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Emotions are a mental state that is accompanied by a distinct physiologic

rhythm, as well as physical, behavioral, and mental changes. In the latest

days, physiological activity has been used to study emotional reactions. This

study describes the electroencephalography (EEG) signals, the brain wave

pattern, and emotion analysis all of these are interrelated and based on the

consequences of human behavior and Post-Traumatic Stress Disorder (PTSD).

Post-traumatic stress disorder effects for long-term illness are associated

with considerable suffering, impairment, and social/emotional impairment.

PTSD is connected to subcortical responses to injury memories, thoughts,

and emotions and alterations in brain circuitry. Predominantly EEG signals

are the way of examining the electrical potential of the human feelings cum

expression for every changing phenomenon that the individual faces. When

going through literature there are some lacunae while analyzing emotions.

There exist some reliability issues and also masking of real emotional behavior

by the victims. Keeping this research gap and hindrance faced by the previous

researchers the present study aims to fulfill the requirements, the efforts can

be made to overcome this problem, and the proposed automated CNN-

LSTM with ResNet-152 algorithm. Compared with the existing techniques, the

proposed techniques achieved a higher level of accuracy of 98% by applying

the hybrid deep learning algorithm.

KEYWORDS

deep learning, electroencephalography, emotion recognition, neural networks,
machine learning

Introduction

Neuroscience has played an important role in artificial intelligence (AI) history.
Emotions have a significant influence on humans’ daily activities, causing psychological
changes. Mental health is crucial for humans because it has an impact on their
entire lives. We need a healthy mind to have a healthy life (Scherer, 2005;
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Verduyn et al., 2009, 2015; Hakim et al., 2013). Therefore,
we must keep track of psychological changes regularly.
Researchers have recently started to recognize brain impulses
as a means of analyzing an individual’s mind or emotional
condition. Electroencephalography (EEG) is a method of
recording electrical activity in the brain via electrophysiological
monitoring (Codispoti et al., 2009; Steinberg et al., 2013;
Kuppens and Verduyn, 2015). Therefore, although jumper wires
are sometimes used, such as in electrocorticography, placing
electrodes along the scalp is unobtrusive. EEG attempts to
measure voltage fluctuations in the primary ventral striatum
generated by the cationic current. EEG is a medical term
that refers to tracking the brain’s regular electrical activity
over time using numerous electric pulses on the scalp
(Russell, 1980; Ekman, 2014). Despite this, methods for high-
resolution anatomical imaging, such as magnetic resonance
(MRI) with computed tomography (CT), have already been
developed, and their usage has increased. EEG remains an
essential research and diagnostic tool despite its limited spatial
resolution. It is one of the few transportable modalities available,
with a temporal resolution of milliseconds that Computed
Tomography (CT), Positron Emission Tomography (PET), and
Magnetic Resonance Imaging (MRI) cannot match.

Evoked potentials are an EEG derivative that entails
averaging EEG activity moments to deliver a stimulus of a
certain type (visual, somatosensory, or auditory). EEG reactions
that are moment to more complex stimuli are event-related
potentials. This method is used in cognitive neuroscience,
cognitivism, and psychophysiological research.

Electroencephalography analysis obtains data from the EEG
using arithmetical signal analytical techniques and computer
technology (Jenke et al., 2014). EEG analysis is intended
to aid researchers in learning more about the brain, assist
experts in interpreting and treating patients, and enhance
complex brain interface technologies. Analytical techniques in
EEG have traditionally been classified into four types: time-
frequency domain, spectral analysis, wavelet transform, and
non-linear methods. Later methods, such as neural networks,
are widely used in different applications, including signal and
image reconstruction (Dai et al., 2021; Che et al., 2022),
classification (Lui et al., 2021; Xu et al., 2021), non-negative
matrix factorization (Che et al., 2021; Chen et al., 2022),
expensive optimization (Li et al., 2022), and asset allocation
(Leung et al., 2021, 2022). The convolutional neural network
(CNN) methodology was widely used in deep learning research
on EEG analysis before the advent of transfer learning with
CNN. Deeper CNN exhibits superior decoding performance
with little training in attaining accuracy on datasets (Tan et al.,
2021; Yu et al., 2021). Furthermore, large EEG data, such as
those of the artificial neural network (ANN) insight, necessitates
secure storage density computational resources for real-time
processing. A virtualized classifier for the proper processing
of large EEG data has been developed to address these issues.

