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Introduction: In recent years, machines powered by deep learning have

achieved near-human levels of performance in speech recognition. The fields

of artificial intelligence and cognitive neuroscience have finally reached a

similar level of performance, despite their huge di�erences in implementation,

and so deep learning models can—in principle—serve as candidates for

mechanistic models of the human auditory system.

Methods: Utilizing high-performance automatic speech recognition systems,

and advanced non-invasive human neuroimaging technology such as

magnetoencephalography and multivariate pattern-information analysis, the

current study aimed to relate machine-learned representations of speech to

recorded human brain representations of the same speech.

Results: In one direction, we found a quasi-hierarchical functional

organization in human auditory cortex qualitatively matched with the hidden

layers of deep artificial neural networks trained as part of an automatic speech

recognizer. In the reverse direction, we modified the hidden layer organization

of the artificial neural network based on neural activation patterns in human

brains. The result was a substantial improvement in word recognition accuracy

and learned speech representations.

Discussion: We have demonstrated that artificial and brain neural networks

can be mutually informative in the domain of speech recognition.

KEYWORDS

automatic speech recognition, deep neural network, representational similarity

analysis, auditory cortex, speech recognition
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1. Introduction

Speech comprehension—the ability to accurately identify

words and meaning in a continuous auditory stream—is a

cornerstone of the human communicative faculty. Nonetheless,

there is still limited understanding of the neurocomputational

representations and processes in the human brain which

underpin it. In this paper we approach a fundamental

component of speech comprehension—namely the recognition

of word identities from the sound of speech— in reverse:

to find artificial systems which can accomplish the task, and

use them to model and probe the brain’s solution. In the

domain of engineering, automatic speech recognition (ASR)

systems are designed to identify words from recorded speech

audio. In this way, ASR systems provide a computationally

explicit account of how speech recognition can be achieved,

so correspondences between the human and machine systems

are of particular interest; specifically, the question of whether

the learned representations in an ASR can be linked to those

found in human brains. Modern advances in high-resolution

neuroimaging and multivariate pattern-information analysis

have made this investigation feasible.

In the present research, we took a bidirectional approach,

relating machine-learned representations of speech to recorded

brain representations of the same speech. First, we used the

representations learned by an ASR system with deep neural

network (DNN) acoustic models (Hinton et al., 2012) to

probe the representations of heard speech in the brains of

human participants undergoing continuous brain imaging. This

provided a mechanistic model of speech recognition, and

evidence of it matching responses in human auditory cortex.

Then, in the opposite direction, we used the architectural

patterns of neural activation we found in the brains to refine

the DNN architecture and demonstrated that this improves ASR

performance. This bidirectional approach was made possible

by recently developed multivariate pattern analysis methods

capable of comparing learned speech representations in living

brain tissue and computational models.

ASR encompasses a family of computationally specified

processes which perform the task of converting recorded speech

sounds to the underlying word identities. Modern ASR systems

employing DNN acoustic and language models now approach

human levels of word recognition accuracy on specific tasks.

For instance, regarding English, the word error rate (WER) of

transcribing careful reading speech with no background noise

can be lower than 2% (Luscher et al., 2019; Park et al., 2019), and

the WER of transcribing spontaneous conversational telephone

speech can be lower than 6% (Saon et al., 2017; Xiong et al.,

2018).

For the present study, our ASR system was constructed

based on a set of hidden Markov models (HMMs). For each,

a designated context-dependent phonetic unit handled the

transitions between the hidden states. A DNN model was used

to provide the observation probability of a speech feature vector

given each HMM state. This framework is often called a “hybrid

system” in the ASR literature (Bourlard and Morgan, 1993;

Hinton et al., 2012). The Hidden Markov Model Toolkit (HTK:

Young et al., 2015; Zhang and Woodland, 2015a) represents a

historical state-of-the-art ASR system, and is still among the

most widely used. We used HTK to train the DNN-HMMs and

construct the overall ASR pipeline of audio to text. A version of

this model comprised a key part of the first-place winner of the

multi-genre broadcast (MGB) challenge of the IEEE Automatic

Speech Recognition and Understanding Workshop 2015 (Bell

et al., 2015;Woodland et al., 2015). In this paper, all ASR systems

were built in HTK using 200 h of training data from the MGB

challenge. We designed the experimental setup carefully to use

only British English speech and reduce the channel difference

caused by different recording devices.

Of particular importance for the present study is the

inclusion of a low-dimensional bottleneck layer in the DNN

structure of our initial model. Each of the first five hidden layers

contains 1,000 nodes, while the sixth hidden layer has just 26

nodes. Our choice to include six hidden layers in the DNN is

not arbitrary. The performance of different DNN structures in

the MGB challenge has previously been studied. Empirically,

having a fewer hidden layers result in worse WERs, while more

hidden layers result in unstable training performance due to

the increased difficulty when optimizing deeper models. Similar

structures were often adopted on different datasets and by

different groups (e.g., Karafiát et al., 2013; Doddipatla et al.,

2014; Yu et al., 2014; Liu et al., 2015). Since the layers in

our DNN are feed-forward and fully connected, each node

in each layer is connected only with the nodes from its

immediately preceding layer, and as such the acoustic feature

representations of the input speech are forced to pass through

each layer in turn to derive the final output probabilities of

the context-dependent phonetic units. The bottleneck layer

representations are highly compressed and discriminative, and

are therefore widely used as an alternative type of input

features to acoustic models in ASR literature1 (Grézl et al.,

2007; Tüske et al., 2014; Woodland et al., 2015). In addition,

the inclusion of this bottleneck layer greatly reduces the

number of DNN parameters without significantly diminishing

the accuracy of word recognition (Woodland et al., 2015),

since it can prevent the model from over-fitting to the training

data (Bishop, 2006). Thus, the bottleneck layer representation

provides a learned, low-dimensional representation of speech

which is both parsimonious and sufficient for high-performance

speech recognition. This is especially interesting for the present

study, given the inherently low-dimensional parameterization

of speech that is given by articulatory features, which are a

1 Bottleneck layers which are trained alongside the other layers in a

model have been shown to be superior to other methods of lowering

dimensions, such as simple PCA (Grézl et al., 2007).
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candidate characterization of responses to speech in human

auditory cortex.

Recent electrocorticography (ECoG: Mesgarani et al., 2008,

2014; Chang et al., 2010; Di Liberto et al., 2015; Moses et al.,

2016, 2018) and functional magnetic resonance imaging (fMRI:

Arsenault and Buchsbaum, 2015; Correia et al., 2015) studies in

humans show differential responses to speech sounds exhibiting

different articulatory features in superior temporal speech areas.

Heschl’s gyrus (HG) and surrounding areas of the bilateral

superior temporal cortices (STC) have also shown selective

sensitivity to perceptual features of speech sounds earlier in the

recognition process (Chan et al., 2014; Moerel et al., 2014; Saenz

and Langers, 2014; Su et al., 2014; Thwaites et al., 2016). Building

on our previous work investigating phonetic feature sensitivity

in human auditory cortex (Wingfield et al., 2017), we focus

our present analysis within language-related brain regions: STC

and HG.

