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The ability to perceive visual objects with various types of transformations,

such as rotation, translation, and scaling, is crucial for consistent object

recognition. In machine learning, invariant object detection for a network

is often implemented by augmentation with a massive number of training

images, but the mechanism of invariant object detection in biological brains—

how invariance arises initially and whether it requires visual experience—

remains elusive. Here, using a model neural network of the hierarchical visual

pathway of the brain, we show that invariance of object detection can emerge

spontaneously in the complete absence of learning. First, we found that units

selective to a particular object class arise in randomly initialized networks

even before visual training. Intriguingly, these units show robust tuning to

images of each object class under a wide range of image transformation

types, such as viewpoint rotation. We confirmed that this “innate” invariance of

object selectivity enables untrained networks to perform an object-detection

task robustly, even with images that have been significantly modulated. Our

computational model predicts that invariant object tuning originates from

combinations of non-invariant units via random feedforward projections,

and we confirmed that the predicted profile of feedforward projections is

observed in untrained networks. Our results suggest that invariance of object

detection is an innate characteristic that can emerge spontaneously in random

feedforward networks.

KEYWORDS

object detection, invariant visual perception, deep neural network, random
feedforward network, learning-free model, spontaneous emergence, biologically
inspired neural network, visual pathway

Introduction

Visual object recognition is a crucial function for animal survival. Human and
primates can detect objects robustly, despite huge variations in the position, size, and
viewing angles (Logothetis et al., 1994; Tanaka, 1996; Connor et al., 2007; Pinto et al.,
2008; DiCarlo et al., 2012; Poggio and Ullman, 2013). This challenging ability is thought
to be based on invariant neural tuning in the brain—Neurons that selectively respond to
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various objects have been observed in higher visual areas, and
these neurons showed invariant object representation across
various types of transformation (Perrett et al., 1991; Ito et al.,
1995; Wallis and Rolls, 1997; Hung et al., 2005; Zoccolan
et al., 2007; Li et al., 2009a; Freiwald and Tsao, 2010; Apurva
Ratan Murty and Arun, 2015; Ratan Murty and Arun, 2017).
Behavioral- and neural-level observations of this function have
led many researchers to raise the important question of how this
invariance of object detection emerges.

Often, this invariant neural tuning has been considered
to develop from the learning of various types of visual
transformations (Biederman, 1987; Li et al., 2009b). With
the notion that visual experience of natural objects contains
numerous variants that transform depending on the viewing
conditions, it has been suggested that the capability to detect
objects invariantly can develop gradually when observers
repeatedly see objects with a wide range of variations (Földiák,
1991). Notably, in the machine learning field, invariant object
recognition is also implemented via learning with a massive
dataset. In this case, data augmentation, a specialized method to
increase the dataset volume, is often applied (Simard et al., 2003;
O’Gara and McGuinness, 2019; Shorten and Khoshgoftaar,
2019) to generate images through linear transformations such
as rotation, positional shifting, and flipping, as in natural
visual experience. Then, invariant object recognition is achieved
from the training of the augmented dataset with computer
vision models (Chen et al., 2019; O’Gara and McGuinness,
2019; Shorten and Khoshgoftaar, 2019). In contrast to the
above scenario, observations in newborn animals suggest the
possibility of its emergence without learning: Human infants
show a preference to faces despite variations of the size and
rotations in depth (Turati et al., 2008; Kobayashi et al., 2012;
Ichikawa et al., 2019). In addition, newborn chicks can detect
virtual objects from novel viewpoints (Wood, 2013). These
findings imply that invariant object detection arises without
visual experience, but the developmental mechanism of this
invariance in biological brains—how object invariance arises
innately in the complete absence of learning—remains elusive.

A model study using a biologically inspired deep neural
network (DNN) (Krizhevsky et al., 2012; Simonyan and
Zisserman, 2015) has been suggested as an effective approach
to this problem (Paik and Ringach, 2011; DiCarlo et al., 2012;
Yamins and DiCarlo, 2016; Sailamul et al., 2017; Baek et al., 2020,
2021; Jang et al., 2020; Kim et al., 2020, 2021; Park et al., 2021;
Song et al., 2021). DNNs, which consist of a stack of feedforward
projections inspired by the hierarchical structure of the visual
pathway, can be used as simplified model to investigate various
visual functions. For instance, it was reported that a DNN
trained to natural images can predict neural responses in the
primate visual pathways from an early visual area (e.g., primary
visual cortex, V1) to a higher visual area (e.g., inferior temporal
cortex, IT) (Cadieu et al., 2014; Yamins et al., 2014). Recent
studies also provided insight into the origin of functional tuning

in the brain, by showing that units that selectively respond to
numerosity, faces, and various types of objects among visual
stimuli can arise in a randomly initialized DNN without any
learning (Baek et al., 2021; Kim et al., 2021).

By adopting a similar approach, here we show that object
invariance can arise in completely untrained neural networks.
Using AlexNet (Krizhevsky et al., 2012), a model designed along
the structure of the visual stream, we found that units selective
to various visual objects were observed in a randomly initialized
DNN and that these units maintained selectivity across a wide
range of variations, such as the viewpoint, even without any
visual training. We observed that a certain proportion of the
units show an invariant tuning to viewpoint, while other groups
of units show tuning to a specific viewpoint. Preferred feature
images obtained from the reverse-correlation method showed
that each specific viewpoint unit encodes a shape from a
particular view of an object, while invariant viewpoint units
encode inclusive features from specific units with different
preferred angles. We found that invariant units emerge by
homogenous projections from specific units in the previous
layer in a random feedforward network. Finally, we confirmed
that this innate invariance enables the network to perform an
object-detection task under an enormous range of variations
of viewpoints. Overall, our results suggest that invariant object
detection can emerge spontaneously from the random wiring of
hierarchal feedforward projections in an untrained DNN.