Some of the application and their artificial intelligence detection
methods are, for Epilepsy detection method is Convolutional
neural network (CNN). Brain depth or coma detection method
is using Canonical correlation analysis. Brain tumor is based
on artificial neural network are the detection methods used in
previous decades. Emotions are present in our daily lives and
play an important part in non-verbal communication. Emotions
can also affect the brain region that controls reasoning,
judgment, and thought. Strong emotions cause temporary
effects on biological functions, such as increased heart rate,
flushing of the face, faster breathing, and increased blood
pressure. Several upsetting variables stimulate the driver’s care.

Many academics have previously used machine learning
algorithms to identify post-traumatic stress disorder (PTSD),
such as support machine learning (SVM), k-nearest neighbors
(KNN) classifiers, random forest, AdaBoost, decision tree, and
logistic regression. In the SEED-V dataset, the machine learning
algorithms are incapable of producing more accurate findings.
Therefore, in this study, we propose CNN-LSTM using the
ResNet152 model, a new hybrid deep learning approach that
ensures predicted efficiency in extracting entropy values. In
Deburchgraeve et al. (2008), the researchers identified features
of prenatal seizures that a mortal spectator may detect. Neonatal
seizures can be divided into two categories. Considering the
aforementioned individual observer features, a fully automated
recognition system was formed for each category. The first
algorithm examines how high-energy EEG features are related.
The second algorithm detects a high level of autocorrelation
and increases low-frequency activity (8 Hz). Their method
for separating two types of neonatal seizures achieved a
higher sensitivity, higher PPV, and lesser true alarm rate than
previously released algorithms. Cherian et al. (2011) explored
the verification of a fully electronic neonatal epileptic detection
from the clinician’s viewpoint. Fully automated neonatal seizure
detector, combined with EEG and HRV data, detects HRV
(+9.50% sensitivity, +9.70% SPE) and EEG (+14.30% SEN,
+13.40% specificity) better than a vessel. In most situations,
the decision-based fusion of HRV and EEG seems to be more
accurate than the function-based fusion (94.30 vs. 88.60%).
Data from biological measures that directly represent toxic
effects and parasympathetic behavior indicators reinforce each
other, and their integration enhances seizure identification,
according to the findings in this study. According to Misulis
et al. (2022), a compendium of EEG and seizure compounds
called investigations, the EEG signal output power of variability
indicates brain electrical activity. Owing to entropy increments,
the EEG signals of subject areas with PTSD disease had
higher irregularity. The anterior lobe of the brain, which is
associated with emotional experiences, had a greater increase in
entropy. Spiraled LSTM back-propagation neural network for
automatic vehicle nap stage classification using solitary signals
of EEG was stated by Michielli et al. (2019). Conventional
machine learning-based emotion detection models have been
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demonstrated to effectively classify emotions based on EEG. The
average accuracies of HALA, HVLV, recognition, dominance,
and likability examined by DEAP’s integrated monitored neural
classification algorithm are 97.39, 97.41, 98.21, 97.68, and 89%,
respectively. The model was further tested using the SEED
dataset to identify positive and negative emotions, and it
achieved an average accuracy of 93.74%. They indicated that
categorizing inner feelings with different emotions in EEG
databases improved the model accuracy.

The automatic emotion recognition system based on the two
light deep learning with CNN model ensemble was investigated
in Qazi et al. (2019). The Mel-frequency cepstral coefficient
(MFCC) is combined with bio-signals to offer an emotion
recognition system. Four categories of emotions, including
anxiety, calm, sadness, and happiness are identified based on
the data collected during psychological emotion stimulation
research. The classifiers are made up of Multilayer Perceptrons
(MLP). Experimental results demonstrate that this technique
may evaluate emotions based on the EEG data with an accuracy
of up to 90%. This demonstrates the feasibility of employing
the MFCC-MLP detection approach to elementary feelings from
brain scalp EEG signals.

