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prediction: A survey
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College of Electronics and Information Communication Engineering, Shenzhen University,

Shenzhen, China

Humanmotion prediction based on 3D skeleton data is an active research topic

in computer vision and multimedia analysis, which involves many disciplines,

such as image processing, pattern recognition, and artificial intelligence. As an

e�ective representation of human motion, human 3D skeleton data is favored

by researchers because it provide resistant to light e�ects, scene changes, etc.

earlier studies on humanmotion prediction focusesmainly on RBG data-based

techniques. In recent years, researchers have proposed the fusion of human

skeleton data and depth learning methods for human motion prediction

and achieved good results. We first introduced human motion prediction

research background and significance in this survey. We then summarized the

latest deep learning-based techniques for predicting human motion in recent

years. Finally, a detailed paper review and future development discussion

are provided.
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1. Introduction

Humans can predict and make accurate short-term predictions about the world

around them based on previous events. In the field of virtual reality, human-computer

interaction is an important research direction. How to make the machine able to imitate

the human’s ability to make corresponding predictions on the actions of the human

body is a research hotspot in this field for computers. Predicting human motion is vital

for timely human-robot handover, obstacle avoidance, and person tracking. Although

a simple physical phenomenon. For example, the motion of inanimate objects can be

predicted by the known laws of physics. But there is no simple equation governing

a person’s conscious movement. It is challenging to solve everyday problems, such as

predicting what actions an individual will take next in the physical environment. It

is due to the fact that the state of various parts of the human body can be in many

possible permutations and combinations. But one can still predict actions in the next

life by decomposing them into distinct categories or states and inferring their dynamic

consequences to help computers perceive the movement trend of the human body in

advance. Human behavior modeling is a classic problem. The human body is modeled

by obtaining certain information to achieve the purpose of human behavior prediction.

This kind of research is a relatively new research point. Today, deep learning is gradually

being applied to a wider range of fields. The machine’s understanding of the environment
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can be more in-depth and proficient in various ways, such

as human motion prediction, have several applications as

described in Figure 1. Machines have not yet been able to

understand and predict human movements as well as humans.

There is much room for progress in studying human movement

prediction in such an environment. At the same time, existing

research uses BNN to analyze the action sequence and generate

subsequent action frames, such as the ERD model (Fragkiadaki

et al., 2015a) model, S-RNN (Jain et al., 2016) model, and so on.

However, in these studies, the length comparison of the action

sequences generated does not exceed one second, and some

actions shake correspondingly. Hence, it is impossible to make

good predictions for long-term actions. Therefore, designing

a neural network model more aligned with human kinematics

to predict a complete set of actions is of great significance

in human-computer interaction, robot choreography,

and action recognition.

Existing methods for predicting human actions are mainly

divided into video methods and human skeleton motion data

methods. Existing video generation methods aim to accomplish

two tasks; the first is video prediction (Oh et al., 2015),

that is, the model needs to learn the motion pattern from

a series of observation frames and predict the next frame.

These methods are usually based on recurrent neural networks.

Recurrent Neural Networks (RNNs) have an excellent ability

to model continuous data; they usually only achieve good

results in short-term predictions that are predictable when the

thinking is simple and quiet. However, long-term prediction

results, such as blurring and object deformation, generally

suffer from low image quality. The second method uses human

skeleton information directly for human action prediction.

These methods use generative neural network models to

generate spatiotemporal maps or variational autoencoders

(Kingma and Welling, 2013) to predict dense trajectories of

pixels. However, suppose the generated sequence frame does

not have certain geometric constraints. In that case, the objects

in the scene are very arbitrary and move irregularly, which

will cause the generated objects to be very different from the

originally required targets. A common limitation of both types

of methods is that the joint structures of moving objects in the

sequence frames of the previous part are not well modeled in

generative models. Since previous generative methods only take

the entire appearance as input, it is difficult for the model to

understand the structural relationship between joints without

supervision. As a result, a large deformation occurs during

the movement process (Pan and Liu, 2008; Pan et al., 2013;

Pan, 2015), and the quality of the generated video is far from

satisfactory. The use of human skeleton motion data can well

extract motion information. By directly learning the motion

information of bones, unnecessary reconstruction of human

body shape and video background can be effectively avoided,

and limited information can be effectively used to achieve

accurate learning of the purpose of human action.