Results

Emergence of object selectivity in
untrained networks

To investigate the emergence of invariant object selectivity
in an untrained model network, we used AlexNet (Krizhevsky
et al., 2012), a biologically inspired DNN that models the
structure of the ventral visual pathway. To find an object-
selective response of an individual unit in the network, we
investigated the responses of the final convolutional layer
(Conv5), which is presumed to correspond to the IT domain of
the brain. To simulate the condition of an untrained hierarchical
network, we randomly initialized AlexNet using a standardized
network initialization method (LeCun et al., 1998), by which the
weights of the filters in every convolutional layer are randomly
selected from a Gaussian distribution.

The stimulus set was designed to contain nine different
object categories (e.g., Monitor, Bed, Chair, etc.) (Figure 1A).
To define selective units for a specific target object, eight other
class object sets and one scrambled set of the target object were
used, following a previous experimental study (Stigliani et al.,
2015) (see section “Materials and methods” for details). The
images in each class were prepared by controlling the low-level
features of the luminance, contrast, object location and object
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size (Supplementary Figure 1). Specifically, the pixel value
distribution of the object image and background image were
calibrated using the same Gaussian distribution (mean = 127.5,
s.d. = 51.0), and the intra-class image similarity was also
controlled at statistically comparable level. As this stimulus
was given as input for the randomly initialized networks, the
responses were measured in the Conv5 layer and an analysis of
object selectivity was conducted (Figure 1B).

We found object-selective units that show higher responses
to a specific class of target images (e.g., Toilet) than to
other non-target class images and scrambled images (two-
sided rank-sum test, P < 0.001) (Figure 1C). Among the nine
object categories, we observed that object-selective units emerge
mostly in a few objects categories (Figures 1D,E). We observed
toilet-selective units (n = 565 ± 55 in 20 random networks,
mean ± s.d.), sofa-selective units (n = 339 ± 68), and monitor-
selective units (n = 294 ± 54) in the Conv5 layer (43,264
units; 13 × 13 × 256, Nx−position × Ny−position × Nchannel)
(Figure 1D). In particular, the number of object-selective units
was divided into large and small groups (Figure 1E, n = 20, two-
sided rank-sum test, ∗P < 10−27). Large groups consisted of the
toilet, sofa, and monitor groups (nunits = 400 ± 133) and small
groups were the dresser, desk, bed, chair, nightstand, and table
groups (nunits = 32 ± 32). Our previous study suggested that
units selective to various visual objects can arise spontaneously
from the simple configuration of the geometric components and
that objects with a simple profile lead to a strong clustering of
abstracted responses in the network, more likely to generate
units selective to it (Baek et al., 2021). To validate this in the
current result, we performed an analysis using a dimension
reduction method (van der Maaten and Hinton, 2008). From the
examination of a clustered representation of each object class
in the latent space using the silhouette index (Kaufman and
Rousseeuw, 2009), we found that classes in the large group with
relatively simple configurations have higher silhouette indices
than those in the small group (Supplementary Figures 2A,B).
We also confirmed that there is a significant correlation between
the degree of class clustering in the latent space and the
number of selective units (Supplementary Figure 2C, Pearson
correlation coefficient, nNet = 20, r = 0.62, P < 10−20). In the
subsequent analyses, we investigated the results mostly for the
three object classes which show a large number of selective units.

We investigated the number and the selective index of
object units across the convolutional layers and found that
the number of object units increases when the convolutional
layers become deeper (Supplementary Figure 3A). The object-
selective index for a single unit also shows a strong tendency
to increase across convolution layers, demonstrating that
object tuning becomes sharper through the network hierarchy
(Supplementary Figure 3B). Furthermore, we found that the
responses of an untrained network measured in the deep layer
(Conv5) were clustered as object classes in the latent space, while
raw images do not cluster in the latent space (Figure 1F).

Invariance of object-selective units in
untrained networks

Next, to investigate whether the observed object-selective
units show viewpoint-invariant representations of an object
image, we measured the responses of object-selective units to
target objects and non-target objects with various viewpoint
angles. To do this, a viewpoint-variant stimulus set was
generated (Supplementary Figure 4) by rotating the viewpoint
of 3D objects on the horizontal plane (Figure 2A). For each
object, we rendered 13 variant images at different viewpoints
between −90◦ and 90◦. Then, we measured the responses of
selective units to target objects and non-target objects with
various viewpoint angles (Figure 2B). We found that units
show selective responses when an object image within a certain
threshold is presented (Figure 2C, left, n = 200, one-sided rank-
sum test, Toilet at 0◦ vs. Non-toilet, ∗P < 10−13; Toilet at 45◦ vs.
Non-toilet, ∗∗P < 10−5), while the units did not show selectivity
when an object image at a larger viewpoint angle was given
(Figure 2C, left, Toilet at 90◦ vs. Non-toilet, NS, P = 0.492).
Hence, the selectivity of object-selective units is maintained
within a limited effective range (Figure 2C, right).