The function of hippocampal theta fluctuations in academic,
behavioral, and characteristic performances was examined in
Korotkova et al. (2018). Theta resonance is a brain rhythm
associated with various behaviors and a lot of power (5–10 Hz).
According to this review, theta frequency has been linked to
a variety of cognitive functions. In Newson and Thiagarajan
(2019), a resting-state review of EEG with psychiatric disorders
was proposed. The features of electrical impulses connected to
PTSD prognostic and clinical aspects were investigated using
EEG in this neuroscience study. Ramzan and Dawn (2019)
examined the learning-based categorization of electron energy
emotion from EEG. This research aims to discover whether
there are any patterns in electrical signals found by EEG
that are associated with PTSD diagnosis and severity levels.
Overestimated forebrain reaction time for misdirection of tasks
(P3a intensity) and decreased forebrain response to event-
related potentials (P3b amplitude) are the most compelling
evidence of time-domain in EEG associated with event-related
potentials. These results imply that some people with PTSD have
attention deficiencies; thus, they find it difficult to concentrate
on everyday tasks and commit in the face of potentially
dangerous distractions.

According to Fitzgerald et al. (2018), brain measurements
of reaction to emotions and control can be used to forecast
PTSD symptoms in combat-exposed veterans. The challenge
is creating gradients that vanish or explode. In Suhaimi et al.
(2020), the authors used the MFCC and CNN algorithm;
however, they were unstable and frequently inaccurate and
could only tackle problems involving categorization and
prediction. CNN and sparse encoder and DNN with heap
database are explained in Liu et al. (2020). The most prevalent

issues in this study are overfitting, exploding gradients, and class
imbalance. CNN with ResNet50, SEED dataset, DREAMER,
and AMIGOS are discussed in Topic and Russo (2021)
with drawbacks, such as hardware dependency and network
behavior. Wang and Wang (2021) implemented the same using
SVM, KNN, naive Bayesian, and random forest algorithms;
however, this ensemble is less interpretable, and the ensembled
model’s output is difficult to forecast. The advantage of using
this algorithm is that compared to the single contributor model,
an ensemble can make more accurate predictions and produce
better outcomes. In Pereira et al. (2018), CNN with SEED
IV dataset is explained; the limitation of this study is that it
is necessary to address possible concomitant symptoms and
diseases. The main contributions of this work are listed as
follows:

• Examines the limitations encountered in previous
studies and yields better results in all aspects.

• Establishes an articulate person interface system that
understands nonverbal data such as users’ emotions,
aspirations, and attitudes by developing and proposing
an emotion recognition system based on predictive
modeling and cataloging methodologies.

• A hybrid deep learning approach (i.e., CNN-LSTM with
ResNet-152 model) is developed to perform emotion
classification using EEG signals linked to PTSD. The
activity in the brain appears to have a particular
behavior that changes from one individual to another,
as well as from one emotional state to another emotional
state.

The remainder of the paper is organized as follows.
The methodology research framework with the process flow
is explained in section “Research methodology.” Feature
extraction and model development are explained in section
“Research framework.” Section “Convolution neural network
model” introduces the CNN model. Results and discussion
are elaborated in section “Results and discussion,” and the
conclusion is presented in section “Conclusion and future
enhancement.”

Research methodology

This study proposes an emotion identification system
using predictive modeling and classification techniques to
develop an intelligent person interaction system that helps to
understand non-verbal information, such as a user’s purpose,
reactions, and preferences. The flow of EEG data processing
is illustrated in Figure 1. In this collected EEG data, the
processing is explained. EEG Data is the collected dataset.
The collected dataset is further preprocessed for normalization
and filtering. The noise and artifacts can be removed using
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FIGURE 1

The flow of electroencephalography (EEG) data processing.

band pass filter during this preprocessing. And by using
the proposed neural network model the dataset is classified
accordingly.

Research framework

A composite deep learning model was created by merging
a homogenous CNN and LSTM classifier with the ResNet152
model. An ensemble of many classifiers was built by adjusting
the input data and changing the initial activation of the
neural network’s weights. The existing SEED V EEG dataset
was used in this study, which comprised emotions, such as
happiness, disgust, fear, neutral, and sad. In the beginning,
the preprocessing was conducted to prepare the dataset for
providing input as EEG channels to the SEED-V dataset.

FIGURE 2

Overview of the methodology.

