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In the Outer Plexiform Layer of a retina, a cone pedicle provides synaptic

inputs for multiple cone bipolar cell (CBC) subtypes so that each subtype

formats a parallelized processing channel to filter visual features from the

environment. Due to the diversity of short-term depressions among cone-

CBC contacts, these channels have different temporal frequency tunings.

Here, we propose a theoretical model based on the hierarchy Linear-

Nonlinear-Synapse framework to link the synaptic depression and the

neural activities of the cone-CBC circuit. The model successfully captures

various frequency tunings of subtype-specialized channels and infers synaptic

depression recovery time constants inside circuits. Furthermore, the model

can predict frequency-tuning behaviors based on synaptic activities. With the

prediction of region-specialized UV cone parallel channels, we suggest the

acute zone in the zebrafish retina supports detecting light-off events at high

temporal frequencies.

KEYWORDS

visual system, retinal adaptation, synaptic depression, retinal circuit, computational
modeling

Introduction

Our brain processes visual signals in parallel so that we can fast perceive the
surrounding environment. This parallel processing begins at the first synaptic layer
of the retina, the Outer Plexiform Layer (OPL) (Wässle, 2004; Masland, 2012). Before
the OPL, visual signals are encoded by 3∼5 types of photoreceptors (cones and rods)
that convert specific wavelengths of light into the membrane potential of the cell body
(Baden et al., 2020). Following synaptic transmissions at the OPL, each cone bipolar cell
(CBC) subtype forms a specific processing channel that selectively responds to preferred
chromatic, spatial, and temporal features in visual signals (Euler et al., 2014; Ichinose
et al., 2014; Ichinose and Hellmer, 2016). Understanding how cone synapses distribute
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visual signals into different CBC channels is a necessary step in
the search for parallel processing in the visual neural system.

Ribbon-type synaptic terminals of cones use large
proteinaceous structures to hold vesicles behind release
sites so that synapses can preciously encode graded changes
in membrane potential into continuous glutamate release
(Lagnado and Schmitz, 2015; Moser et al., 2020). Although
synaptic ribbons accelerate the vesicle resupply rate, the large
number of vesicles required by high membrane potentials
(>−35 mV) cannot be met (Van Hook et al., 2014; Maxeiner
et al., 2016; Mesnard et al., 2022). Thus, a high membrane
potential might initially trigger a high release rate in cone
terminals, but the release rate decreases over time (Jackman
et al., 2009). To access the property of synaptic depression,
paired-pulse depression (PPD) experiments use the 1st pulse
with a high membrane potential to trigger a peak response
and deplete restored vesicles. Then, it uses a second pulse to
measure the depression degree and estimate the recovery time
constant from depression (Singer and Diamond, 2006; Vickers
et al., 2012; Grabner et al., 2016).

Several experiments have observed different depression
recovery time constants at postsynaptic cells among parallel
CBC channels (DeVries, 2000; DeVries et al., 2006; Grabner
et al., 2016). Both the synaptic structure and molecular
mechanisms contribute to such diversity. The cone contains
a unique structure, an invagination of the plasma membrane,
which forms unequal postsynaptic contacts with different
travel distances for neurotransmitters (Haverkamp et al.,
2000; Behrens et al., 2016). Recent studies have shown that
invagination contacts have relatively smaller recovery time
constants due to the saturation of postsynaptic receptors
(Grabner et al., 2016). Besides, the vesicle movement properties
and calcium dynamics at presynaptic terminals also vary among
cones (Grassmeyer and Thoreson, 2017; Schroeder et al., 2021).
Furthermore, the neurotransmitter receptors at CBC dendrites
differ even within subtypes with the same polarity (DeVries,
2000; Lindstrom et al., 2014). In conclusion, depressions at
the cone-CBC synapses are specialized for the CBC and cone
subtypes.

At the functional level, synaptic depression limits the
amplitude of CBC responses at high frequencies. Take off-type
CBCs as an example. A light-dark switch triggers a transient
response of off-type CBCs, mainly because cone terminals store
vesicles in the light and deplete vesicles in the dark (Jackman
et al., 2009; Maxeiner et al., 2016). The peak amplitude of
transient responses is evident at low frequencies (1 HZ). With
the increment of temporal frequency, the transient response
decreases (Figure 1A) [adapted from Grabner et al. (2016),
also observed in Ichinose and Hellmer (2016)]. Two subtypes
(cb2 and cb3a) share the same cone terminal but are distinctly
sensitive to temporal frequencies (Figure 1B). The experiment
suggests that such temporal frequency tunings are mainly
due to the limitation of synaptic depression (Grabner et al.,

2016). It indicates that synaptic contact with a larger recovery
time constant is more sensitive to high temporal frequencies.
However, the linkage between synaptic-level activities and
circuit-level functions is not quantified. It is unclear whether
we can infer the synaptic depression from temporal tuning
behaviors or predict the temporal tuning based on synaptic
plasticity.