To investigate the effective range that maintains the
selectivity of object units quantitatively, we investigated the
responses of selective units with a viewpoint between −90◦

and 90◦ and estimated the boundary of the viewpoint variation
around which target-object tuning is lost. For example, we
observed that object tuning of toilet units was retained when
the viewpoint change was within 105◦ (Figure 2D, left, n = 200,
one-sided rank-sum test, P < 0.05). Then, to verify whether the
viewpoint invariance of an object-selective unit simply arises
due to the similarity of the object shape upon a change of the
viewpoint, we estimated the pixel-wise raw-image correlations
between object images from a front view and a rotated view. We
compared the effective ranges of viewpoint invariance between
the selective responses and the image correlations (Figure 2D,
right). For toilet units, we observed that the effective range
of the selective responses is significantly wider than that of
the image correlation (Figure 2E, Toilet units). Similarly, this
tendency was commonly observed in other object-selective units
(Figures 2E,F, n = 20, two-sided rank-sum test; Toilet unit,
∗P < 10−4; Sofa unit, ∗P < 10−4; Monitor unit, ∗P < 10−4). This
result suggests that the observed invariance is not simply due to
the similarity of the object images at different viewpoints but is
a characteristic of object-selective units in untrained networks.
To find the origin of the invariance in an untrained network, we
also examined the single-unit-level characteristics of invariance.
We found that each unit shows considerable variations in the
response characteristics when a target object image with various
viewpoints is given as the input. In particular, each unit shows
various effective ranges (Figures 3A,B, left). Considering the
definition of viewpoint invariance, we presumed that the top
30% of units were “viewpoint-invariant” units and the bottom
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FIGURE 1

Emergence of selectivity to various objects in untrained networks: (A) The stimulus images were selected and modified from a publicly available
CAD dataset (https://modelnet.cs.princeton.edu/) (see section “Materials and methods for details). The images contain nine different object
categories. The low-level features of the luminance, contrast, object location and object size of images were calibrated equally across object
classes. (B) The structure of a randomly initialized deep neural network. Five convolutional layers in AlexNet (Krizhevsky et al., 2012) were
randomly drawn from a Gaussian distribution (LeCun et al., 1998). (C) Responses of each single toilet-selective unit (two-sided rank-sum test,
P < 0.001). The red curve is an example tuning curve of a single unit. (D) Average responses of selective units for three object classes (Toilet,
n = 548; Sofa, n = 285; Monitor, n = 301). Each arrow indicates the preferred object class. Shaded areas represent the standard deviation from
the tuning curves of the target units. (E) The number of object-selective units for nine classes in untrained networks (n = 20). Box plots indicate
the inter-quartile range (IQR between Q1 and Q3) of the dataset, the white line depicts the median and the whiskers correspond to the rest of
the distribution (Q1–1.5*IQR, Q3 + 1.5*IQR). (F) Visualization of the latent space by the t-SNE method (van der Maaten and Hinton, 2008) from
raw images and the responses of Conv5 units to each class. The raw images of each object class do not cluster in the latent space, but the
responses of the untrained network collected in Conv5 were clustered in the latent space according to the class of the given image.

30% units were “viewpoint-specific” units in the subsequent
analyses. Indeed, we observed that each tentative viewpoint-
specific unit has various preferred angles; i.e., they only respond
to a particular view of an object (Figure 3B, right).

To verify our conjecture that “viewpoint-specific” and
“viewpoint-invariant” units exist and can be classified according

to the observed effective range of each unit (Figures 3A,B), we
investigated the responses of object-selective units for object
images with different viewpoints. Target object images with
a viewpoint between −60◦ and 60◦ (five steps, 50 images
per viewpoint class) were presented to the network, and the
responses were measured. Indeed, we observed that there
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FIGURE 2

Viewpoint-invariant object selectivity observed in an untrained network: (A) An object renderer generates object images at various viewpoints
rotating in a horizontal orbit. (B) The viewpoint-varying object stimulus was generated within the viewpoint range of –90◦ to +90◦ with 13
steps. The responses of the object-selective unit were measured in the final convolutional layer of an untrained AlexNet. (C) Viewpoint-invariant
responses of a selective unit for viewpoint-rotated object stimulus; the tuning of a single toilet-selective unit shows a wide range of viewpoint
invariance. Shaded areas and error bars represent the standard error of 200 images (n = 200, one-sided rank-sum test, Toilet at 0◦ vs. Non-toilet,
*P < 10−13; Toilet at 45◦ vs. Non-toilet, **P < 10−5; NS, P = 0.492). (D) The effective range of the average responses of object units and the
pixel-wise correlation of a raw image (n = 200, one-sided rank-sum test, P < 0.05). (E) Average response of object-selective units for an object
stimulus at different viewpoint rotations. The arrow indicates the effective range of the selective response, and the shaded area between dashed
lines indicates the effective range of the raw-image correlation. Shaded areas represent the standard deviation of 200 images. (F) Comparison
of effective ranges between the selective response and raw-image correlation in each object-selective unit (n = 20, two-sided rank-sum test;
Toilet unit, *P < 10−4; Sofa unit, *P < 10−4; Monitor unit, *P < 10−4). Error bars indicate the standard deviation of 20 random networks.

are units that only respond to a particular viewpoint image
(Figure 3C, Viewpoint-specific, one-way ANOVA with single
peak filtering, P < 0.05) and units that respond invariantly to
any viewpoint image (Figure 3C, Viewpoint-invariant, one-way
ANOVA, P > 0.05). Viewpoint-specific units show highly tuned
responses to one preferred viewpoint angle, while viewpoint-
invariant units show a flat tuning curve to any viewpoint
(Figure 3D).