The neuroimaging data used in this study comes from

electroencephalography and magnetoencephalography

(EMEG) recordings of participants listening to spoken

words in a magnetoencephalography (MEG) brain scanner.

High-resolution magnetic resonance imaging (MRI) was

acquired using a 3T MRI scanner for better source localization.

As in our previous studies (Fonteneau et al., 2014; Su et al.,

2014; Wingfield et al., 2017), the data (EMEG and MRI) has

been combined to generate a source-space reconstruction

of the electrophysiological activity which gave rise to the

measurements at the electroencephalography (EEG) and MEG

sensors. Using standard minimum-norm estimation (MNE)

procedures guided by anatomical constraints from structural

MRIs of the participants (Hämäläinen and Ilmoniemi, 1994;

Gramfort et al., 2014), sources were localized to a cortical

mesh at the gray-matter–white-matter boundary. Working

with source-space activity allows us to retain the high temporal

resolution of EMEG, while gaining access to resolved spatial

pattern information. It also provides the opportunity to restrict

the analysis to specific regions of interest on the cortex, where

an effect of interest is most likely to be found.

Recent developments in multivariate neuroimaging

pattern analysis methods have made it possible to probe the

representational content of recorded brain activity patterns.

Among these, representational similarity analysis (RSA:

Kriegeskorte et al., 2008a) provides a flexible approach which is

well-suited to complex computational models of rich stimulus

sets. The fundamental principle of our RSA procedures was the

computation of the similarity structures of the brain’s response

to experimental stimuli, and comparing the similarity structures

with those derived from computational models. In a typical RSA

study, this similarity structure is captured in a representational

dissimilarity matrix (RDM), a square symmetric matrix whose

rows and columns are indexed by the experimental stimuli, and

whose entries give values for the dissimilarity of two conditions,

as given by their correlation distance in the response space.

A key strength of RSA is that RDMs abstract away from the

specific implementation of the DNN model or measured neural

response, allowing direct comparisons between artificial and

human speech recognition systems; the so-called “dissimilarity

trick” (Kriegeskorte and Kievit, 2013). The comparison between

RDMs computed from the ASR model and RDMs from human

brains take the form of a Spearman’s rank correlation ρ between

the two (Nili et al., 2014).

RSA has been extended using the fMRI searchlight-mapping

framework (Kriegeskorte et al., 2006; Nili et al., 2014) so

that representations can be mapped through image volumes.

Subsequently, searchlight RSA has been further extended into

the temporal dimension afforded by EMEG data: spatiotemporal

searchlight RSA (ssRSA: Su et al., 2012, 2014). Here, as in other

studies using computational cognitive models (e.g., Khaligh-

Razavi and Kriegeskorte, 2014; Mack et al., 2016), ssRSA

facilitates the comparison to a machine representation of the

stimulus space which may otherwise be incommensurable with

a distributed brain response.

In the machine-to-human direction, using ssRSA and

the ASR system as a reference, we found that the early

layers of the DNN corresponded to early neural activation in

primary auditory cortex, i.e., bilateral Heschl’s gyrus, while the

later layers of the DNN corresponded to late activation in

higher level auditory brain regions surrounding the primary

sensory cortex. This finding reveals that the neural network

located within HG is likely to have a similar functional

role as early layers of the DNN model, extracting basic

acoustic features (though see Hamilton et al., 2021 for a

recent contrasting study). The neurocomputational function of

superior temporal gyrus regions is akin to later layers of the

DNN, computing complex auditory features such as articulation

and phonemic information.

In the reverse human-to-machine direction, using the

pattern of results in the brain-image analysis, we improved the

architecture of the DNN. The spatial extent of neural activation

explained by the hidden-layer representations progressively

reduced for higher layers, before expanding again for the

bottleneck layer. This pattern, which mirrored the structure of

the DNN itself, and (assuming an efficient and parsimonious

processing stream in the brain) suggests that some pre-

bottleneck layers might be superfluous in preparing the low-

dimensional bottleneck compression. We restructured the DNN

model with the bottleneck layer moved to more closely resemble

the pattern of activation observed in the brain, hypothesizing

that this would lead to a better transformation. With this

simple, brain-inspired modification, we significantly improved

the performance of the ASR system. It is notable that similar

DNN structures have been developed independently elsewhere

in order to optimize the low-dimensional speech feature

representations from the DNN bottleneck layer. However,

“reverse-engineer” human learning systems implemented in

brain tissue in such a bidirectional fashion provides a
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complementary approach in developing and refining DNN

learning algorithms.

2. Study 1: Investigating ASR DNN
representations

2.1. Materials and methods

2.1.1. Building DNN-HMM acoustic models for
ASR

Here we construct a DNN which can each be included as a

component in the hybrid DNN-HMM set-up of HTK. This is

a widely used speech recognition set-up in both academic and

industrial communities (Hinton et al., 2012), whose architecture

is illustrated in Figure 1. Each network comprises an input

layer, six hidden layers, and an output layer, which are all

fully-connected feed-forward layers.

The DNN acoustic model was trained to classify each input

frame into one of the triphone units at each time step. We

used it as the acoustic model of our DNN-HMM ASR system

to estimate the triphone unit likelihoods corresponding to each

frame. The log-Mel filter bank (FBK) acoustic features were

used throughout the paper, which were extracted with a 25 ms

duration and 10 ms frame shift. The first order differentials

of the FBK features were also included to extend the acoustic

feature vectors. Each of these windows was transformed into a

40-dimensional FBK feature vector representing a speech frame

with an offset of 10 ms. When being fed into the DNN input

layer, the 40-dimensional feature vectors were augmented with

their first-order time derivatives (also termed as delta features

in the speech-recognition literature) to form an 80-dimensional

vector ot for the t-th frame. The final DNN input feature vector,

xt , was formed by stacking nine consecutive acoustic vectors

around t, i.e., xt = {ot−4, ot−3, . . . , ot+4}. Therefore, the DNN

input layer (denoted as the FBK layer from Figure 2 to Figure 1)

has 720 nodes and covers a 125 ms long input window starting at

(10×t−50) ms and ending at (10×t+75) ms.Where this wider

context window extended beyond the limits of the recording

(i.e., at the beginning and end of the recording), boundary

frames were duplicated to make up the nine consecutive frames.

Following the input layer FBK, there are five 1,000-node

hidden layers (L2–L6), a 26-node “bottleneck” layer (L7), and

the output layer (TRI). This network is therefore denoted as

DNN-BN7 since the bottleneck layer is the seventh layer (L7).

All hidden nodes use a sigmoid activation function and the

output layer uses a softmax activation function to estimate

pseudo posterior probabilities for 6,027 output units. There are

6,026 such units corresponding to the tied triphone HMM states

which are obtained by the decision tree clustering algorithm

(Young et al., 1994). The last output unit is relevant to the

non-speech HMM states. The DNN was trained on a corpus

consisting of 200 h of British English speech selected from 7

weeks of TV broadcast shows by the BBC covering all genres.