3D skeleton-based HMP aims to forecasts future poses

given a history of their previous motions based on human

skeletons. This research has been applied in many practical

application scenarios such as human-computer interaction

(Koppula and Saxena, 2013, 2015), pedestrian tracking, (Alahi

et al., 2016; Bhattacharyya et al., 2018), autonomous driving

(Huang and Kitani, 2014; Chen et al., 2021), and animal

tracking (Fragkiadaki et al., 2015a). Human motion animation

(Hodgins, 1998), motion analysis and biomechanical analysis

in sports have grown alongside computational and video

graphic technology. Gross movement analysis, cellular and

molecular elements of healing in relation to stress and

strain, and cardiovascular or respiratory system mechanics

are biomechanical applications in human movement (Zheng

and Barrentine, 2000). The goal of virtual reality research

is to build a simulated virtual environment so users can

interact with items to obtain a “immersive” effect, like the

actual world (Zhao et al., 2019). Animations from human

body motion using direct and inverse kinematics (Sanna

et al., 2015). Biomechanical analysis of gait data (Abu-Faraj

et al., 2015) includes ground response forces, plantar pressures,

kinematics, kinetics, dynamic electromyography, and energy

consumption. Over the past several decades, traditional works

employed Gaussian processes (Wang, 2005), Markov models

(Taylor et al., 2006; Lehrmann et al., 2014a,b), linear dynamic

systems (Vladimir et al., 2000), and Boltzmann Machine

(Schlkopf et al., 2007) to capture human motion dependencies.

In recent years, with the continuous development of deep

learning methods in most existing computer vision tasks,

deep learning-based methods show surprising performance

in HMP. Deep learning structure can capture hierarchical

dependencies of human motion for impressive prediction

performance. We are showing in Figure 2. The overall

foundation for deep learning methods for skeleton-based

motion prediction.

In the following, we will introduce the two

main deep learning-based methods: (1) RNN-

based methods; (2) GCN-based methods, which

is the main methods for skeleton-based motion

prediction recently.

2. Deep learning-based HMP with 3D
skeleton

2.1. RNN-based methods

RNN is a continuously rented neural network used

in neural network model in which neural activations are

processed when connections are made. They are looped

through the network test success and generated motion

prediction. A predictive RNN is applied by predicting

visually localized numbers into a vocabulary of visual
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FIGURE 1

HMP applications: (a) Surveillance cameras. (b) Human-Robot Interaction. (c) Home entertainment.

words. And the distribution of the next word in the

order of the visual vocabulary given the visual at a

specific position. Therefore, RNN can also be used in the

study of human action prediction. Due to the sequential

characteristics of human motion, Recurrent Neural Networks

(RNNs)-based methods.

Recurrent neural networks (RNNs), which can handle

sequential data with variable lengths, have recently been

developed (Graves et al., 2013; Sutskever et al., 2014), Having

demonstrated their proficiency in language modeling (Mikolov

et al., 2011), video assessment (Li et al., 2016; Ma et al., 2016;

Ni et al., 2016), and motion prediction based on RGB (Wu

et al., 2015), At the one hand, the use of these networks

in motion prediction using skeletons has also demonstrated

promising but relatively limiting results (Shahroudy et al.,

2016; Li et al., 2018). In independently recurrent neural

network (IndRNN; Li et al., 2018), they regulated gradient

back-propagation over time to prevent gradient vanishing

and exploding. The independence and interlayer connections

of neurons in the same layer account for their behavior.