This work quantifies the link between synaptic depressions
and temporal frequency tunings among type-specialized and
region-specialized retinal channels. We use the hierarchy
Linear-Nonlinear-Synapse (hLNS) framework, a flexible tool to
build the retinal circuit model with cell and synaptic blocks
(He et al., 2022). It has an inner variable to represent the
membrane voltage of neurons so that we can apply circuit-level
and synapse-level experiments on circuit models. Furthermore,
the hLNS framework has a kinetics block to infer the synaptic
depression in circuits and robustly estimate the depression
recovery time constant in related synapses. It has successfully
inferred the adaptive properties of retinal ribbon synapses
from various experimental recordings, including the vesicle
release traces and the postsynaptic recordings at both membrane
potential and light stimuli (He et al., 2022).

We first build a Linear-Nonlinear-Synapse (LNS) model for
the cone-CBC circuit. The LNS model uncovers experiment-
validated short-term depressions of cone-CBC synapses from
the CBC-type-specialized membrane potential responses under
different temporal frequencies (Grabner et al., 2016). Then, we
use it to capture synaptic activities among region-specialized
UV cones in the zebrafish retina (Schroeder et al., 2021).
Furthermore, we predict that the UV cone synapses in the acute
zone (AZ), the region with the highest visual acuity that helps
the zebrafish capture prey, produce transient responses at higher
frequencies (∼10 HZ). In contrast, responses in other regions
are disappeared. In conclusion, our works give a new theoretical
approach to understanding cone synapses’ role among parallel
retinal processing channels.

Results

The Linear Nonlinear Synapse model
captures type-specialized frequency
tunings

Previous electrophysiological experiments usually record
membrane voltages of retinal CBCs to illustrate the temporal
frequency tuning curve of processing channels but ignore
synaptic depressions inside the circuit (Burkhardt et al., 2007;
Ichinose et al., 2014; Ichinose and Hellmer, 2016). In this paper,
we found an experiment recording both membrane potentials
with varied temporal frequency and synaptic depressions in
CBCs with two subtypes (Grabner et al., 2016). Thus, we
can validate our theoretical model by capturing the temporal
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FIGURE 1

Temporal frequency tuning of cone bipolar cell channels. (A) The membrane voltage responses of retinal cone bipolar cells (CBCs) that adapt to
temporal frequencies in lights. (Left) The experimental protocol involves the neural circuit with a cone, a CBC, and the ribbon synapse contact
with two neurons. (Center and Right) Responses of the cb2 and the cb3a subtype in experimental recordings [black, adapted from Grabner et al.
(2016)] and simulated traces from Linear-Nonlinear (LN) models (green and seaweed). (B) The temporal frequency tuning with peak responses
relative to the resting potential of two subtypes. Linear-Nonlinear (LN) models’ responses (green and seaweed) are inconsistent with recordings
[black, adapted from Grabner et al. (2016)]. (C) The LN model represents two circuits’ neural computations. (Left) Schematic of the LN model for
two subtypes. (Center) Linear filters. (Right) Non-linearities. (D) The frequency tuning range of biological cells (black) and LN models (green and
seaweed).

frequency tuning of CBCs and testing whether it successfully
infers synaptic depressions. In this section, we first use the
LN model to highlight the importance of synaptic adaptations
among two CBC-type-specialized channels. We then show that
our theoretical models can capture different frequency tunings
among cone-CBC channels.

In a ground squirrel retina, two subtypes (cb2 and cb3a)
of off-type CBCs have different frequency tunings [Figure 1A,
adopted from Grabner et al. (2016)]. The interaction between
two channels forms critical retinal functions, typically direction
selection (Kim et al., 2014; Ray et al., 2018). At a low frequency
(1 Hz), the membrane potential of two CBCs fluctuates after
the light’s turn-on. It is a typical response of off-type retinal
cells and has also been observed in other experiments (Jackman
et al., 2009; Odermatt et al., 2012). Following the original
paper, we use the “peak response,” the max voltage amplitude
relative to the dark baseline level at the initial, as the feature of
neural responses at a given frequency. With the increment of
frequency, peak responses of two subtypes go their separate ways
and eventually disappear at a maximum frequency (333 Hz)
(Figure 1B). Such differences are evident in traces at the 4 Hz,
where cb2 cells keep their peak responses while cb3a cells lose
>50% peak responses. Ant at 16 Hz, cb2 cells still have ∼50%
responses while cb3a cells’ peak responses are weak. The task of

a computational model is to capture these peak responses in two
distinct subtypes.

The Linear-Nonlinear (LN) model uses two abstract
components, a linear temporal filter and a static non-linearity
(Baccus and Meister, 2002), to explain the differences between
the two subtypes (Figure 1C left). It found that the cb3a
cell has a slower temporal filter (∼300 ms) than the cb2 one
(∼100 ms). Moreover, the effects of the nonlinear transform
in the cb3a are minimal. In contrast, the cb2 cell needs a
non-linearity with a threshold to tune the fluctuation of the
membrane voltage. The LN model of both subtypes produces the
disappearance of peak responses at high frequencies. However,
the LN model cannot deftly capture exact peak responses at
middle temporal frequencies. For example, the LN model for
cb2 cells keeps high peak responses at 8 Hz, while natural
cells only remain at ∼70% peak responses. Moreover, the
LN model for cb3a cells loses the peak response at 8 Hz,
while the natural ones still have ∼20% peak responses. To
illustrate the frequency tunning features, we define a cell’s
tuning range that begins at the highest frequency without
decreasements and ends at the minor frequency when the
transient responses disappear. In both subtypes, the tuning
range of the LN model is smaller than the biological cell,
suggesting that the LN model cannot capture the sensitivity
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to temporal frequencies (Figure 1D). Therefore, the LN
model fails to capture CBC subtypes’ precise frequency
tunings.