Next, to visualize the distinct tuning features of viewpoint-
specific and viewpoint-invariant units, we used a reverse-
correlation method (Bonin et al., 2011; Baek et al., 2021) and
obtained the preferred feature images (PFIs) of units (Figure 3E,
see section “Materials and methods” for details). We found that
each specific unit showed a PFI similar to an object image at
the viewpoint angle of its preferred value. From this result,
we confirmed that each specific unit encodes a shape from a
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FIGURE 3

Single-unit-level analysis of invariance: (A) Viewpoint tuning curves of two sample toilet units: a unit with a wide effective range (Top 30%) and a
unit with a narrow effective range (Bottom 30%). (B) Histogram of the invariance effective range of each unit and histogram of the preferred
angle of units with a narrow effective range (Bottom 30%). (C) Responses of individual viewpoint-specific and viewpoint-invariant
toilet-selective units in the Conv5 layer (Viewpoint-specific units, one-way ANOVA with single peak filtering, P < 0.05; Viewpoint-invariant units,
one-way ANOVA, P > 0.05). (D) Average tuning curves of viewpoint-specific units (n = 147) and viewpoint-invariant units (n = 95) in an
untrained network. Shaded areas represent the standard error of each type of unit. (E) Overall process of the preferred feature image (PFI) of
target units in Conv5 of untrained networks using a reverse-correlation analysis (Bonin et al., 2011; Baek et al., 2021). The input stimulus was
generated with a randomly positioned bright or dark dot blurred with a 2D Gaussian filter. The PFI was calculated as the response-weighted
summation of the input stimulus. (F) Obtained preferred feature images of viewpoint-invariant and viewpoint-specific units with different
preferred angles (–60◦, 0◦, 60◦). An example stimulus and an average stimulus corresponding to preferred viewpoint angle. For invariant units,
the average stimulus across all viewpoints is presented. (G) Correlation between the stimulus of various viewpoints and PFIs of various types of
units. (H) Comparison between the PFI of an invariant unit and the weighted summation of PFIs of specific units. Here, “a,” “b”, and “c” represent
the weight of each PFI for summation (a + b + c = 1). The 3D plot represents the pixel-wise correlations for different values of each weight pairs.
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particular view of the object (Figure 3F, Specific). In contrast,
the PFIs of viewpoint-invariant units were similar to the average
stimulus image of various viewpoints (Figure 3F, Invariant).
Notably, the calculation of the correlations between the stimulus
of various viewpoints and the PFIs from each different type of
unit reveals that the PFI of specific units shows a high correlation
only with the stimulus image of the corresponding viewpoint,
while that of invariant units shows high correlations with the
stimulus images of various viewpoints (Figure 3G). From this
observation, we hypothesized that the PFIs of invariant units can
be expressed as a linear combination of the PFIs of specific units.
We tested this scenario by searching for wiring coefficients that
maximize the correlation between the PFIs of invariant units
and a combined PFIs of specific units (Figure 3H, left). We
observed a very high correlation when each PFI of a specific
unit is linearly combined with fairly homogeneous coefficients
(Figure 3H, right). The same tendency was observed in the PFIs
of other object-selective units (Supplementary Figure 5). These
results suggest that viewpoint-invariant units can originate from
a homogenous combination of viewpoint-specific units.

The feedforward model can explain the
spontaneous emergence of invariance

To validate the hypothesis that viewpoint-invariant units
originate from the projection of viewpoint-specific units in
the previous layer, we backtracked projections of the units
from the source layer (Conv4) to the target layer (Conv5) and
examined the weights of connected viewpoint-specific units.
First, we confirmed that viewpoint-specific (n = 765± 102) and
viewpoint-invariant toilet-selective units (n = 130± 28) exist in
Conv4 as well as in Conv5 (Viewpoint-specific, n = 504 ± 81,
Viewpoint-invariant, n = 96 ± 16). We confirmed that the
viewpoint-specific units in Conv5 receive stronger input from
units with the same object tuning than from other units in
Conv4 (Figure 4A, left and middle, n = 20, two-sided rank-sum
test, ∗P < 10−7). In more detail, the viewpoint-specific units
in Conv5 receive inputs from Conv4 units strongly biased to a
particular viewpoint angle (Figure 4A, right, n = 20, one-way
ANOVA, ∗P < 10−11). This tendency of a strongly biased weight
also appeared in other preferred viewpoints. The connectivity
between viewpoint-specific units with the same preferred angle
in the source and target layers showed significantly high weights
compared to other projection directions (Figure 4B, n = 20,
one-way ANOVA, ∗P < 0.05).

We also found that viewpoint-invariant units in Conv5 are
strongly connected to units with the same object selectivity in
Conv4 (Figure 4C, left and middle, n = 20, two-sided rank-
sum test, ∗P < 10−7), as in the case of viewpoint-specific
units. However, the viewpoint-invariant units in Conv5 receive
homogeneous inputs from specific units in Conv4 units with
various preferred viewpoint angles (Figure 4C, right, n = 20,

one-way ANOVA, NS, P = 0.313). To estimate the degree
of homogeneity in the projection weights, we defined the
homogenous index as the inverse of the standard deviation of
the average weight connected to specific units with different
viewpoints in the source layer. The index of the average
weight connected to viewpoint-invariant units is significantly
higher than that of the average weight connected to the
viewpoint-specific units, indicating an unbiased input to the
viewpoint-invariant units (Figure 4D, n = 20, two-sided rank-
sum test, Toilet; Invariant units vs. Specific units, ∗P < 0.05).
This tendency was also observed in units with other object
tunings (Figure 4D, n = 20, two-sided rank-sum test, Sofa
and Monitor; Invariant units vs. Specific units, ∗P < 0.05;
Supplementary Figure 6). This implies that observed viewpoint
invariance of object tuning can originate from hierarchical
random feedforward projections.