Intra-frame joint spatial representation and inter-frame time

representation are significant aspects of this difficulty. Because

they only considered temporal information and neglected

spatial joint interdependence. Liu et al. (2018) suggested a

network with spatiotemporal LSTM (STLSTM) adding another

trust gate to simulate temporal and spatial dynamics and

dependencies. The kinematic link between body joints was

used to create a traversal technique, which was then used

to better model spatial interdependence. The trust gate can

determine when and how to update, delete, or remember

internal memory’s long-term context. The offered methods

model only long-term dependence, not short-term or medium-

term, and depend on relative coordinate systems that depend

on specific joints (Defferrard et al., 2016). Employing the

Gram Schmidt method, they converted a human skeleton into

the brain’s cognitive coordinate system. Instead of using the

raw skeletons, they collected prominent motion elements from

the transformed skeletons.We are comparing deep network

framework techniques in Table 1.

FIGURE 2

The overall foundation for deep learning methods for

skeleton-based motion prediction.

2.2. GCN-based methods

However, the motion prediction performance of these

RNNs-based methods suffer from training difficulty (Pascanu

et al., 2013) and error accumulation (Fragkiadaki et al.,

2015b; Martinez et al., 2017), leading to unsatisfactory motion

predictions, especially in long-term prediction. To solve these

problems in RNNs-based methods, some researchers tried

to make use of Graph Convolution Networks (GCNs)-based

methods. In Mao et al. (2019), a human stance was represented

as a graph structure that connected every joint that was close by.

In addition, they suggested a new GCN that would connect the

graph automatically rather than manually. Next, a novel graph

network was suggested for use as a generator in GANs (Cui et al.,

2020). Additionally, a dynamic learning graph was employed,

but it wasn’t the same as a standard one because it can connect

joints that are geometrically separated but only explicitly learn

pairings of natural joints. Li et al. (2020) created a unique

GCN called DMGNN that included a dynamic multi-scale graph

to describe the anatomy of the human skeleton. The internal

relationships of the human body can be completely modeled

using the multi-scale graph. Additionally, it can be applied to

dynamic learning across network levels. A proposed graph-

based gate recurrent unit was used for this assignment to create

future poses. A unique multi-task graph convolutional network

(MT-GCN) with a shared context encoder was also proposed by

Cui and Sun (2021) to produce high-fidelity HMPs from shared
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TABLE 1 The comparison of deep network framework methods.

RNN-based methods Skeleton sequences, which may be thought of as a time series of joint coordinate locations for RNN-based algorithms can be processed as time

series data because of the RNN’s particular structure. Despite producing good results, RNN-based algorithms are unable to effectively learn the

spatial relationships between skeletal joints.

GCN-based methods The joints serve as the corner points and the edges of the skeleton’s naturally occurring graph, which is arranged in a non-Euclidean space.

The skeleton data’s graph structure cannot be utilized by the prior approaches, and they are difficult to apply to skeletons with arbitrary forms.

A GCN-based model is created on top of a series of skeleton graphs, allowing it to fully investigate the discriminative data in both the spatial

and temporal domains.

context encoder (SCE). The faulty pose was repaired using both

graph structure and a temporal self-attention technique that

chose the most pertinent information from the entire sequence.

The correlation of body parts was also captured in Zhou et al.

(2021) using a similar multi-scaled approach.

3. Datasets

In many areas of algorithm development, datasets are

essential. They typically serve a key role in facilitating network

learning and measuring performance as a common ground. In

addition, the field has becomemore significant and complex due

to the increased quality of datasets. Recent years have seen a

significant increase in interest in deep learning, which is useful

in part because to the enormous amount of data. As a result, new

datasets are being produced to solve the problems. To enhance

learning, only a few human motion prediction datasets are used.

There are just a handful datasets used for HMP to improve

learning. we are showing over dataset comparison in Table 2.