In this work, we propose a LNS model that contains a
specific block to highlight the function of synapses in CBC
responses and improve biological interpretability (Figure 2A
left; He et al., 2022). In the LNS model, the light stimuli
are turned into the cone membrane potential by an LN
block and then transformed into the synaptic response
through a synaptic block. The synaptic block uses the
synapse’s Calcium Voltage-Current function to convert the
cone membrane voltage into the driving force to control a
kinetics system named the RAB module (Figure 2A left middle).
States and rate constants in the RAB module are defined
as

A Active α Response(A→ I)

I Inactive β Recovery(I→ A)

And the output of the synaptic block is the transfer rate from
the active state to the inactive state (see Section “Materials and
Methods”). Furthermore, a non-linearity follows the synaptic
block to produce the membrane potential of CBCs. Therefore,
inner variables before and after the synaptic block have
specialized biophysical meanings, the cone membrane voltage,
and EPSCs at CBC dendrite correspondingly (Figure 2A right).

Results show that the LNS model successfully captures
the temporal tunning of two cells (Figure 2B). Overall, the
LNS models’ decrease curves of peak responses perfectly
match the experimental recordings (Figure 2C). Compared
to the LN model, the peak response of the LNS model
for the cb2 subtype slightly decreases until 8 Hz. In
addition, the LNS model for the cb3a subtype keeps small
peaks around 8 and 16 Hz, matching the experimental
measurements. Altogether, the frequency tuning curves of
the LNS models for two subtypes are identical to biological
cells (Figure 2D). By comprising response features, we found
that the performance of the LNS model is much better than
the LN model (Figure 2E). In conclusion, the LNS model
successfully captures the temporal frequency tuning on CBC
channels.

The Linear-Nonlinear-Synapse model
successfully infers type-specific
synaptic depressions

The original experimental paper suggests that the ribbon
synapse contacting the cone pedicle and the CBC dendrite limits
peak responses at high frequencies (Grabner et al., 2016). In
detail, differences in depression recovery time constants among
synaptic contacts produce varied temporal tuning phenomena.
Notably, the LNS model highlights the contact between two

cells and inherits the theoretical analysis approach of synaptic
depressions from the hLNS framework (He et al., 2022).
Therefore, the synaptic depression properties inside LNS models
must match experimental measurements. In this section, we
first show the theoretical analysis results of synaptic depression
time constants of LNS models for two channels. Then, we
apply the PPD experiment to the LNS model to test whether
simulated synaptic behaviors are consistent with experimental
recordings.

First, the synaptic block infers cone-CBC contact’s recovery
time constant at the PPD protocol. Inside the synaptic block, the
RAB module with the active-inactive transfer system generates
adaptive responses of synapses. The intrinsic dynamics of the
synaptic block are determined by two transfer rate constants,
α and β, between active/inactive states (Figure 3A up). The
theoretical analysis yields two adaptive properties, the adaptive
time constant τr , indicating the speed of the synaptic adaptation
at given input, and the stable state A∞, indicating the steady-
state if the active state A mentioned in the Section “The
Linear Nonlinear Synapse model captures type-specialized
frequency tunings” [Figure 3A down, see Section “Materials
and Methods,” and the original theoretical analysis in He
et al. (2022)]. Precisely, τr at −70∼−60 mV indicates the
depression recovery time constant measured by the PPD
protocol, where the synaptic recovery occurs at hyperpolarized
voltages (Burrone and Lagnado, 2000; Rabl et al., 2006; Singer
and Diamond, 2006; Li et al., 2007; Grabner et al., 2016). Results
suggest the recovery time constant of the cone-cb2 synapse is
∼100 ms, less than the recovery time constant of the cone-cb3a
synapse (∼600 ms). Therefore, the recovery of the cone-cb2
synapse is faster than the cone-cb3a one, inferred by the LNS
model.

Next, we introduce the PPD protocol with experimental
recordings to validate short-term depressions inferred by
the LNS model. The PPD protocol from Grabner et al.
(2016) holds the cone at −70 mV at resting except for
pulses that raise the voltage to −30 mV (Figure 3C). We
directly apply the voltage trace as the input for the synaptic
block and record the outputs of the block analogous to
EPSCs. The PPD protocol triggers a fast recovery process
(τ = 105 ms) of the short-term depression in cone-cb2
synapses and relatively slow recovery (τ = 628 ms) in the
cone-cb3a synapse (Figure 3D). Both time constants from the
LNS models are within the range measured by experiments
(Figure 3E). Therefore, the LNS model successfully uncovers
the recovery time constant of the cone-CBC synapse from
the experimental recordings about temporal filtering on CBC
responses.