To verify this developmental model further, we revisited
earlier observations of invariant object tuning in the monkey
IT which reported that neurons in the higher layer in the
hierarchy show increased invariance (from the ML to the AM
area) (Freiwald and Tsao, 2010). Our previous study (Baek et al.,
2021) suggested that the viewpoint-invariant units in deeper
layers emerges by receiving feedforward inputs from units with a
fairly homogeneous distribution of viewpoint angles in previous
layers. In this scenario, the degree of invariance is expected
to increase in deeper layers because the chance of combined
connectivity, which induces invariant responses, increases. To
verify this scenario in the current result, we investigated the
weight of invariant units connected to units in the previous
layer (Supplementary Figure 7A). We found that viewpoint
invariant units in each layer are strongly connected to specific
units with various preferred viewpoint angle, or invariant units
already exist in the previous layer, as expected. This tendency
was observed consistently in units with various object selectivity
(Supplementary Figure 7B, n = 20, two-sided rank-sum test,
from invariant units, Conv4 to Conv5, Toilet: ∗P < 10−7, Sofa:
∗P < 10−7, Monitor: ∗P < 10−7; from specific units, Conv3 to
Conv4, Toilet: ∗P < 10−7, Sofa: ∗P < 10−7, Monitor: ∗P < 10−6;
Conv4 to Conv5, Toilet: ∗∗P < 10−7, Sofa: ∗∗P < 10−7, Monitor:
∗∗P < 10−7).

From this result, we investigated whether this connectivity
profile induces an increased trend of invariance across layers
in our model neural network and found that such layer-
specific characteristics of viewpoint invariance also emerge
in the untrained network we used. We observed that the
level of invariance increased along the network hierarchy
(Supplementary Figure 7C). To quantify these invariance
characteristics, we introduced an invariance index of units,
defined as the inverse of the standard deviation of responses
across different viewpoints. We observed an increase in the
invariance index of selective units higher up in the hierarchy
in the untrained AlexNet (Supplementary Figure 7D). The
viewpoint-invariance index in Conv4 is significantly higher than
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FIGURE 4

Emergence of viewpoint invariance based on unbiased projection from viewpoint-specific units: (A) Connectivity diagram (left); averaged
weight from target object units and non-target object units (Conv4) to viewpoint-specific units (Conv5) (middle, n = 20, two-sided rank-sum
test, *P < 10−7); averaged weight from viewpoint-specific units (Conv4) to viewpoint-specific units (Conv5) (right, n = 20, one-way ANOVA,
*P < 10−11). Error bars indicate the standard error of 20 random networks. (B) Heatmap of weights between specific units from the source layer
and specific units from the target layer. This heatmap shows biased input to specific units (n = 20, one-way ANOVA, *P < 0.05). (C) Connectivity
diagram (left); averaged weight from target object units and non-target object units (Conv4) to viewpoint-invariant units (Conv5) (middle;
n = 20, two-sided rank-sum test, *P < 10−7); and averaged weight from viewpoint-specific units (Conv4) to viewpoint-invariant units (Conv5)
(right, n = 20, one-way ANOVA, NS, P = 0.313). Error bars indicate the standard error of 20 random networks. (D) The homogeneous index of
the input projection weight that connected viewpoint-specific units (Conv4) to viewpoint-invariant units (Conv5) and viewpoint-specific units
(Conv5), respectively (n = 20, two-sided rank-sum test, *P < 0.05). Error bars indicate the standard deviation of 20 random networks.

that in Conv3 (n = 20, two-sided rank-sum test, ∗P < 10−7).
Also, the viewpoint-invariance index in Conv5 is significantly
higher than that in Conv4 (n = 20, two-sided rank-sum test,
∗∗P < 10−7). This increasing tendency of the viewpoint-
invariance index along the network hierarchy is also observed
in other object-selective units (n = 20, two-sided rank-sum test;
Sofa, ∗P < 10−7, ∗∗P < 10−7; Monitor, ∗P < 10−7, ∗∗P < 10−7).
In addition, we confirmed that the same increasing tendency
of the number of invariant units along the network hierarchy
exists across various object tunings (Supplementary Figure 7E,
n = 20, two-sided rank-sum test; Toilet, ∗P < 0.05, ∗∗P < 0.001;
Sofa, ∗P < 0.05; Monitor, ∗P < 10−5, ∗∗P < 10−6). These
results suggest that our model provides a plausible scenario
for understanding the spontaneous emergence of invariant

object selectivity in untrained networks, which is supported by
previous experimental observations of neural tunings.