Using such a training set with a reasonably large amount of

realistic speech samples guarantees our DNN model to be

properly trained and close to the models used in real-world

speech recognition applications. The DNN model was trained

to classify each of the speech frames in the training set into one

of the output units based on the cross-entropy loss function. All

DNN-BN models were trained with the same configuration. The

training was conducted using a modified NewBob learning rate

scheduler (Zhang and Woodland, 2015a), with each minibatch

having 800 frames, and with an initial learning rate of 2.0 ×

10−3 and a momentum factor of 0.5. A layer-by-layer pre-

training approach was adopted, which started by training a

shallow artificial neural network with only one hidden layer

for one epoch, and gradually adding in more hidden layers as

the penultimate layer, one layer per epoch until the final DNN

structure is achieved (Hinton et al., 2012). Afterwards the entire

DNN model is jointly fine-tuned for 20 epochs. More details

about the training configuration and data processing procedure

can be found in (Woodland et al., 2015; Zhang and Woodland,

2015a).

When performing speech recognition at test-time, the

posterior probabilities, P(sk | xt), were converted to log-

likelihoods to use as the observation density probabilities of

the triphone HMM states. Specifically, the conversion was

performed by

ln p(xt | sk) = ln P(sk | xt)+ ln p(xt)− ln P(sk), (1)

where sk is a DNN output for target k, and P(sk) is the frequency

of frames corresponding to the units associated with target

k in the frame-to-HMM-state alignments of the training set

(Hinton et al., 2012).

2.1.2. Recorded speech stimuli

This study used speech stimulus recordings from Fonteneau

et al. (2014), which consists of 400 English words spoken

by a native British English female speaker. The set of words

consists of nouns and verbs (e.g., talk, claim), some of which

were past-tense inflected (e.g., arrived, jumped). We assume

that the words’ linguistic properties are independent of the

acoustic–phonetic properties presently under investigation. We

also assume that this sample of recorded speech provides

a reasonable representation of naturally occurring phonetic

variants of British English, with the caveat that the sampled

utterances are restricted to isolated words and a single speaker.

Audio stimuli, which were originally recorded and presented

to subjects with a 22.1 kHz sampling rate, were down-sampled

to 16 kHz before building models, as the DNN was trained on

a 16 kHz audio training set. After the DNN was first trained

on the data from BBC TV programs, it was further adapted to

fit the characteristics of the speaker and the recording channel
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FIGURE 1

Schematic of the overall procedure. (A–D) Schematic representation of our automatic speech recognition system. Our ASR model is a hybrid

DNN–HMM system built with HTK (Young et al., 2015; Zhang and Woodland, 2015a). (A) An acoustic vector is built from a window of recorded

speech. (B) This is used as an input for a DNN acoustic model which estimates posterior probabilities of triphonetic units. Numbers above the

figure indicate the size of each layer. Hidden layer L7 is the bottleneck layer for DNN-BN7. (C) The triphone posteriors (TRI) are converted into

log likelihoods, and used in a set of phonetic HMMs. (D) A decoder computes word identities from the HMM states. (E–G) Computing dynamic

RDMs. (E) A pair of stimuli is presented to each subject, and the subjects’ brain responses are recorded over time. The same stimuli are

processed using HTK, and the hidden-layer activations recorded over time. (F) The spatiotemporal response pattern within a patch of each

subject’s cortex is compared using correlation distance. The same comparison is made between hidden-layer activation vectors. (G) This is

repeated for each pair of stimuli, and distances entered into a pairwise comparison matrix called a representational dissimilarity matrix (RDM). As

both brain response and DNN response evolve over time, additional frames of the dynamic RDM are computed.

of the stimuli data using an extra adaptation stage with 976

isolated words (see Zhang and Woodland, 2015b for details

of the approach). This is to avoid any potential bias to our

experimental results caused by the differences between the DNN

model training set and the stimuli set, without requiring the

collection of a large amount of speech samples in the same

setting as the stimuli set to build a DNN model from scratch.

There are no overlapping speech samples (words) between the

adaptation and stimuli sets. This guarantees that the model

RDM obtained using our stimuli set is not over-fitted into the

Frontiers inComputationalNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2022.1057439
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Wingfield et al. 10.3389/fncom.2022.1057439

FIGURE 2

Arrangement of phonetic space represented in DNN-BN7. (A) Davies–Bouldin clustering indices for hidden-layer representations. Each plot

shows the Davies–Bouldin clustering index for the average hidden-layer representation for each phonetic segment of each stimulus. Lower

values indicate better clustering. Indices were computed by labeling each segment by its phonetic label (top right panel), or by place, manner,

frontness, or closeness features (other panels). (B) Average activation of phones for L7 Sammon non-linear multidimensional scaling (MDS) of

average pattern of activation over phones, annotated with features describing place and position of articulation. (C) The same MDS arrangement

annotated with features describing manner of articulation.
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seen data, and guarantees our results and conclusions to be as

general as possible.

2.1.3. Evaluating clustered representations

To investigate how the assignment of phonetic and featural

labels to each segment of the stimuli could explain hidden-layer

representations in DNN-BN7, we computed Davies–Bouldin

clustering indices for representational spaces at each layer.

Davies–Bouldin indices (Davies and Bouldin, 1979) are

defined as the average ratio of within- and between-cluster

distances for each cluster with its closest neighboring cluster.

They indicate the suitability of category label assignment to

clusters in high-dimensional data, with lower values indicating

better suitability and with 0 the minimum possible value

(obtained only if labels are shared only between identical points).

This in turn serves as an indication of how suitably phonetic and

feature labels might be assigned to hidden-layer representations.

To compute Davies–Bouldin indices, we recorded the vector

of hidden-layer activations elicited by each input time window

of the stimuli for each layer in each DNN. There was a high

level of correlation between many activation vectors resulting

from overlapping adjacent input vectors. To minimize the effect

of this, we used average vectors from each hidden layer over

each contiguous phonetic segment. For example, in the word

“bulb”, the hidden-layer representations associated with each

frame corresponding to the acoustic implementation of the first

[b] were combined, and separately the representations for the

final [b] were combined. Then, to each combined vector, we

assigned a label under five separate labeling schemes: closeness

features, frontness features, place features, manner features, and

phonetic label. For place and manner features, we considered

only phones which exhibited a place or manner feature (i.e.,

obstruents). For frontness and closeness features, we likewise

considered only phones which exhibited frontness or closeness

features (i.e., syllabic vowels).Where a phone hadmore than one

appropriate feature assignment, we used the most appropriate

feature. The full assignment of feature labels for phones used in

the clustering analysis is given in Supplementary Figure 1.

We computed p-values for each Davies–Bouldin index

calculation using a permutation procedure in which phone labels

were randomized after averaging activation vectors for each

segment of input (5,000 permutations). p-values were computed

by randomizing the labels and recomputing Davies–Bouldin

indices 5,000 times, building a distribution of Davies–Bouldin

indices under the null hypothesis that phone and feature

labels did not systematically explain differences in hidden-layer

activations. In all cases, the observed Davies–Bouldin index was

lower than the minimum value in the null distribution, yielding

an estimated p-value of exactly 0.0002. Since the precision of this

value is limited by the number of permutations performed, we

report it as p < 0.001. All Davies–Bouldin index values reported

were significant at the p < 0.001 level.