In conclusion, our LNS model found that the depression
recovery in the cone-cb3a synapse is slower than in the con3-
cb2 synapse, consistent with the experimental measurements
on two synapses.
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FIGURE 2

The Linear-Nonlinear-Synapse model captures temporal tunings of two cone bipolar cell (CBC) channels. (A) Schematic of the
Linear-Nonlinear-Synapse (LNS) model (Left) The LNS model has three stages to mimic the cone-CBC circuit [adapted from He et al. (2022)].
(Right) Three stages’ outputs have biological meanings. At the 4 Hz light trace, the LNS model yields the membrane potential of the cone, the
synaptic response of the cone-cb2 contact, and the membrane potential of the cb2 cell relative to the resting potential. (B) Simulated traces of
the LNS model (pink and red) overlaid with experimental recordings (black). (C) The temporal frequency tuning with peak responses of LNS
models are consistent with recordings. (D) The frequency tuning range of LNS models (pink and red) and LN models (green and seaweed).
(E) The performance of the LNS and LN models after optimization.
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FIGURE 3

The validation of synaptic depressions inside the Linear-Nonlinear-Synapse (LNS) model. (A) The synaptic block inside the LNS model provides a
theoretical inference of synaptic depressions, adapted from He et al. (2022). (B) Prosperities of synaptic adaptations inferred by the LNS model.
(Left) The adaptive time constant and (Right) stable state alongside the cone membrane potential. (C) Testing the synaptic depression inside the
LNS model with the Paired-Pulse Depression (PPD) experiment. (1) The experimental protocol that manipulates the input for the synaptic block,
Vcone, and records the outputs of the synaptic block, r. It mimics the experiment that changes the cone potential and records EPSCs at the CBC
dendrites. (2) A sample input trace for the PPD protocol. Two pluses (–30 mV and lasts 10 ms) are triggered in the presynaptic potential, gap by
a time interval 1t. (3 and 4) the outputs of the synaptic block in the LNS model for the cb2 subtype (3) and the cb3a subtype (4). (D) The
recovery process (the 2nd/1st pulse peak) in two LNS models. (E) Recovery time constants of two LNS models are consistent with reference
experimental recordings. In the cb2 LNS model, 105 ms vs. 125.7 ± 9.6 ms. In the cb3a LNS model, 628 ms vs. 698 ± 132 ms.

Inner dynamics inside the frequency
tuning of the cone bipolar cell
channels

In this section, we use the LNS model to understand how
synaptic depression contributes to temporal frequency tuning in
retinal channels. We first explain why the LNS model produces
a peak response at 1 Hz and depresses its peak responses at
high frequencies. Then, we found the link between the recovery
time constant and the inner dynamics of the synaptic block,
determining the CBC channel’s sensitivity to frequencies.

First, we explore how the LNS model produces a peak
response at 1 Hz, the baseline frequency. Notably, both the
temporal filter in the cell block and the synaptic bock affect
the frequency tuning curve. At 1 Hz, where the peak response
is maximum, the cone membrane potential goes to the most

hyperpolarized voltage (−70 mV) at the off step (Figure 4A
left). In the LNS model for the cb2 CBC, the change of
cone membrane potential from −70 to −45 mV produces
an adaptive process in the synaptic block, whose active state
A decreases to 26% in the light and increases to 54% in
the dark (Figure 4A center). Therefore, the on-off switch
triggers a peak response in the synaptic responses by raising
the cone membrane potential and losing restored active states
(Figure 4A, right). In conclusion, the trigger of a peak response
needs a hyperpolarized voltage in the cone membrane potential
and a time interval at the light that enables the RAB module to
adapt to its high steady-state of the active state A.

Next, we investigate the inner dynamics of the LNS
model of the cb2 CBC to find the underlying mechanisms
that limit peak responses. The hyperpolarized voltage majorly
varies the response at very high frequencies (>30 Hz), where
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FIGURE 4

Inner dynamics of the Linear-Nonlinear-Synapse (LNS) model. (A) The inner variables of the cb2 LNS model change with frequencies. (Left) The
cone membrane potential. (Center) The active state A inside the synaptic block. (Right) The synaptic responses (EPSCs). (B) The peak values of
inner variables of the cb2 LNS model. (C,D) Adaptive time constants change the recovery process of two circuits. From up to down, the cone
potential, the time constant, and the active state relative to the stable state in the cb2 LNS model (C) and the cb3a LNS model (D).
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the cone membrane potential stays around −45 mV due
to a larger time constant (40 ms) in the temporal filter
of the LN block. Therefore, the peak response disappears
at high frequencies (Figure 5B, black line). In contrast, at
middle frequencies (4∼16 Hz), the synaptic depression makes
significant contributions. These frequencies shorten the time
interval at lights so that the active state A (Figure 4B, yellow
line) cannot fully recover to its theoretical maximum values
A∞ (Figure 4B, yellow dash line). Therefore, the response
is depressed due to the depletion of the active state A. In
conclusion, the frequency temporal tunning at 1∼16 Hz is from
the synaptic depression between the cone and the CBC dendrite.