Next, signals were extracted from the features of the MFCC
(Mel Frequency Cepstral Coefficient) process using parameters
of entropy, and the average power of the signal at different
frequency bands for channels Frontal Pole 1 (FP1), Frontal
Pole 2 (FP2), Frontal cortex (FC6), and F3 converted into the
topographic map was obtained. The entropy was computed
using the sample entropy method, and the Hurst exponent
was computed using the R/S analysis technique. Finally, CNN
and CNN-LSTM with the ResNet152 model was used to
classify human emotions (e.g., fear and sadness as PTSD
and happiness and neutral as Non-PSTD) and evaluate better
performance metrics (e.g., the precision rate, recall rate, F1
score, and accuracy). Figure 2 explains the process flow
from preprocessing to evaluation. It shows the preprocessing
steps, selection of dataset, and extraction of features in the
hierarchy. After the dataset has been loaded, preprocessing
is the process of preparing a dataset so that it may be used
in the SEED-V dataset as EEG channels such as FP1, FP2,
FC6, and F3. Then we used a standard scalar with a 0–1
range of normalization. The noise and artifacts can then be
filtered using the Bandpass filters spanning from 1 Hz and then
75 Hz. EEG signals for data values and data labels have been
discovered.

Feature extraction

The overall architecture representation for the feature
extraction process for the methodology and implementation
is shown in Figure 3. For feature extraction preprocessing,
feature extraction, classification and evaluating matrix steps
to be carried out. For loading the dataset and importing the
package libraries and to identify the number of channels and
size of EEG data are done in preprocessing step. Feature
extraction steps used to find the alpha, beta, gamma, theta waves,
splitting the training testing ratios are carried out during feature
extraction process. Further the dataset is given for classification
and evaluating metrics which is explained in Figure 3.

Frontiers in Computational Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2022.1019776
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-16-1019776 October 7, 2022 Time: 14:35 # 5

Chakravarthi et al. 10.3389/fncom.2022.1019776

FIGURE 3

Architecture diagram for the methodology.

FIGURE 4

Convolutional neural network overview.
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Model development and analysis

According to the proposed theory, emotion is the individual
brain’s reaction to objective events. Human emotions are
complicated and dynamic; thus, emotion recognition is critical
for real-world applications. Recent research has shown that
EEG waves may be used to determine emotions through several
convolutional and machine learning techniques. However, the
pattern extraction strategy used in standard machine learning
techniques is often time-intensive and heavily reliant on human
specialists. Using raw signal attributes and time-frequency
spectra, we developed an edge deep learning algorithm as a
possible solution to this problem. This study investigated the
applicability of multiple algorithms in deep learning models,
including LSTM, CNN, and CNN-LSTM, in the field of EEG
emotional recognition. The combination-based strategy (CNN-
LSTM) with the ResNet152 model was proposed after splitting
the dataset into training and testing datasets in the ratio of 80:20.

Convolution neural network
model

Based on a set of properties, the CNN was used to
categorize objects into K separate classes. The sum of the
quadratic of the closeness between an item and an appropriate
cluster was employed to categorize the object. CNN is a deep
learning algorithm used for evaluating picture visualization.
They are referred to as shift neutral spatially ANN because
of the shared-weight design of a Fourier transform, which
scans the hidden units and translational affine features.
Some examples of applications are image/video recognition
(Guo et al., 2021), decision support, picture classification,
segmentation approaches, computer vision, text analysis, central
nervous system linkages, and economic time series. Multilayer
perceptron’s in CNN variants have been regularized. Multilayer
perceptrons are often completely connected systems, with every
neuron for one layer connected to every synapse within layers
above. These are “completely interrelated.” With networks,
overfitting data is an issue. Regularization techniques often
involve changing load as the error rate decreases and cutting
connections at random. CNNs employ a different form of
regularization, as shown in Figure 4. They are broken down into
smaller structures imprinted in the filters to generate patterns
of increasing complexity based on another person’s pattern
in the data. Consequently, convents are at the extremes of
connectedness and complexity. Feature extraction using CNN
architecture is given in Figure 4.

In comparison to specific traditional image processing
techniques, CNNs need less pre-processing. This indicates that
the network evolves to improve the filtering than inversion
kernels built manually in the past. This lack of reliance on
prior data or human interaction during extracting features

is a crucial benefit. A CNN’s inputs are a matrix of the
shape (amount of photos) x (duration at high) x (photo
width) x (input channels) (number of images). The images
are segregated in the convolution layer, with the number of
images in the shape multiplied by the feature map width and
height. Kernels/Convolutional filters are characterized by their
height (hyper-parameters) and width. The amount of incoming
and outgoing channels is estimated. The size of the network
(depth) inside the feature map must match the number of
channels (depth) in the convolutional kernel/number filters.
Hyper-parameters of the convolution process, such as queue
length and cadence. Convolutional layers concatenate the input
before parsing the output for the subsequent layer. In the
experiments, the hyperparameters of the compared approaches
are consistent with the best settings pointed out by the authors
in their papers and codes.