3.1. Human 3.6M (H36M)

The H36M public dataset captures information on human

motion, including five female and six male 3D human poses and

related photos. It includes all 3.6 million data points gathered

from 4 separate Vicon motion capture system views. These

postures feature 15 difficult action situations, such as giving

directions, conversing, eating, greeting, making a phone call,

posing, shopping, waiting, smoking, taking pictures, walking

together, and running with a dog. Asymmetries such as strolling

with a hand in a pocket or carrying a bag on the shoulder are also

present in each scenario. Thirty-two skeleton joints make up an

entire skeleton, and pose parameterizations comprise skeleton

representations of joint positions and joint angles. Researchers

always divided these poses into seven distinct individuals (S1,

S5, S6, S7, S8, S11), removed duplicate points from the human

stance, and retrained 25 points in these studies. Using down-

sampling, 25 frames per second is set (FPS). Datasets are openly

accessible at https://vision.imar.ro/human3.6m.

3.2. Mocap CMU

Twelve infrared cameras at Carnegie Mellon University

captured data made available to the public in 2003. The human

body has markers affixed on it. There are 144 different subjects

in this dataset, including window washing, basketball, traffic

control, jumping, jogging, and soccer. There are 38 joints in

the parameterized human posture. In the experiments, these

samples are frequently split into training and test sets. The

segments are down-sampled in order to obtain the 25 fps frame

rate. This data set has been made available to the public at

https://mocap.cs.cmu.edu/.

3.3. 3DPW

The 3DPW dataset is mainly given for situations in nature.

It is a sizable dataset that is openly available and contains

more than 51,000 indoor and outdoor postures in addition

to 60 film clips. Using an IMU or a hand-held smartphone

camera, this dataset was recorded. The IMU is typically used

by two actors to carry out a variety of actions, including

shopping, exercising, hugging, conversing, taking selfies, riding

the bus, playing the guitar, and relaxation. There was a total

of seven actors wearing 18 different outfits. There are 17 joints

used in each position. It is 30 frames per second. Dataset are

openly accessible.

4. Discussion and future work

Skeleton-based motion prediction has grown in popularity

and useful as a computer vision task during the past few years.

Deep learning techniques and skeleton data are strong and

useful tools in this field that significantly advance research. This

advancement is credited with the expressiveness of skeleton data,

model’s adaptability, and training method’s high effectiveness.

The following are the significant contributions: (1) we provide

a thorough analysis and summary of current best practices for

3D skeleton motion prediction using deep learning approaches,

including the most recent algorithms used in RNN-based and

GCN-based methods. Then, using deep learning and data from
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TABLE 2 Dataset comparison.

Dataset Sensors Number of joints FPS Location Year

H36M 10 Vicon T40 32 25 Indoor 2014

CMU 12 infrared cameras 38 25 Indoor 2003

3DPW A Hand-held Smartphone Camera 17 30 Outdoor 2018

3D skeletons, we describe a general framework for motion

prediction techniques; (2) To the best of our knowledge, this is

the first work that combines the analysis of the GCN method’s

multiple evolutionary approaches with the research based on

those methods. One of the difficulties in skeleton-based human

motion prediction is the wide range of perspectives in the

recorded human action data. The two causes of this issue

are the camera placement and how people move. Additional

issues include making the most of joint interdependence,

optimizing the spatial-temporal graph, and effectively utilizing

bone information. Researchers are still dealing with these

difficulties, and they will need to be researched and resolved

in the future. Future research areas worth looking at include

occlusion and self-occlusion, lightweight models, applications

on mobile devices, and multi-task learning. Furthermore,

another intriguing area worth investigating is the interpretability

of motion prediction models. We weigh the benefits and

drawbacks of the various techniques. Several potential study

routes are discussed in light of the survey’s findings, highlighting

the wide range of opportunities in the subject despite its current

level of development. Future research should focus more on

significant and complex datasets.
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