Following the above analysis, we grasp why the cb3a subtype
is more sensitive to the increase of the temporal frequency than
the cb2 subtype. As the cone-cb3a contact has a larger recovery
time constant, restoring to its steady-state requires a longer time.
Therefore, at 1 Hz, the time interval at dark is 500 ms, which
is insufficient for the cone-cb3a synapse to recover (Figure 4D,
left). Such depression is more significant at 2 Hz, where the
cone-cb3a synapse slightly recovered (Figure 4D, center) while
the cone-cb2 synapse almost fully recovered (Figure 4C, center).
Therefore, the slow recovery time constant in the cone-cb3a
synapse enable the cb3a CBC to change its peak response at
relatively low frequencies (2∼8 Hz) (Grabner et al., 2016).

Predict the temporal tunning of
location-specialized retinal channels

This work shows that the LNS model connects the short-
term depression in the cone-CBC synapse and the temporal
frequency tuning in the retinal visual channel. Here, we
investigate the temporal tuning from another side: if we infer
synaptic depressions from experimental datasets, can we predict
the differences in temporal frequency tunings among parallel
channels? In this section, through a set of response traces of
zebrafish cones, we theoretically infer synaptic depressions in
zebrafish UV cones depending on their locations in the eye
(Schroeder et al., 2021). Furthermore, we predict that cones in
the AZ support the transmission of visual signals at around
16 Hz. We suggest that highly specialized visual channels are the
outcome of acclimatizing to the living environment.

The retina tissue in a swimming zebrafish is divided into
heterogeneous regions receiving input signals (Figure 5A;
Zimmermann et al., 2018; Yoshimatsu et al., 2020). These
regions are categorized into two groups: the AZ, having peak
UV cone density to precept and prey UV-bright water-borne
microorganisms, and the Non-AZ regions, including the nasal
(N) and the dorsal (D) region, whose UV cone densities are
smaller, and cell responses are weaker (data lines in Figure 5D).
Notably, UV cones in the AZ and dorsal regions have transient
responses when the light turns off. We use the LNS model
for each region to capture location-specialized UV-cone release

traces (Figure 5B). Specifically, the outputs of the synaptic block
in the LNS model are the presynaptic vesicle releases instead of
EPSCs. Besides, to simulate the iGluSnFR recording protocol,
we added a kernel to convolve response traces (Figure 5C). We
used corresponding de-noised average responses of cones under
the light stimulus in three regions to train separate models.
Results show the high accuracy of fittings on all channels
(correlation >0.99, Figure 5D).

Next, the RAB module in models illustrated short-term
depressions in three channels (Figure 5E). Compared to non-
AZ regions, AZ cones have a marked higher steady-state value at
−70 mV (Figure 5F). It suggests AZ cones hold more releasable
vesicles, which is consistent with the volumetric electron
microscopy datasets in the original paper (Schroeder et al.,
2021). On the contrary, AZ cones have similar recovery time
constants at the hyperpolarized potential to dorsal cones. Based
on optimized LNS models, we predict the temporal frequency
tuning of location-specialized channels (Figure 6). We stimulate
cone models with frequency-varied light stimuli (Figure 6A)
and gather the relationship between peak responses (vesicle
release rates) and frequencies from 1 to 333 Hz (Figure 6B).
Results show that under the 16 Hz light stimulus, the cone in
the AZ holds high peaks above the resting response. In contrast,
peak responses in non-AZ ones are disappeared. It indicates that
UV cone synapses in the AZ can respond to light-off events
at relatively high frequencies. The support for event detections
might play a fatal role in accurately capturing microorganisms.

In conclusion, we found that UV cones support high-
frequency signals’ transmission, suggesting that visual channels
in this location help zebrafish encode fast-changing visual
features and live in an immediate and complicated environment.

Discussion

The cone pedicle in a vertebrate retina is supposed to
be the most complicated synapse in the central nervous
system (Haverkamp et al., 2000). A cone pedicle reliably
delivers signals into ∼2 horizontal cells and ∼8 bipolar cells,
using 20∼50 presynaptic active zones and ∼500 contacts with
downstream neurons (Wässle, 2004; Matthews and Fuchs,
2010). Unequal connections between the cone pedicle and
downstream neurons are first identified in DeVries (2000),
suggesting that different glutamate receptors produce distinct
signals on postsynaptic dendrites. With advanced techniques,
the diversity of molecules (Borghuis et al., 2014; Lindstrom et al.,
2014) and electrophysiological properties (DeVries et al., 2006;
Grabner et al., 2016) are identified among cone-CBC contacts,
supporting that the cone pedicle filters visual information into
location-specialized and subtype-specified channels. As a typical
sensory synapse (Fortune and Rose, 2001), the cone synapse
contributes to low-pass filterings, enabling each BC subtype to
exhibit a unique temporal profile in its membrane potentials
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FIGURE 5

Capturing synaptic adaptations in region-specialized zebrafish UV cone synapses. (A) In the retina of a swimming zebrafish, three regions
process distinct inputs from the visual field. AZ for Acute Zone, to detect and capture prey. D for dorsal, for the downsides. N for nasal, for the
outward. (B) The single region has its cone model to infer the dynamic adaptation in ribbon synapses. (C) Schematic of the
Linear-Nonlinear-Synapse (LNS) model for UV cone vesicle releasement. (D) Response curves of models and datasets in three regions. Dark
lines for experimental datasets [adapted from Schroeder et al. (2021)]. Colored lines for models in corresponding regions. (E,F) Inferred synaptic
adaptations in LNS models for the adaptive time constant (E) and the stable activate state (F).