Biochemical progressions prompt the fully convolutional
connecting layout between neurons, which matches the
anatomy of the vertebrate visual cortex. A tiny section of
the visual field only reacts to feed-forward neural inputs,
which constitute a small percentage of the theoretical neurons.

FIGURE 5

Training and validation loss.

FIGURE 6

Training and validation accuracy.
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Different neurons’ activations partially overlap, which leads to a
span of the entire visual field.

Each convolution neuron can process data solely for the
receptive region to which it was assigned. Additionally, two
closely coupled networks may be used to recognize faces
and categorize data, although they are not well suited for
picture classification. When handling enormous input sizes
connected with photographs, each pixel is a significant variable,
necessitating the use of several hidden synapses and complex
architecture. Every cell in the two tiers of ultimately linked
layers has 10,000 weights for a small 100 mm by 100 mm
picture. Convolution lowers the number of design variables
in either case, enabling a more complex network. To tile a
55 area with the same pooling layers, for instance, regardless
of picture size, only 25 input neurons are required. Applying
regularized weights over fewer parameters eliminates the fading
and increasing gradient issues associated with standard neural
nets during training procedures.

In convolutional networks, either absolute or relative
convolution may be employed to accelerate fundamental
processing. By merging the responses of neuronal groups on
a thin layer into a nerve cell on the subsequent layer, pooling

layers minimize the amount of dataset. Local pooling connects
small clusters of typical sizes 2 × 2. Global pooling affects all
of the neurons in the convolution layer. Pooling is classified
into two types: maximum and average. The values computed
for each group with activations in the previous layer are
used in max pooling, while the anticipated average is used in
average pooling.

The most crucial component of a CNN is the convolutional
layer. Each layer’s characteristics comprise a series of kernels or
convolution layers with a small perceptron that entirely covers
the complexity of the input volume. Each filter is convolved
throughout the front pass over the breadth and amount of
output, producing a linear model with a filtering output and
input to generate a dual input vector. Consequently, the net may
train an input region filter that triggers when a particular trait is
detected in a defined geographic area.

The mapping for all filters along the hidden layers is
concatenated to construct the entire output volume of the
Fourier layer. Consequently, each piece of the generated output
can be read as the outcome of a synapse processing a small
subset of the stimuli and sharing data with the other synapses
in the same layer.

FIGURE 7

Bar chart representation of results.
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Results and discussion

The training and validation loss functions were calculated
in the proposed model using CNN-LSTM and ResNet152 to
increase the accuracy performance by training and evaluating
the results. After building several layers for the model in hybrid
deep learning, the loss was measured as categorical cross-
entropy using the Adam optimizer. The mean squared error
(MSE) and accuracy of the metrics were also measured. The
epoch had a loss of 0.1 with an MSE of 0.02, as indicated in the
graph shown in Figure 5.

The proposed hybrid deep learning strategy combining
CNN-LSTM and ResNet152 model improves the accuracy to
98% in EEG-based emotion recognition connected to PTSD.
Figure 6 represents the validation and training accuracies. In
the training model, when the epochs reach 100, the accuracy is
0.9726 and the MSE is 0.008.

After training, the model can be tested by assessing the
metrics’ overall performance in comparison to algorithms, such
as SVM and ANN. The proposed hybrid CNN-LSTM with
the ResNet152 model performs well, with an accuracy of 98%.
Figure 7 represents the overall comparison graph. The accuracy,
recall, precision, and F1 score are measured to obtain the
test results. The values in training can be set as array values
in the range of 0–4 to predict emotions, such as happiness,
sadness, fear, disgust, and neutral. Furthermore, the test can be
performed accurately by improving the accuracy to 98%.

Conclusion and future
enhancement

Compared to previous methods, the proposed hybrid deep
learning algorithm employing CNN-LSTM classification with
the ResNet152 model has high accuracy. The comparison
between the existing algorithms (i.e., SVM and ANN) and CNN-
LSTM with the ResNet152 model performance is shown in
Figure 6. From this figure, it is evident that the proposed hybrid
deep learning algorithm outperforms the existing algorithms
by improving the accuracy. The proposed technique achieved a
higher level of accuracy. This study can be extended in the future
to include additional behavior/emotional disorders. The study

can be conducted with various samples (military personnel, IT
industry people, teenagers, college students, etc.). It can also be
attempted on evolving techniques on different subjects.
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