2.2. Results and discussion

Davies–Bouldin indices for each layer and categorization

scheme are shown in Figure 2A. Of particular interest is the

improvement of feature-based clustering in bottleneck layer

L7 of DNN-BN7, which shows that it is, in some sense,

reconstructing the featural articulatory dimensions of the

speaker. That is, though this was not included in the teaching

signal, when forced to parsimoniously pass comprehension-

relevant information through the bottleneck, DNN-BN7 finds

a representation of the input space which maps well onto the

constraints on speech sounds inherent in the mechanics of

the speaker. L7 showed the best clustering indices out of all

layers for manner and place features and phone labels, and

the second-best for frontness features. For closeness alone, L7

was not the best, but was still better than its adjacent layer L6.

The general trend was that clustering improved for successively

higher layers. Layers prior to the bottleneck tended to have larger

clustering indices, indicating that their activations were not as

well accounted for by phonetic or featural descriptions.

To further illustrate and visualize the representational space

for L7, we used the phonetic partitioning of our stimuli provided

by HTK, and averaged the activation across hidden nodes

in L7 for each window of our 400 stimulus words which

was eventually labeled with each phone. This gave us an

average L7 response vector for each phone. We visualized this

response space using the Sammon non-linear multidimensional

scaling (MDS) technique in which true high-dimensional

distances between points are compressed into two dimensions

so as to minimize distortion (Sammon, 1969). Place/position

features are highlighted in Figure 2B, and manner features are

highlighted in Figure 2C.

To be clear, the presence of these feature clusters does

not imply that there are individual nodes in L7 which track

specific articulatory features. However, using the reasoning of

RSA, we can see that articulatory features are descriptive of the

overall arrangement of phones in the L7 response space. This

ability to characterize and model an overall pattern ensemble

in a way abstracted from the specific response format and

distributed neural representations is one of the strengths of the

RSA technique.

3. Study 2: Representational
similarity mapping of auditory cortex
with DNN representations

3.1. Materials and methods

3.1.1. Computing model RDMs from
incremental machine states

To encapsulate the representational space of each of

the DNN’s hidden layer representations through time, we
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computed model RDMs from the activation of each layer

using the following procedure, illustrated in Figure 1. RSA

computations were performed in Matlab using the RSA toolbox

(Nili et al., 2014).

As described previously, the input layer of the DNN

had access to 125 ms of audio input at each time step, to

estimate the triphone-HMM-state likelihoods. Since we can

only compute model RDMs where the DNN has activations

for every word in the stimuli set, only the activations

corresponding to the frames whose ending time is smaller

than 285 ms (the duration of the shortest word) are

used in our experiments Since each frame has a 25 ms

duration and a 10 ms shift, only the activations of the

first 27 frames of each word are reserved to construct

our model RDMs (as the frame index t is required to

satisfy 10× t + 25 6 285).

For each fixed position of the sliding time window on

each pair of our 400 stimulus words, we obtained the pattern

of activation over the nodes in a particular layer of the

DNN. By computing Pearson’s correlation distance (1 − r)

between activation pattern for each pair of words, we built

a 400 × 400 model RDM whose rows and columns were

indexed by the stimulus words. Then, by moving the sliding

time window in 10 ms increments and recomputing model

RDM frames in this way, we produced a series of model

RDMs which varied throughout the first 260 ms of the

stimuli. We repeated this procedure for each hidden layer

L2–L7, as well as the input and output layers FBK and

TRI, producing in total eight series of model RDMs, or

216 individual model RDM frames. When building a model

RDM frame from the input layer FBK, we used only the 40

log-mel filterbank values within the central 25 ms window

(and did not include the first derivatives or overlapping

context windows).

3.1.2. EMEG data collection

Sixteen right-handed native speakers of British English

(six male, aged 19–35 years, self-reported normal hearing)

participated in the study. For each participant, recordings

of 400 English words, as spoken by a female native British

English speaker were presented binaurally. Each word was

repeated once. The study was approved by the Peterborough

and Fenland Ethical Committee (UK). Continuous MEG

data were recorded using a 306 channels VectorView system

(Elektra-Neuromag, Helsinki, Finland). EEG was recorded

simultaneously from 70 Ag-AgCl electrodes placed within

an elastic cap (EASYCAP GmbH, Herrsching-Breitbrunn,

Germany) according to the extended 10/20 system and

using a nose electrode as the recording reference. All data

Fonteneau et al. (2014).

3.1.3. EMEG source estimation

In order to track the cortical locations of brain–model

correspondence, we estimated the location of cortical sources

using the anatomically constrained MNE (Hämäläinen and

Ilmoniemi, 1994) with identical parameters to those used in

our previous work (Fonteneau et al., 2014; Su et al., 2014;

Wingfield et al., 2017). MR structural images for each participant

were obtained using a GRAPPA 3D MPRAGE sequence (TR =

2250 ms; TE = 2.99 ms; flip-angle = 9 deg; acceleration factor

= 2) on a 3 T Trio (Siemens, Erlangen, Germany) with 1 mm

isotropic voxels. From the MRI data, a representation of each

participant’s cerebral cortex was constructed using FreeSurfer

software (https://surfer.nmr.mgh.harvard.edu/). The forward

model was calculated with a three-layer boundary element

model using the outer surface of the scalp as well as the outer

and inner surfaces of the skull identified in the anatomical MRI.

This combination of MRI, MEG, and EEG data provides better

source localization thanMEG or EEG alone (Molins et al., 2008).

The constructed cortical surface was decimated to yield

approximately 12,000 vertices that were used as the locations of

the dipoles. This was further restricted to the bilateral superior

temporal mask as discussed previously. After applying the

bilateral region of interest mask, 661 vertices remained in the

left hemisphere and 613 in the right. To perform group analysis,

the cortical surfaces of individual subjects were inflated and

aligned using a spherical morphing technique implemented by

MNE (Gramfort et al., 2014). Sensitivity to neural sources was

improved by calculating a noise covariance matrix based on the

100 ms pre-stimulus period. The activations at each location of

the cortical surface were estimated over 1 ms windows.

This source-reconstructed representation of the

electrophysiological activity of the brain as the listeners

heard the target set of 400 words was used to compute

brain RDMs.

3.1.4. Computing brain RDMs in a
spatiotemporal searchlight

To match the similarity structures computed from each

layer of the DNN to those found in human participants, in the

ssRSA procedure, RDMs were calculated from the EMEG data

contained within a regular spatial searchlight patch and fixed-

width sliding temporal window. We used a patch of vertices of

radius 20 mm, and a 25 ms sliding window to match the 25 ms

frames used in ASR. The searchlight patch was moved to center

on each vertex in the masked source mesh, while the sliding

window is moved throughout the epoch in fixed time-steps of

10 ms. From within each searchlight patch, we extracted the

spatiotemporal response pattern from each subject’s EMEG data.