FIGURE 6

The Linear-Nonlinear-Synapse (LNS) model predicts that UV cones in the acute zone support high-frequency signals. (A) The transient
responses of cones are depressed when stimulus frequency is up. The below trace is the stimulus timing for the 1 Hz trace (bar for 1 s).
Frequencies are at the right. (B) The relationship between transient responses and frequencies in three region-specialized cones. The peak
response is the gap between the maximum response in the last 1 s and the resting response before simulation. The Dash line marks responses at
16 Hz.
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and synaptic outputs, representing an elementary building block
in retinal circuits (Ichinose et al., 2014; Ichinose and Hellmer,
2016). In this work, we include the synaptic activity and the
neural responses into a theoretical framework, the LNS model,
that can reliably predict synaptic depressions from neural
temporal filtering (Figure 3; Grabner et al., 2016). Conversely, it
predicts biologically reasonable temporal filtering from synaptic
depressions (Figure 6). Therefore, our study has illustrated how
cone synapses form parallel channels that process temporal
visual signals from the environment.

Understanding synaptic activities from sensory neurons’
responses is a traditional issue in computational neuroscience.
The standard LN model uses two statistic components, a linear
spatial-temporal filter and a nonlinear transform, to abstract
the processing of retinal neurons. Due to their statistics, a
single LN model poorly captures the neural activities at varied
frequencies and contrasts (Baccus and Meister, 2002; Jarsky
et al., 2011). Several works appended a block behind an LN
model to grab the function of ribbon synapses and neural
responses at lights, such as (Baden et al., 2014; Schröder et al.,
2019; Schroeder et al., 2021). Among these works, the hLNS
framework is the only one that satisfies two requirements in this
work (He et al., 2022). First, it has an inner variable to simulate
the membrane voltage of neurons so we can apply the PPD
experiment to validate the synaptic depression inside the model.
In contrast, we cannot use models whose LN blocks convert
the lights into calcium signals (Ozuysal et al., 2018; Schröder
et al., 2019, 2020) and abstract models without synaptic blocks
(Ozuysal and Baccus, 2012; Heitman et al., 2016). Second,
the synaptic block is a general and abstract model as two
experimental recording datasets involve different underlying
mechanisms. However, most synaptic blocks in circuit models
mimicking the cascade of vesicle pools are particular for
vesicle-related mechanisms (Baden et al., 2014; Schroeder et al.,
2021). Consequently, these blocks are unsuitable for obtaining
mechanisms from postsynaptic dendrites in CBC channels and
calcium dynamics in cone channels. Instead, the RAB module in
the hLNS framework is an abstract block that successfully covers
mechanisms besides vesicle movements and has high robustness
for unseen stimuli that trigger synaptic adaptations. Therefore,
to capture the synaptic depression inside circuit responses, we
suggest the theoretical model needs to explicitly state the cone
membrane potential and use a synaptic block with a high ability
of generalization and robustness.

The frequency tuning in the LNS model is the outcome
of both the LN block, representing the function of the
phototransduction, and the RAB module, describing the role of
ribbon synapses (Figure 4). In general, phototransduction also
might contribute to the diversity of parallel processing channels.
Recent studies suggest that multiple subtypes of cones differ in
intrinsic phototransduction, so cone somas yield type-specific
frequency tunings (Baudin et al., 2019). In this work, we unify
the phototransduction process among parallel channels into an

identical LN block, as anatomical results suggest that the cb2
and the cb3a channels share the same cone subtypes in the
ground squirrel (DeVries et al., 2006) and the mouse retina
(Behrens et al., 2016). In the experimental recordings of subtype-
specialized CBC channels, synaptic depression results from
multiple mechanisms, the presynaptic vesicle depletion, the
unequal structures for invaginating/non-invaginating contacts,
and the kinetics of postsynaptic receptors (DeVries, 2000;
DeVries et al., 2006; Lindstrom et al., 2014; Behrens et al., 2016;
Grabner et al., 2016). In contrast, the experimental recordings
of region-specialized UV cone channels involve presynaptic
mechanisms, mainly vesicle movements and calcium-related
dynamics (Schroeder et al., 2021).

In the LNS model, neural activities outside the cone synapse
are replaced by linear filters and non-linearities. Therefore, the
LNS model ignores several fatal neural dynamics inside the
circuit that might contribute to the adaptive activities. One
crucial source of adaptations is phototransduction (Burns and
Baylor, 2001; Dunn et al., 2007), whose adaptive processes are
beyond a static LN model (Clark et al., 2013). Another is the
dynamics of ion channels alongside the surface of CBCs, such
as the calcium (Hu et al., 2009), sodium (Zenisek et al., 2001),
potassium (Hu and Pan, 2002), and HCN channels (Ivanova
and Mueller, 2006). These ion channels are supposed to form
transient responses of retinal bipolar cells (Baden et al., 2011;
Saszik and DeVries, 2012), which appear under pulses at the
PPD protocol (Figure 3). Therefore, a more biophysical model
combining both synapses and other mechanisms is necessary for
a deeper understanding of the role of synaptic depressions in
frequency tuning.