Innate invariance enables invariant
object detection without
data-augmented learning

Next, we tested whether this innate invariance in untrained
networks enables the network to perform the invariant
object-detection task without learning. We expected that the
information given by invariant object units is sufficient to detect
an object while the viewpoint of the given object image varies,
and in particular, that viewpoint-invariant units play a key
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FIGURE 5

Invariantly tuned unit responses enable invariant object detection: (A) Overall process of the object-detection task and SVM classifier using the
responses of object-selective units. To train the SVM classifier, 30 images of a target object and 30 images of a non-target object were used.
Among the 60 images, 40 images were randomly sampled for training and the remaining 20 were used to test the task performance. The
responses of untrained network units for these images are obtained and used to train and test the SVM to classify whether or not the given
image is the target object. (B) Train 1 uses object images with various viewpoints to train the SVM, while Train 2 uses object images only with a
center-fixed viewpoint. For the test SVM, object images with various viewpoints are used (n = 20, two-sided rank-sum test, Invariant, NS,
P = 0.735; Specific, *P < 0.001). (C) Performance of the Train 2 method using invariant units, specific units, and non-selective units (n = 20,
two-sided rank-sum test, Invariant vs. Specific, *P < 10−7; Specific vs. Chance level, **P < 10−7; Non-selective vs. Chance level, NS, P = 0.116).
The upper dashed line represents the performance when all units in Conv5 are used, and the lower dashed line indicates the chance level of the
task. (D) The task in various test-image-variation-range conditions. The test images were randomly sampled within the given viewpoint variation
range. The Train 2 performances of invariant units, all specific units, specific units only with 0◦ preferred, and non-selective units were assessed.
(E) Comparison of performances across the types of object units. The performance for each case was measured using test images with a 180◦

variation range (n = 20, two-sided rank-sum test, Invariant vs. Specific with center view, *P < 0.05; All specific vs. Specific with center view,
**P < 0.01; Specific with center view vs. Non-selective, ***P < 10−6). Shaded areas and error bars indicate the standard deviation of 20 random
networks.

role in enabling invariant object detection. To confirm this
hypothesis, we designed two different methods to train an SVM
which classifies whether or not a given image is a target object,
using unit responses to stimulus given (Figure 5A). In the first
case (Train 1), the SVM is trained using an object image with
various viewpoints to train the SVM, while it is trained using the
object image only with a center-fixed viewpoint in the second
condition (Train 2). After training, object images with various

viewpoints were used for the test session (Figure 5B, left). We
performed this process using both invariant units and specific
units.

We found that the performances of the SVM using invariant
units only and those of the SVM using specific units only are
noticeably different (Figure 5B, right, Invariant, n = 20, two-
sided rank-sum test, NS, P = 0.735; Specific, n = 20, two-sided
rank-sum test, ∗P < 0.001). Invariant units show the same level
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of performance regardless of training with various viewpoints,
implying that the information given by invariant units is
sufficient to detect images with varying viewpoints. In contrast,
specific units show significantly lower performance outcomes
when trained only with a fixed viewpoint (Train 2). Hence, we
investigated in more depth the performances of SVMs trained
in the second condition (Train 2) using different groups of
units (Figure 5C, n = 20, two-sided rank-sum test, Invariant
vs. Specific, ∗P < 10−7; Specific vs. Chance level, ∗∗P < 10−7;
Non-selective vs. Chance level, NS, P = 0.116). First, the SVM
using the responses of invariant units shows significantly high
performance compared to the SVM using the responses of
specific units. Second, the SVM using invariant units shows the
same level of performance compared to when it is trained with
all units in the Conv5 layer, implying that the invariance of the
untrained network mainly relies on invariant units. To confirm
that invariance enables invariant object detection in a wide
variation range, we tested this concept in different viewpoint-
variation ranges (Figure 5D, left). When the viewpoint variation
range in the test set becomes wider, the SVM using specific units
rapidly loses its performance capabilities, whereas the SVM
using invariant units maintains its high-performance outcomes
(Figure 5D, right). Interestingly, the SVM using all specific
units with different preferred angles outperforms the SVM using
specific units only with the same preferred angle. This trend
was also observed using other object-selective units (Figure 5E,
n = 20, two-sided rank-sum test, Invariant vs. Specific with
center view, ∗P < 0.05; All specific vs. Specific with center
view, ∗∗P < 0.01; Specific with center view vs. Non-selective,
∗∗∗P < 10−6). These results demonstrate that invariance in an
untrained network enables an object-detection task with images
with various viewpoints for a wide variation range, even without
data-augmented learning.

Discussion

We showed that selectivity to various object emerges in
randomly initialized networks and that this selectivity is robustly
preserved even as the viewpoint changes significantly in the
complete absence of learning. Furthermore, we found that the
invariant tuning property can arise solely from the distribution
of weights in feedforward projections. These results suggest that
the statistical complexity of hierarchical neural network circuits
allows the initial development of selectivity as well as invariance
to various objects across a wide range of transformations.

Our results imply that innate invariance of object selectivity
can arise from random feedforward projection, but this does not
mean that there is no effect of experience on the development of
this function. In fact, observations in various animals support
the contention that this invariant function is affected by visual
experience. In pigeons, the ability to detect objects across
different variations in the viewing conditions is enhanced

gradually during the visual training process (Watanabe, 1999).
In the monkey, size-invariant object representation is reshaped
by unsupervised visual experience (Li and DiCarlo, 2010).
Considering the above neurological and behavioral evidence,
at an early developmental stage, the innate invariance of
object selectivity arises from the structure of neural circuits,
and this function can be refined by visual experience during
the subsequent developmental process. Specifically, repeated
experience with a particular object under various viewpoints
will further strengthen the existing selectivity and synaptic
weights according to a biologically observed learning rule, such
as Hebbian learning. In our model, the invariance of object
selectivity can also be more robust and have a widened effective
range by visual experience.