We computed word-by-word RDMs using Pearson’s correlation

distance (1 − r) on the resulting response vectors. These RDMs

were averaged across subjects, resulting in one brain RDM for
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FIGURE 3

Matching model and data RDMs at systematic latencies. (A) Both

DNN and brain representations change throughout the

time-course of the stimulus, and are aligned to the start of the

stimulus at t = 0. Some amount of time (“processing latency”)

elapses between the sound reaching the participants’ eardrums

and the elicited response in auditory cortex. Thus, the brain

representations recorded at time t were elicited by the stimulus

earlier in time. (B) For a given hypothesized processing latency,

we RDMs from DNN layers and brain recordings are matched

up, and an overall level of fit is computed. This modeled latency

is systematically varied, the resultant level of fit thereby

indicating how well the DNN’s representation matches the

brain’s at that latency.

each within-mask vertex. Our 25 ms ssRSA sliding window

moved in increments of 10 ms throughout an EMEG epoch of

[0, 540] ms, giving us a series of RDMs at each vertex for sliding

windows [t, t + 25] ms for each value of t = 0, 10, . . . , 510.

In total, this resulted in a total of 66,300 brain RDM frames.

By using the ssRSA framework, we make this vast number of

comparisons tractable by systematizing the comparison.

3.1.5. Systematic brain–model RDM
comparisons

Themodel RDMs computed from the DNN layer activations

describe the changing representational dissimilarity space of

each layer throughout the duration of the stimulus words.

We can think of this as a dynamic model timeline for each

layer; a collection of RDMs indexed by time throughout the

stimulus. Similarly, the brain data-derived RDMs computed

from brain recordings describe the changing representational

dissimilarity space of the brain responses at each searchlight

location throughout the epoch, which we can think of as a

dynamic data timeline. It takes non-zero time for vibrations at

the eardrum to elicit responses in auditory cortex (Figure 3A).

Therefore, it does not make sense to only compare the DNN

RDM from a given time window to the precisely corresponding

brain RDM for the same window of stimulus: to do so would

be to hypothesize instantaneous auditory processing in auditory

nerves and in the brain.

Instead, we offset the brain RDM’s timeline by a fixed

latency, k ms (Figure 3B). Then, matching corresponding DNN

and brain RDMs at latency k tests the hypothesis that the DNN’s

representations explain those in auditory cortex k ms later. By

systematically varying k, we are able to find the time at which

the brain’s representations are best explained by those in the

DNN layers.

Thus, for each such potential processing latency, we obtain

a spatial map describing the degree to which a DNN layer

explains the brain’s representations at that latency (i.e., mean

Spearman’s rank correlation coefficient between DNN and brain

RDMs at that latency). Varying the latency then adds a temporal

dimension to the maps of fit.

This process is repeated for each subject, and data combined

by a t-test of the ρ values across subjects at each vertex within

the mask and each latency. This resulted in one spatiotemporal

t-map for each layer of the DNN. For this analysis, we used

latencies ranging from 0 to 250 ms, in 10 ms increments.

3.1.6. Threshold-free cluster enhancement

We applied threshold-free cluster2 enhancement (TFCE:

Smith and Nichols, 2009) to the t-maps from each layer of

the DNN. TFCE is an image-enhancement technique which

enables the use of cluster-sensitive statistical methods without

the requirement to make an arbitrary choice of initial cluster-

forming threshold and is used as the standard statistical method

by the FSL software package (Jenkinson et al., 2012).

TFCE transforms a statistical image in such a way that the

value at each point becomes a weighted sum of local supporting

clustered signal. Importantly, the shape of isocontours, and

hence locations of local maxima, are unchanged by the TFCE

transformation. For a t-map comprised of values tv,k for vertices

v and latencies k, the TFCE transformation is given by

TFCE (tv,k) =

∫ tv,k

0
h2

√

e(h) dh (2)

where e(h) is the cluster extent of the connected component of

(v, k) at threshold h. We approximated (2) with the sum

i1h ≤ tv,k < (i+1)1h
∑

i=0

(i1h)2
√

e(i1h) (3)

2 The term cluster here refers to spatiotemporally contiguous sets of

datapoints in statistical maps of activation or model fit. This is a di�erent

term to cluster as used in the previous section to refer to sets of points

located close-by in a high-dimensional abstract space. It is unfortunate

that both of these concepts have the same name, but we hope their

distinct meanings will be clear from the context.
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where 1h was set to 0.1. The choice of 1h affects the accuracy

of the approximation (3) but should not substantially bias

the results.

All t-maps presented for the remainder of this paper have

TFCE applied.

3.1.7. Group statistics and correction for
multiple comparisons

To assess the statistical significance of the t-maps, we

converted the t-values to p-values using a random-effects

randomization method over subjects, under which p-values are

corrected for multiple spatiotemporal comparisons (Nichols

and Holmes, 2002; Smith and Nichols, 2009; Su et al., 2012).

In the random-effects test, a null-distribution of t-values is

simulated under the null hypothesis that Spearman’s rank

correlation values ρ are symmetrically distributed about 0 (i.e.,

no effect). By randomly flipping the sign of each individual

subject’s ρ-maps before computing the t-tests across subjects

and applying the TFCE transformation, we simulate t-maps

under the null hypothesis that experimental conditions are

not differentially represented in EMEG responses. From each

such simulated map, we record the map-maximum t-value,

and collect these into a null distribution over all permutations.

For this analysis we repeated the randomization 1,000 times,

and collected separate null distributions for each hemisphere.

To assess the statistical significance of a true t-value, we see

in which quantile it lies in the simulated null distribution of

map-maximum randomization t-values.

We performed this procedure separately for the models

derived from each layer of the DNN, allowing us to

obtain t-maps which could be easily thresholded at a fixed,

corrected p-value.

3.2. Results

We used the dynamic representations from each layer

of DNN-BN7 to model spatiotemporal representations

in the auditory cortices of human participants in an

EMEG study by applying ssRSA. Areas of auditory cortex

(Figure 4A) were defined using the Desikan–Killiany Atlas

(STC and HG).

Figure 4 shows the left hemisphere results of this analysis.

The brain maps in Figure 4B show threshold-free-cluster-

enhanced t-maps (Smith and Nichols, 2009) computed from

the model RDMs of each hidden layer, thresholded at p < 0.01.

Model RDMs computed from all DNN layers except L5

showed significant fit in left STC and HG. Input layer FBK

peaked early in left posterior STC at 0–70 ms, and later

in left anterior STC and HG at 140–210 ms. Hidden-layer

models L2–L4 and L6–L7 peaked later than FBK, achieving

FIGURE 4

Clusters of significant fit of hidden-layer models to

left-hemisphere EMEG data. (A) Location of region of interest

mask for auditory cortex. (B) Maps describing fit of DNN layer

models to EMEG data. Latency represents the time taken for the

brain to exhibit neural representations that fit the DNN model

prediction. All maps thresholded at p < 0.01 (corrected). (C) Line

graphs showing the time-courses of cluster extents for each

layer which showed significant fit.

maximum cluster size at approximately 170 ms. Layers L5

and TRI showed no significant fit in the regions of interest.

Overall, significant cluster size increased between layers FBK–

L3, diminished for L4 and L5, and re-emerged for L6

and L7.

