfer function Performance

Accuracy Error rate

1 Purelin 96.7% 3.3%

2 Log-sig 98.4% 1.6%

3 Tan-sig 99.9% 0.057%

TABLE 3 Performed evaluation of the MEMD-FFBPNN using and
excluding normalized input.

Sl. No. Input Performance evaluation

Accuracy Error rate

1 Excluding
normalized

90.4% 9.6%

2 Normalized
with

min-max
method

99.9% 0.057%

architecture using the MEMD-FFBPNN uses the tan-sig transfer
function.

Performance evaluation of the
MEMD-FFBPNN using and excluding
normalized input

The motor imagery signal has been tested both with
and without normalized input, using the proposed MEMD-
FFBPNN. Evaluation of the MEMD-FFBPNN using and
excluding the normalized input is shown in Table 3. When
a network is trained with normalized input as opposed to
unnormalized input, testing accuracy is higher. Thus, the neural
network design using the proposed MEMD-FFBPNN uses the
normalized input.

Comparative analysis with the other
works

In this proposed work, the dataset of the BCI competition
IV dataset has been classified which is used for the motor

TABLE 4 Classification results obtained for the BCI dataset.

Methods Accuracy

Filter bank CSP (Ang et al., 2012) 68.0%

1D CNN with SAE (Tabar and Halici, 2017) 70.0%

CNN with depth and separable (Lawhern et al., 2018) 69.0%

CNN with cropped training (Schirrmeister et al., 2017) 72.0%

Temporal features with FBCSP and CNN (Sakhavi et al., 2018) 74.4%

CNN layers fusion (Amin et al., 2019) 74.5%

MEMD 92.28%

MEMD_FFBPNN 99.94%
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FIGURE 7

Performance of the existing methods and the proposed method.

imagery EEG signal and in their earlier work (Ang et al.,
2012; Tabar and Halici, 2017; Sakhavi et al., 2018; Amin
et al., 2019), many researchers classified the dataset of
the BCI competition IV. Table 4 compares the proposed
MEMD-FFBPNN’s accuracy to that of the competing
approaches. Because of its simplicity and efficiency, the
proposed algorithm has acquired better accuracy and a
decreased classification error rate, which is also illustrated in
Figure 7.

Conclusion

The brain-computer interface (BCI) was created to connect
behavioral and clinical theories. This introduction leads to
the study of learning a new perspective on the classification
of cognitive states in people and computers that considers
the unique skills of the human brain for processing motor
imagery signals. Soft computing, on the other hand, is
a collection of approaches that aid in the conversion of
the categorization of the cognitive state described above
into a firm prediction. The proposed work provides a
motor imagery categorization of the decomposition method,
a MEMD, and a supervised learning system based on
the neural network with feed-forward and backpropagation.
This paper includes the comparison of the other existing
methods with the proposed method and the performance
of the proposed method by varying the error goals, and
transfer function, with and without normalized inputs. This
work mainly focused on the classification of the motor
imagery signals using the MEMD along with feedforward
backpropagation neural networks and achieved the highest
accuracy of 99.9%.

Additionally, we anticipate that the findings in
this paper may motivate other researchers to apply
neural networks to enhance the brain signals to classify.

Future research will focus on improving deep learning
algorithms to better classify motor imagery EEG signals
and create a more reliable interaction between the brain
and the computer.
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