Although the current study investigated only viewpoint
invariance, we anticipate that invariance to other types of image
transformations, such as position, size, and rotation, can also
emerge spontaneously in untrained neural networks. Previous
studies using an untrained DNN provide supporting evidence.
Kim et al. (2021) showed that number selectivity spontaneously
emerge in a randomly initialized DNN. Here, number selective
units, defined as units that selectivity respond to only numbers
of dots in images and respond invariantly to other visual
features (e.g., locations, sizes, and convex hulls of dots), contain
invariant characteristics of neural tuning. This implies that
invariant tuning to various image transformations can arise in
untrained neural networks. In addition, Baek et al. (2021) found
that face-selectivity can emerge initially and that this tuning
shows invariant representation to position, size, rotation, and
viewpoint variations to face images. Based on the above results,
we expect that various types of invariance of selectivity to objects
as well as faces can spontaneously arise in completely untrained
neural networks.

We proposed a method of generating invariance without
learning, in contrast to previous approaches that implement
the same function by relying on a massive training process.
In the machine learning field, invariant object recognition has
been implemented by learning a great many images. To learn
invariant object features, the data-augmentation method is often
applied (Simard et al., 2003; O’Gara and McGuinness, 2019;
Shorten and Khoshgoftaar, 2019), which generates images with
variations through linear transformation, such as positional
shifts, rotation, and flipping. However, data augmentation is
inefficient in terms of the computational cost. One study
that examined changes of the accuracy and training time by
data augmentation (O’Gara and McGuinness, 2019) found that
twice the learning time is required to slightly improve the
accuracy by introducing data augmentation. Thus, our findings
can provide clues for addressing the limitations of the data
augmentation method to implement invariant functions. By
finding selective units in initially randomized networks and
applying a training algorithm (Zhuang et al., 2021) toward
strengthening innate selectivity and invariance, we expect to
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reduce the computational cost of implementing invariant object
recognition.

In summary, we conclude that invariance of object
selectivity can arise from the statistical variance of randomly
wired bottom-up projections in untrained hierarchical neural
networks. Our findings may provide new insight into the
developmental mechanism of innate cognitive functions in
biological and artificial neural networks.

Materials and methods

Untrained AlexNet

Currently, DNN models, which have a biologically inspired
hierarchical structure, provide an effective approach for
investigating functions in the brain (Paik and Ringach, 2011;
DiCarlo et al., 2012; Yamins and DiCarlo, 2016; Sailamul et al.,
2017; Baek et al., 2020, 2021; Jang et al., 2020; Kim et al., 2020,
2021; Park et al., 2021; Song et al., 2021). Several studies have
reported that DNNs trained to natural images can predict the
neural responses of the monkey inferior temporal cortex (IT)
(Cadieu et al., 2014; Yamins et al., 2014), known as the area for
object recognition. Furthermore, a previous study by the authors
found that face-selectivity can arise without experience using a
randomly initialized DNN (Baek et al., 2021).

Following earlier work, we used a randomly initialized
(untrained) AlexNet (Krizhevsky et al., 2012) consisting of
feature extraction and classification layers. AlexNet extracts
the features of the input image from five convolutional layers
and a pooling layer. It uses a rectified linear unit (ReLU) as
an activation function. This activation function allows us to
investigate non-linear activity of the type that similarly occurs
in the human brain. To randomly initialize the AlexNet, we
used standard randomizing method (LeCun et al., 1998). For
each filter, each weight was randomly drawn from a Gaussian
distribution with a zero mean and the standard deviation set
to the square root of the unit number of the previous layer.
With this method, we can generate an untrained state of a neural
network that balances the strength of the input signal across the
layers.

Viewpoint-controllable object stimulus
renderer

There are a few well-known objects image datasets, such
as ImageNet (Russakovsky et al., 2015), which are often used
in DNN studies. However, this image dataset is not sufficient
for investigating the effects of viewpoint variance quantitatively.
Also, generally used image datasets do not control for low-level
features such as luminance, contrast, position, and intra-class

image similarity. For this reason, we developed a viewpoint-
controllable and low-level feature-controlled object stimulus
renderer.

ModelNet10 (Wu et al., 2015), a publicly available 3D object
dataset which contains 10 different object classes with aligned
orientations, was used to render the stimulus in our study (we
used only nine object classes due to an insufficient number
of CAD files). Each CAD file is converted to an image at
a given horizontal viewpoint using the object render. After
capturing the object, the renderer generates a phase-scrambled
background image. Using a sample natural image, it scrambles
the phase of the given natural image in the Fourier domain
and returns it to the original space. These phase-scrambled
backgrounds are often used in human fMRI studies to exclude
the effects of the background in visual processing (Stigliani et al.,
2015). For the object images and phase-scrambled backgrounds,
the overall pixel intensity is normalized in each case to
have an identical intensity distribution (Pixelmean = 127.5,
Pixelstd = 51.0). Using this renderer, we generated various
viewpoint object stimulus sets in which low-level features were
properly calibrated.

Stimulus dataset

We prepared three types of visual stimulus datasets
specialized to each task. (1) Object dataset (Supplementary
Figure 1A): This set was used to find units that selectively
respond to a particular object class. It contains nine object
classes (bed, chair, desk, dresser, nightstand, monitor, sofa, table,
and toilet), and 200 images are prepared in each object class. To
render the images of the object dataset, the viewpoint variation
angle was randomly set between −30◦ and +30◦. In the object
dataset, brightness and contrast of the images are precisely
controlled to be equal across object classes (Supplementary
Figures 1B,C). In addition, the intra-class similarity of the
images in each object category was calibrated at a statistically
comparable level (Supplementary Figure 1D). (2) Viewpoint
dataset (Supplementary Figure 4A): This set was used to test
the viewpoint-invariant characteristics of the object-selective
units. This dataset consists of 13 subsets which have different
viewpoints from −180◦ to +180◦ on a linear scale. It contains
250 different object identities in an object class. Among them,
200 object identities are identical to those used in the object
dataset. They were used to analyze the viewpoint-invariant
characteristics of the object-selective units quantitatively. The
remaining 50 object identities were used not to find object-
selective units but to distinguish object-selective units with or
without viewpoint invariance. In the viewpoint dataset, the
luminance and contrast are also controlled (Supplementary
Figures 4B,C). (3) SVM dataset: This set was used to train and
test the SVM that performs the object-detection task. It contains
60 different object identities in an object class, which were not