The line graphs in Figure 4C show the time-courses of each

layer as they attain their maximum cluster extent. In general,

there appeared to be two distinct clusters across the superior

temporal region: an early cluster peaked in left posterior STC

for the DNN input layer FBK, and another late cluster peaked in

left anterior STC for DNN layers L1–L4 and L6–L7, throughout

the whole epoch, but attaining a maximum cluster size at

approx 170 ms. Details of timings for each layer are shown in

Supplementary Table 1. Right hemisphere results are included in

Supplementary Figure 2.
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3.3. Discussion

The input layer FBK representing purely acoustic

information (i.e., not a learned or task-relevant representation)

showed a later and smaller effect (cluster in human posterior

STC) than that of higher layers L2 and L3. The strongest

cluster for FBK was early, and the later cluster appears to be a

weaker version of those for higher hidden-layer models. The

late cluster for FBK indicates that there is some involvement

of both low-level acoustic features and higher-level phonetic

information in the later neural processes at around 170 ms.

However, since there is an intrinsic correlation between acoustic

information and phonetic information, it is hard to completely

dissociate them. Another explanation for the mixture of high

and low levels of speech representations in a single brain region

at the same time is the existence of feedback connections in

human perceptual systems (However, the ASR systems used

in this paper can achieve high degree of accuracy without the

top-down feedback loop from higher to lower hidden layers.).

It should be noted that while the FBK, L2 and L4 clusters all

register as significant at a latency of 0 ms, timings correspond

to a 25 ms window of EMEG data being matched against model

state computed for the central 25 ms of 125 ms windows of

audio, so only approximates the actual latency.

Moving up to hidden layers L2 and L3, we saw later

clusters which fit the brain data more strongly than FBK in

the left hemisphere. All hidden layers including L2 and L3

activate according to learned parameters. Progressively higher

layers L4 and L5 fit with smaller clusters in human STC,

with L5 showing no significant vertices at any time point

(p > 0.01) in the left hemisphere but a very small cluster in

the right hemisphere. However, the highest hidden layers L6

and L7 once again showed string fit with activations in left

anterior STC.

Of particular interest is this re-emergence of fit in anterior

STC to the representations in the bottleneck layer L7. In this

layer of the DNN, the 1,000-node representation of L6 is

substantially constrained by the reduced size of the 26-node

L7. In particular, the fact that ASR accuracy is not greatly

reduced by the inclusion of this bottleneck layer indicates that,

for the machine solution, 26 nodes provide sufficient degrees

of freedom to describe a phonetic space for purposes of word

recognition. This, in conjunction with the re-emergence of

fit for L7 to STC representations makes the representations

of this layer of particular interest. The hidden layers in the

DNN learn to sequentially transform acoustic information into

phonetic probabilities in a way which generalizes across speakers

and background acoustic conditions. There is no guarantee

that the features the DNN learns to identify for recognition

are comparable to those learned by the brain, so the fact

that significant matches in the RDMs were found between

machine and human solutions of the same problem is worthy

of further consideration.

4. Study 3: Improving DNN design

4.1. Materials and methods

From the maximum cluster extents of the DNN layers

shown in Figure 4, the activations of the DNN acoustic

model significantly correspond to the activity in the left-

hemisphere of human brain when listening to the same

speech samples. This suggests that the DNN and human brain

rely on similar mechanisms and internal representations for

speech recognition.

Human speech recognition still has superior performance

and robustness in comparison to even the most advanced ASR

systems, so we reasoned that it could be possible to improve

the DNN model structure based on the evidence recorded from

the brain.

The overall minimal spatiotemporal clusters for L5 of DNN-

BN7 suggested that while early layers (L2–L3) were performing

analogous transformations to early auditory cortex, and that the

bottleneck (L7) was representing speech audio with a similarly

parsimonious basis as left auditory cortex, there was a divergence

of representation at intermediate layers (L4–L6). This indicates

the possibility that the calculations in DNN layer L5 are less

important for recognizing the speech accurately since brain

does not appear to use such representations in the recognition

process. On the other hand, although a bottleneck layer is

positioned at L7, its strong correspondence to the brain reveals

the importance of the calculations performed in that layer. Thus,

it is natural to assume that more parameters and calculations in

important layers can improve speech recognition performance,

while fewer calculations can reduce the complexity of the

model DNN structure without sacrificing the performance too

much. With the supposition that the arrangement of auditory

cortex would be adapted specifically to speech processing,

we hypothesized that by moving the bottleneck layer into

the positions occupied by divergent layers in DNN-BN7,

the network might learn representations that closer resemble

those of human cortex, and thus improve the performance of

the model.

To this end, we built and studied another DNN model,

DNN-BN5, which has the same number of parameters as DNN-

BN7 but has the bottleneck layer moved from L7 to L5. The

details of the new DNN structures are shown in Figure 5C.

For purposes of comparison, and following the same naming

convention, we expanded our investigation with another two

DNN models, DNN-BN4 and DNN-BN6 were also built for

DNNs whose bottleneck layers are L4 and L6 respectively. In

all models the number of parameters was kept to 5.0 million,

matching the 4.9 million parameters of DNN-BN7.

It may appear to the reader as if an alternative modification

would be to re-locate the bottleneck layer relative to the input

layer as we have done so, but attach it directly to the TRI

layer (as in DNN-BN7) without intermediate levels. However
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FIGURE 5

Brain-informed DNN design refinement. (A) Original DNN-BN7 design. Numbers beside layers indicate number of nodes. (B) Maximum cluster

extent indicates the degree of fit with EMEG brain representations. Where there is more than one spatiotemporally discontinuous cluster, we

sum their contributions, with di�erent segments indicated by di�erent shading. Colored shapes on the DNN-layer axis and in other panels

indicate the placement of the bottleneck layer for DNN-BN4–7. (C) Candidates for adjusted DNN design: DNN-BN4 (bottleneck at L4), DNN-BN5

(bottleneck at L5) and DNN-BN6 (bottleneck at L6).

we chose to fix the number of DNN layers and simply move

the position of the bottleneck in order to keep the total number

of parameters fixed at 5 million, since number of trainable

parameters is a strong determiner of performance ceiling. We

could have retained 5 million parameters by inflating the size of

the hidden layers between the input and the bottleneck, but this

would have forced upstream representations to change between

models, making DNN-BN7 harder to compare to DNN-BN4–6.

Additionally, early DNN studies demonstrated that, for a fixed

number of parameters, deeper, thinner models (i.e., those with

more layers containing fewer units) performed significantly

better than shallower, wider models, and this is now a standard

practice (Morgan, 2011; Hinton et al., 2012). Alternative DNN

design choices may have different effects, and we hope to

investigate this in future work.

We tested the derived DNNmodels with different bottleneck

layer positions using two tasks: general large-vocabulary

continuous speech recognition with recordings from BBC TV

programs, and in-domain isolated-word recognition using the

stimuli set. The MGB Dev set was derived as a subset of

the official development set of the MGB speech recognition

challenge (Bell et al., 2015), which includes 5.5 h of speech.