In the case of the zebrafish retina, the original experiment
(Schroeder et al., 2021) and related works (Zimmermann
et al., 2018; Yoshimatsu et al., 2020) have illustrated regional
differences between the AZ and other zones, including the
phototransduction, neural anatomy, synaptic calcium signal,
glutamate releases, and interactions with horizontal cells. In this
work, the LNS model suggests that UV cones in the AZ can
detect the light-off events at relatively high temporal frequencies
where ones in other regions failed to produce peak responses
(Figure 6). Although biological experiments haven’t directly
validated these predictions, they are consistent with previous
experimental and theoretical discoveries. In Yoshimatsu et al.
(2020), the glutamate imaging experiments found that only
synaptic releases of UV cones in the AZ responded strongly
to light-off events with the small time intervals, while their
temporal frequencies (the binary sequence at 12.8 Hz) are
smaller than the one (16 Hz) in our predictions (Figure 6B).
Furthermore, Schroeder et al. (2021) proposed a computational
model for UV cone channels and predicted that the UV cones
in the AZ region support the detection of light-on events.
Therefore, alongside the history, our predictions are coherent
with the principle that cells and circuits in the AZ region boost
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sense of UV vision so that a zebrafish can capture the presence
of prey.

In conclusion, our study provides a theoretical approach to
bridging the gap between synaptic depression and frequency
tuning of retinal parallel processing channels. We suppose
the inference of synaptic depressions from frequency tuning
curves and the prediction of frequency tuning from synaptic
depressions help us understand how the retina smartly processes
the vivid environment.

Materials and methods

This work used experimental recordings of ground squirrel
off-type bipolar cell EPSCs and vesicle release rates of zebrafish
UV cones. The experiment on bipolar cells involves two
subtypes and provides features of frequency tuning and synaptic
adaptations (Grabner et al., 2016). The cone experiment
only provides synaptic responses of three location-specialized
subtypes (Schroeder et al., 2021). In this section, we first
describe a baseline model, the Linear-Nonlinear (LN) model,
to highlight the adaptive activities in temporal tunings. Based
on this precursor, we describe the hierarchy Linear-Nonlinear-
Synapse (hLNS) framework and customized LNS models to
infer synaptic depressions from the experimental recordings of
the frequency tuning curve. Then, we introduce the stimulus
protocol and related recordings in experiments for measuring
frequency tuning of retinal neurons and synaptic adaptations
of cone-BC synapses. At last, we describe the details of model
implementation and optimization.

The linear nonlinear model

The Linear-Nonlinear (LN) model has been widely used to
capture activities and quantify the adaptive properties of retinal
cells (Baccus and Meister, 2002). It consists of a linear temporal
filter to mimic the receptive field of a retinal neuron and a static
non-linearity to tune the response amplitude. In this work, the
light stimuli x(t) are first convolved by the filter kernel LLN(t),
yielding the linear outputs l(t), as

l (t) =
T
∫
−∞

x(t)∗LLN(t − T)dt (1)

To capture the transient response of bipolar cells, we use the
photoreceptor impulse filter for LLN(t), as

LLN (t) =
−( t

γτr
)3

1+ t
γτr

∗ exp

(
−

(
t

γτd

)2
)
∗cos(

2πt
γφ
+ τphase)

(2)
where τr = 70 ms, τd = 70 ms, τphase = 100 ms, φ = -π/5 are fixed,
and γ > 0 is free for optimization (Baden et al., 2014; Schröder
et al., 2019). Next, the nonlinear function NLN(l) transforms the

linear outputs l(t) into the membrane potential of bipolar cells
VLN(t) relative to the resting potential, as

VLN (t) = NLN
(
l (t)

)
− NLN

(
l (x(t) = 0)

)
(3)

Here we use a sigmoidal non-linearity to capture the membrane
potential of bipolar cells:

NLN
(
l
)
=

m

1+ exp
(
−

l−half
slope

) (4)

where m, half , and slope are parameters for optimization.

The hierarchy
Linear-Nonlinear-Synapse framework

The core idea of the hLNS framework is that the neuron in
retinal circuits is modeled by a Linear-Nonlinear (LN) block,
and an adaptive block highlights the synapse between two
neurons (He et al., 2022). The LN block (Equations 1, 3) in the
hLNS framework yields the membrane potential Vcell

(
l(t)
)
. The

synaptic block uses a nonlinearity to transform the membrane
voltage Vcell into the driving force ucell to control the RAB
module, which is a two-state kinetics block (Figure 2A, and
Section “The Linear Nonlinear Synapse model captures type-
specialized frequency tunings”). The output of the RAB module
is the transient rate from the active state to the inactive state, as

r(ucell(t)) = α (ucell(t)) · A(t) · N (5)

where N is a free parameter to scale the amplitude of responses,
and A presents the current percentage of the active state.
The synaptic block has two significant adaptive properties, the
stable state of the active state A∞(Vcell) and the time constant
τr(Vcell). They are determined by two rate constants as

A∞ (Vcell) =
β (ucell (Vcell))

α (ucell (Vcell))+ β (ucell (Vcell))
(6)

τr (Vcell) =
1

α (ucell(Vcell))+ β(ucell(Vcell))
(7)

The Linear Nonlinear Synapse models

In this work, the cone-CBC circuit only involves two cells
and a single synapse. Our LNS model obtains an LN block and a
synaptic block to mimic vesicle releases or postsynaptic currents
of cone synapses (Figure 2A).