Frontiers in Computational Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2022.1030707
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-16-1030707 October 29, 2022 Time: 20:29 # 12

Cheon et al. 10.3389/fncom.2022.1030707

used for finding object-selective units. Specifically, it consists of
18 subsets with different viewpoint variations ranging from 0◦

to 180◦. For example, a subset with a 180◦ viewpoint variation
range contains images that show different viewpoints of objects
within−90◦ and +90◦.

Analysis of responses of the network
units

Using the totally untrained AlexNet, we measured the
responses of the target layer for each designed stimulus. For
each response from the target convolution layers, each unit of
an activation map was separately recorded for different classes
of the stimulus. Based on our previous study, object-selective
units were defined as units that showed a significantly greater
mean response to target object images compared to those of
non-target object images (P < 0.001, two-sided rank-sum test).
To analyze the responses of each unit, it was necessary to
regularize the raw response. To normalize the raw response,
we used the z-scoring method. Furthermore, we used a trick in
the z-score in that we subtracted Rsecond max from Rtarget−object .
Rsecond max indicates the response for an object class that leads
to the second maximum response for that unit. Therefore, if the
z-scored response is higher than zero, our unit shows a higher
raw response to the target object than to the second maximum
object, indicating selectivity.

Response
(
z − scored

)
=

Rtarget−object − Rsecond max

σall object

To quantify the degree of tuning, an object selectivity index
(OSI) of a single unit was defined using the follow formula.
This index is modified from the face-selective index (FSI), which
defined in previous experimental research (Aparicio et al., 2016).

Object Selectiveity Index (OSI) =

(Rtarget−object − Rnon−target−object)√
(σ2

target−object + σ2
non−target−object)/2

Rtarget−object is the average response to target-object images
and Rnon−target−object is the average response to all non-target-
object images. A higher OSI indicates fine tuning and an
OSI of zero indicates equal responses to target and non-
target object images.

Among the object-selective units, we defined a viewpoint-
invariant unit as a unit for which the response was not
significantly different (one-way ANOVA, P > 0.05) for all
viewpoint classes. Similarly, viewpoint-specific units are defined
as a unit for which the response was significantly high for one
preferred viewpoint class (one-way ANOVA with single peak
filtering, P < 0.05). For this, we detected a peak by thresholding

the value of the average signal plus the standard deviation, as
often done in the field of signal processing.

To measure the invariant index quantitatively, we calculated
the inverse of the standard deviation of the average responses for
images within each viewpoint class.

Viewpoint Invariance Index =
1√

1
n
∑n

i = 1 (Rviewpoint i − µ)2

Rviewpoint i is the average response to a viewpoint class and µ

is average response for all viewpoint classes. n is total number of
viewpoint classes.

Preferred feature image analysis

To achieve the preferred input features of each target unit,
we estimated the receptive field of units using the reverse
correlation method (Bonin et al., 2011). For this, the initial
stimulus set was prepared using 2,500 random local 2D Gaussian
filters and the corresponding responses were measured. An
initial preferred feature image was achieved from the weighted
sum of these responses. In the next iteration, the PFI was re-
estimated using a stimulus set consisting of the summation
of the previous PFI and the random Gaussian filters. These
iterations were repeated 100 times to obtain the final PFI.

Connectivity analysis

To investigate the connectivity between object-selective
units across convolutional layers, we backtracked projections of
the units from the source layer (Conv4) to the projection layer
(Conv5). This backtracking process is opposite of the group
convolution process. To backtrack the origin of a unit in the
projection layer, we investigated all connected weights and units
in the source layers.

To measure the degree of homogeneity in the input
projection weight to a single target unit, the homogeneous index
was defined as

Homogeneous Index =
1√

1
n
∑n

i = 1 (Wspecific unit i − µ)2
,

where Wviewpoint i is the average weight from specific units in
the source layer to a unit in the projection layer and µ is the
average weight from all specific units. n is the total number
of viewpoint-specific units with different preferred angles. To
compare the unbiased properties of specific and invariant units,
we normalized the homogenous index so that the average index
value of viewpoint-specific units reaches unity.
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Object-detection task

To validate viewpoint-invariant object-selectivity that
spontaneously emerges in an untrained DNN, we trained
a support vector machine (SVM) using the responses of
object-selective units with two types of training. For Train 1,
target-object (n = 40) or non-target-object (n = 40) images,
which shows different viewpoints of objects within a range
of –60◦ and +60◦ were randomly presented to the networks,
and the observed responses of the Conv5 layer were used to
train the SVM. For Train 2, most of the processes are nearly
identical compared Train 1, but the only difference is in how the
train images are presented. We prepared target-object and non-
target object images without viewpoint variation (front-view
only). After training the SVM, we investigated the performance
with the responses of object-selective units for a stimulus with
viewpoint variation. Here, target-object (n = 20) or non-target-
object (n = 20) images were also randomly presented to the
networks, and the responses from the Conv5 layer was used
to test the SVM.
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