Since the MGB testing set involves sufficient samples (8,713

utterances and 1.98M frames) from 285 speakers and 12 shows

with diversified genres, and the related WER results are reliable

metrics to evaluate the general performance of the DNNmodels

for speech recognition. In contrast, the WERs on the stimuli

set are much more noisier since it only consists of 400 isolated

words from a single female speaker. However, the stimuli set

WERs are still important metrics since the same 400 words are

TABLE 1 The performance of DNN-HMM systems with di�erent

bottleneck layer positions.

System
Bottleneck

layer

Accuracy% WER%

Train HV MGBDev Stimuli

DNN-BN7 L7 44.0 41.5 33.3 6.5

DNN-BN6 L6 44.6 42.3 32.4 6.3

DNN-BN5 L5 44.2 42.3 32.3 5.8

DNN-BN4 L4 42.6 41.1 33.5 7.3

The WERs (the lower the better) were given on both the MGB challenge official

development subset (MGB Dev), which is a general purpose large vocabulary continuous

speech recognition testing set, as well as the 400 isolated words used as the stimuli in

our listening experiments to derive the RDM (Stimuli). The MGB Dev WERs are reliable

indicators for the general performance of the systems in realistic ASR tasks. The Stimuli

WERs are the most direct indicators of the model performance on the data used in our

brain-machine comparison experiments. The classification accuracy values (the higher

the better) were obtained by classifying each frame into one of the 6,027 triphonetic

DNN output units were obtained on both the training and held-out validation (HV) sets.

For fair comparisons, DNN structures of all systems were constrained to have the same

amount of model parameters (about 5M for each model, as shown in Figure 5). Accuracy

can be considered as an auxiliary performance metric, which indicates that DNN-BN6

suffered more from over-fitting compared to DNN-BN5 , since DNN-BN6 is better in the

training accuracy but not in the HV accuracy.

used to build the RDMs used in the key experiments. These

results are presented in Table 1 and Figure 6C.

4.2. Results

As shown in Table 1 and Figure 6C, adjusting the design

of the DNN structure to better fit with the representations
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FIGURE 6

(A) Davies–Bouldin clustering indices for hidden-layer representations. Each plot shows the Davies–Bouldin clustering index for the average

hidden-layer representation for each phonetic segment of each stimulus. Lower values indicate better clustering. Indices were computed by

labeling each segment by its phonetic label (top right panel), or by place, manner, frontness, or closeness features (other panels). Colored

shapes on the DNN-layer axis indicate the placement of the bottleneck layer for each System. Inset axes show clustering indices for

bottleneck-layers only. Each plot shows the clustering index for the average bottleneck-layer representation for each phonetic segment of each

stimulus. Indices were computed by labeling each segment by its phonetic label (top right), or by place, manner, frontness, or closeness

features. Colored shapes on the DNN-layer axis indicate the placement of the bottleneck layer for each System. (B) WERs for each DNN system.

Upper panel shows WERs on the MGB Dev set. Lower panel shows WERs for the stimuli.

exhibited in the human subjects led to improved DNN

performance in terms of WER in DNN-BN5 and DNN-BN6.

The MGB Dev set contains sufficient testing samples with

diversified speaker and genre variations. When testing on MGB

Dev, a 4-g language model (Woodland et al., 2015) was used

to provide word-level contexts by rescoring each hypothesis

in decoding as in general large vocabulary continuous speech

recognition applications. The 1.0% absolute WER reduction

(relatively 3.3%) obtained by comparing DNN-BN7 with DNN-

BN5 is substantial (Bell et al., 2015; Woodland et al., 2015).

Such an improvement was achieved without increasing the

number of parameters, and hence demonstrates the superiority

of the structure of DNN-BN5. DNN-BN6 also performed 0.9%

(absolute WER) better than DNN-BN7, but 0.1% WER worse

than DNN-BN5. This can also be observed from the frame

classification accuracy values, as DNN-BN6 has the same HV

accuracy but better train accuracy compared with DNN-BN5,

indicating that placing the bottleneck layer at L6 results in over-

fitting. Regarding the stimulus set, no language model was

used since each stimulus utterance has only one word and the
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recognition requires no word-level context. Still, the changes in

WERs are consistent with those on theMGBDev set. Comparing

Table 1 to Figure 5, the WERs and the maximum cluster extent

values of these DNN models are also consistent on the Stimulus

test set.

As well as altering the position of the bottleneck layer,

we also trained and tested a DNN without a bottleneck layer,

but using the same 5.0M parameters. This DNN achieved

44.0% train accuracy and 42.3% HV accuracy, and 32.3% MGB

Dev WER and 5.8% WER on the stimuli. In other words,

close-to, but just falling short of (albeit insignificantly), the

overall best model including a bottleneck layer: DNN-BN5.

The inclusion of a bottleneck layer was included in DNN-BN5

was motivated both for machine-learning and computational-

modeling reasons, as we have described. It is therefore notable

that even though DNN-BN5 contains a bottleneck layer, and

thus forces a compression of the speech representation from

1,000 down to 26 dimensions, it was still able to achieve the

overall best performance.

What is not immediately clear, however, is whether this

improvement in performance arises from a corresponding

improvement in the model’s ability to extract a feature-based

representation. In other words, if the bottleneck layer learns

a representation akin to articulatory features, by moving the

layer to improve performance does this enhance this learned

representation? To answer this question, we investigated how

the assignment of phonetic and featural labels to each segment

of the stimuli could explain their hidden-layer representations.

As before, we probed the organization of the representational

space of each hidden layer according to phones and features

using Davies–Bouldin clustering indices.

The clustering results exhibited two overall patterns of note.

First, clustering (i.e., suitability of assignment of phonetic and

featural labels to hidden layer representations) was improved on

the DNNs whose design had been inspired by the human brains.

Second, the optimum clustering level was often found in the

bottleneck layer itself (highlighted on the graphs in Figure 6A).

The clustering index at the bottleneck layers alone are separately

graphed in inset panels in Figure 6A, and show that bottleneck

layer clustering was also improved in DNN-BN5 andDNN-BN6.

In other words, the placement of the bottleneck layer in

position 5 and 6 yielded, as predicted, the best clustering

results both overall and in the bottleneck layer itself. Moving

the bottleneck layer too far back (DNN-BN4) yielded worse

clustering results generally and in the bottleneck layer—

indicated by the characteristic U-shaped curves in Figure 6B.

4.3. Discussion

Artificial Intelligence (AI) and machine learning have

already been extensively applied in neuroscience primarily

in analyzing and decoding large and complex neuroimaging

or cell recording data sets. Here, DNN-based ASR systems

were used as a model for developing and testing hypothesis

and neuroscientific theories about how human brains perform

speech recognition. This type of mechanistic or generative

model—where the computational model can perform the

behavioral task with realistic data (in this case, spoken word

recognition)—can serve as a comprehensive framework for

testing claims about neurocognitive functional organization

(Kriegeskorte and Douglas, 2018). Moreover, insights can flow

both ways; the neuroimaging data can also guide the exploration

of the model space and lead to improvements in model

performance, as we have seen.