The LN block in the LNS model represents the
phototransduction process that converts light into the
membrane potential of the cone Vcone. To ensure the
reasonability, this work adapts formulations of the linear
filter and the non-linearity from experiments in cones
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(Baylor et al., 1974). Specifically, the linear filter LLN (t) is

LLNS (t) = exp(−
T − t
τL

) (8)

where τL = 40 ms, and the non-linearity is

Vcone (t) = −26.4∗
l4.92

l4.92 + 0.5424.92 − 45 (9)

Notably, these formulations and parameters are fixed
during optimization.

The synaptic block in the LNS model represents the synaptic
transmission or vesicle releasement of cone pedicles. The
nonlinear function that transforms the cone membrane voltage
Vcone into the driving force ucone is adapted from the I-V curve
of Cav1.4 (Grassmeyer and Thoreson, 2017), as

ucone(Vcone(t)) = 0.078∗
41− Vcone(t)

1+ exp
(
−39.3−Vcone(t)

4.88

) + uresting

(10)
where uresting = 0.05 to represent the resting calcium
concentration in cone terminals (Jackman et al., 2009), following
the original hLNS framework paper. Rate constants in the
kinetics module also follow the set of formulations for cone
synapses in the original paper (He et al., 2022), as

α (ucone) = (As∗uBs
cone + Cs)∗

kns
s + uns

cone

kns
s

(11)

β (ucone) =
(
As∗uBs

cone + Cs
)
∗

kns
s + uns

cone

uns
cone

(12)

where As, Bs, Cs, ks, and ns are free parameters in optimization.
To match the experimental measurements, two models for

experiments are different after the synaptic block. In the LNS
model for off-type bipolar cells, the outputs of the synapse block
are converted to the membrane potential by the third non-
linearity NBC, the same as Equation 4 (Figure 2A). In the LNS
model for cone synapses, we append a temporal filter (Equation
8 with τL = 60 ms) to mimic the recording method with the
glutamate sensor iGluSnFR (Figure 5C; Oesterle et al., 2020).

Experimental procedures

The stimulus protocol to measure the frequency tunning
on frequencies and related experimental recordings are from
Grabner et al. (2016). It manipulates the luminance level
x(t) between the dark state (x(t) = 0, labeled as “off”) and
the light state (x(t) = 1, labeled as “on”) with different
temporal frequencies, ranging from 1 to 333 Hz (Figure 1).
Initially, the cell (off-type bipolar cell or cone) rests in a dark
environment. In a single repeat, the neural activity (membrane
potential or synaptic outputs) is depressed in the light and
rebounds to a transient response when the light turns off.
The amplitude of peak responses relative to the dark baseline

decreases with the increment of the temporal frequency.
Here, we use the amplitudes as the features of frequency
tuning in a visual processing channel. In the experiment of
bipolar cells, the peak response is the maximum amplitude
of the last repeat, corrected by the resting potentials at dark
(Figure 1B). In the experiment of cones, the peak response is the
maximum vesicle release rate, corrected by the resting release
rate (Figure 6).

The experiment to access the synaptic adaptation follows
the original experiment in Grabner et al. (2016). The cone
membrane voltage is kept at the resting potential −70 mV
initially. Two paired pulses (−30 mV) trigger transient
responses of the cone-BC synapse with different time intervals
1t, ranging from 10 ms to 20 s (Figure 3C). The synaptic
adaptation depresses the response of the 2nd pulse if the time
interval is short. We use the ratio of two peak responses R to
indicate the recovery of the synapse from depression. To get
the recovery time course τ, pairs of (1t, R) are used to fit the
one-exponential function:

R(1t) = flu∗
(

1− exp
(
−

1t
τ

))
+ base (13)

where flu and base are free parameters in the curve fitting.

Model implementation and
optimization

We applied all models in the Python2/3 programming
environment. We use the “Nelder-Mead” method from the
scipy package to find the most suitable parameters (Gao and
Han, 2012). In the training stage for off-type bipolar cell
models, the model’s error is the sum of differences between
the feature of simulated responses and experimental recordings.
Specifically, features are peak amplitudes and the ratio of
peak to the base of membrane voltage at 1-Hz, to control
the total amplitude of the curve. In the training stage for
cone synapses, the model’s error is the sum of the absolute
error of the simulated trace after normalization. All models
are set to their stable state before the stimulation begins. The
simulation timestep is 1 ms in all cases, and all time constants
in models are larger than 1 ms to ensure the correctness of the
simulation.
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