While our use of neurological data only indirectly informed

the improvements to ASR architecture, the present work can be

seen as an initial step toward extracting system-level designs for

neuromorphic computing from human auditory systems. This

goal in itself is not new (see e.g., Toneva and Wehbe, 2019),

however the key novel element of our approach is the ability

to relate the machine and human solutions in complementary

directions. The power of RSA, and in particular ssRSA, to relate

the different forms of representations in these systems is key in

this work. In summary, the methodology illustrated here paves

the way for future integration of neuroscience and AI with the

two fields driving each other forwards.

5. General discussion

We have used a DNN-based ASR system and spatiotemporal

imaging data of human auditory cortex in a mutually

informative study. In the machine-to-human direction, we have

used a computational model of speech processing to examine

representations of speech throughout space and time in human

auditory cortex measured as source-localized EMEG data. In so

doing, we have produced a functional map in human subjects

for each part of the multi-stage computational model. We were

able to relate dynamic states in the operating machine speech

recognizer to dynamic brain states in human participants by

using ssRSA, extended to account for a dynamically changing

model. In a complementary analysis, we have improved the

performance of the DNN-based ASR model by adapting the

layered network architecture inspired by the staged neural

activation patterns observed in human auditory cortex.

5.1. Relating dynamic brain and machine
states: Comparing and contrasting
computational models in vision and
audition

There has been some recent successes in comparingmachine

models of perception to human neuroimaging data. This has

primarily been in the domain of visual object perception (e.g.,
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Kriegeskorte et al., 2008b; Cadieu et al., 2014; Clarke et al., 2014;

Khaligh-Razavi and Kriegeskorte, 2014; Güçlü and van Gerven,

2015; Kriegeskorte, 2015; Cichy et al., 2016; Kheradpisheh et al.,

2016; Devereux et al., 2018), with less progress made in speech

perception (though see our previous work: Su et al., 2014;

Wingfield et al., 2017).

The visual systems of humans and other primates are

highly related, both in their architecture and in accounts of the

neurocomputational processes they facilitate. There is evidence

of a hierarchical organization of cortical regions in the early

visual systems of human and non-human primates. There are

also detailed accounts of process sequencing from early visual

cortex through higher perceptual and semantic representation

which exist for visual object perception in several primate

models (e.g., Van Essen et al., 2001; Tootell et al., 2003; Denys

et al., 2004; Orban et al., 2004; Kriegeskorte et al., 2008b). This

is not so the case for speech processing and audition to the

same degree.

In parallel, machine models for vision have often been

designed based on theories of primate cortical processing

hierarchies. This extends to recent work employing deep

convolutional neural networks (CNN) for visual object

processing, in particular those featuring layers of convolution

and pooling. Furthermore, the convolutional layers in CNNs

appear to learn features resembling those in the receptive fields

of early visual cortex, and higher layers’ representational spaces

also match those found in higher visual cortex, and other regions

in the visual object perception networks (Khaligh-Razavi and

Kriegeskorte, 2014; Güçlü and van Gerven, 2015; Wen et al.,

2018). Importantly, this means that the internal structures of

machine vision systems are potentially informative and relevant

to our understanding of the neurocomputational architecture of

the natural system (and vice versa), and not just whether they

generate equivalent outputs (for example in object classification

tasks). To date, these common features are not well-established

for DNNs or other type of acoustic models widely used for

ASR systems.

Certain aspects of the human auditory processing

system have resemblances to those in other primate models

(Rauschecker and Scott, 2009; Baumann et al., 2013). However,

no non-human primate supports anything like human speech

communication, where intricately modulated sequences of

speech sounds map onto hundreds of thousands of learned

linguistic elements (words and morphemes), each with its own

combination of acoustic-phonetic identifiers.

Perhaps due to this lack of neurocomputationally explicit

models of spoken word recognition, the design of ASR systems

has typically not been guided by existing biological models.

Rather, by optimizing for engineering-relevant properties such

as statistical learning efficiency, they have nonetheless achieved

impressive accuracy and robustness.

It is striking, therefore, that we have been able to show

that the regularities that successful ASR systems encode in the

mapping between speech input and word-level phonetic labeling

can indeed be related to the regularities extracted by the human

system. In addition, like animal visual systems have inspired

the field of computer vision, we have demonstrated that human

auditory cortex can improve ASR systems using ssRSA.

6. Conclusion and future work

We have shown that our deep artificial neural network

model of speech processing bears resemblance to patterns of

activation in the human auditory cortex using the combination

of ssRSA with multimodal neuroimaging data. The results

also showed that the low-dimensional bottleneck layer in the

DNN could learn representations that characterize articulatory

features of human speech. In ASR research, although the

development of systems based around the extraction of

articulatory features has a long history (e.g., Deng and Sun,

1994), except for a small number of exemplars (e.g., Zhang et al.,

2011; Mitra et al., 2013), recent studies mostly rely on written-

form-based word piece units (Schuster and Nakajima, 2012; Wu

et al., 2016) that are not directly associated with phonetic units.

Our findings imply that developing appropriate intermediate

representations for articulatory features may be central to speech

recognition in both human and machine solutions. In human

neuroscience studies, this account is consistent with previous

findings of articulatory feature representation in the human

auditory cortex (Mesgarani et al., 2014; Correia et al., 2015;

Wingfield et al., 2017), but awaits further investigation and

exploitation in machine solutions for speech recognition. In

particular, previous work by Hamilton et al. (2021) has shown

that—unlike our DNN architecture—the organization of early

speech areas in the brain are not purely hierarchical, suggesting

new potential avenues of model architectures including layer-

bypassing connections.

The results we have presented here prompt further questions

regarding how modifications to the design and training of

DNN-based ASR models affects their representations, how to

most effectively tailor a model to match the representational

organization of the human brain, and which of these

modifications lead to improved performance at the task. We

hope to continue similar investigations to other types of

artificial neural network models in our future work, such

as different hidden activation functions, time-delay neural

networks (Waibel et al., 1989; Peddinti et al., 2015), CNNs

(LeCun et al., 1998; Krizhevsky et al., 2012), and recurrent neural

networks (Rumelhart et al., 1986; Hochreiter and Schmidhuber,

1997), etc.

There is a difference between speech recognition (i.e.,

the extraction of word identities from speech audio) and

speech comprehension (i.e., understanding and the elicitation

of meaning). In this paper we have tackled only recognition.

The HTK model we used is established and highly used in
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the literature, and while it is able to incorporate context via

the sliding window and hidden Markov language model, we

certainly would not claim that it understands or comprehends

speech as humans can. Recently, large deep artificial neural

network models pre-trained on a massive amount of unlabeled

waveform features (e.g., Baevski et al., 2020; Hsu et al., 2021;

Chen et al., 2022), have demonstrated strong generalization

abilities to ASR and many para-linguistic speech tasks

(Mohamed et al., 2022). While we would not claim that these

larger models are capable of true understanding, it would

nonetheless be interesting to apply the methods used in this

paper to study similar types of models and tasks. This may

contribute to understanding the functional organization of

human auditory cortex and improve such large scale speech-

based computational models.
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