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Hallmarks of neural dynamics during healthy human brain states span

spatial scales from neuromodulators acting on microscopic ion channels to

macroscopic changes in communication between brain regions. Developing

a scale-integrated understanding of neural dynamics has therefore remained

challenging. Here, we perform the integration across scales using mean-

field modeling of Adaptive Exponential (AdEx) neurons, explicitly incorporating

intrinsic properties of excitatory and inhibitory neurons. The model was run

using The Virtual Brain (TVB) simulator, and is open-access in EBRAINS.

We report that when AdEx mean-field neural populations are connected

via structural tracts defined by the human connectome, macroscopic

dynamics resembling human brain activity emerge. Importantly, the model

can qualitatively and quantitatively account for properties of empirically

observed spontaneous and stimulus-evoked dynamics in space, time, phase,

and frequency domains. Large-scale properties of cortical dynamics are shown

to emerge from both microscopic-scale adaptation that control transitions

between wake-like to sleep-like activity, and the organization of the human

structural connectome; together, they shape the spatial extent of synchrony

and phase coherence across brain regions consistent with the propagation of

sleep-like spontaneous traveling waves at intermediate scales. Remarkably, the

model also reproduces brain-wide, enhanced responsiveness and capacity to

encode information particularly during wake-like states, as quantified using

the perturbational complexity index. The model was run using The Virtual

Brain (TVB) simulator, and is open-access in EBRAINS. This approach not only

provides a scale-integrated understanding of brain states and their underlying

mechanisms, but also open access tools to investigate brain responsiveness,

toward producing a more unified, formal understanding of experimental data

fromconscious and unconscious states, aswell as their associated pathologies.
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neural simulation, mean-field model, spontaneous activity, evoked responses, wake,
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1. Introduction

Brain activity is marked by complex spontaneous dynamics,

particularly during conscious states when the brain is most

responsive to stimuli. Though changes in spontaneous and

evoked dynamics have been unambiguously empirically

observed in relation to changes in brain state, their multi-scale

nature has notoriously occluded a formal understanding.

Spanning from macroscopic dynamics supporting

communication between brain regions to microscopic,

molecular mechanisms modulating ion channels, hallmarks

of consciousness have been observed across spatial scales. At

the whole-brain level, conscious states are marked by complex

spontaneous collective neural dynamics (Niedermeyer and

Lopes da Silva, 2005; El Boustani and Destexhe, 2010) and more

sustained, reliable, and complex responses to stimuli (Massimini

et al., 2005; Casali et al., 2013; D’Andola et al., 2018; Dasilva et al.,

2021). At the microscopic level, neuromodulation is enhanced

in conscious, active states, leading to microscopic changes

in cellular kinetics (McCormick, 1992). Yet, a challenging

multi-scale problem still resides in comprehending how changes

in the complexity of global spontaneous dynamics and whole

brain responsiveness may specifically relate to microscopic

neuromodulatory processes to enable neural coding during

active states. Here, using mean-field models of conductance-

based, Adaptive Exponential (AdEx) integrate-and-fire neurons

with spike-frequency adaptation developed recently (Zerlaut

et al., 2018; Capone et al., 2019; di Volo et al., 2019), constrained

by human anatomy and empirically informed by local circuit

parameters, we report the natural emergence of global dynamics

mimicking different human brain states.

To connect microscales (neurons) to macroscales (whole

brain), this work relies on previous advances at mesoscales

(neural populations). The first step was modeling biologically-

relevant activity states in networks of spiking neurons. Based

on experimental recordings, we used the Adaptive Exponential

(AdEx) integrate and fire model to simulate two main cell types

identifiable in extracellular recordings of human brain (Peyrache

et al., 2012): regular-spiking (RS) excitatory and fast-spiking (FS)

inhibitory cells. AdEx networks were constrained by biophysical

representations of synaptic conductances, which allowed the

model to be compared to conductance measurements done

in awake animals (Zerlaut et al., 2018) (for experiments,

see Steriade et al., 2001; Rudolph et al., 2007). In such

configurations, AdEx networks reproduce states observed

in vivo (Destexhe, 2009; Jercog et al., 2017; Zerlaut and

Destexhe, 2017; Zerlaut et al., 2018; Nghiem et al., 2020),

notably asynchronous irregular (AI) states found experimentally

in awake states, and synchronous slow waves as in deep

sleep (Destexhe et al., 1999; Steriade et al., 2001; Steriade,

2003). From AdEx networks, mean-field models were derived

to take into account second order statistics of AdEx networks

interacting through conductance-based synapses. We used a

Master Equation formalism (El Boustani and Destexhe, 2009),

modified to include adaptation (di Volo et al., 2019).

In this manuscript, we present evidence that mean-field

descriptions of biophysically informed estimates of neuron

networks produce macroscopic dynamics capturing essential

characteristics of human wake and sleep states—due to variation

in spike-frequency adaptation—when coupled by the human

connectome with tract-specific delays. First, we show that

simulated microscopic changes in membrane currents directly

lead to the emergence of globally asynchronous vs. synchronous

dynamics exhibiting distinct signatures in the frequency

domain, as well as changes in inter-regional correlation structure

and phase-locking, mimicking aspects of spontaneous human

brain dynamics. The spatial extent of synchrony and phase

relations across brain regions was observed to be an emergent

property of both microscopic-scale adaptation changes and

the organization of the human connectome, which allow for

enhanced phase coherence at intermediate, cross-region, but

not whole-brain scales in sleep-like states, consistent with the

propagation of traveling waves. Further, we report enhanced

brain-scale responsiveness to stimulation in simulations of

asynchronous, fluctuation-driven compared to synchronous,

phase-locked regimes, consistent with empirical data from

conscious vs. unconscious brain states. Together, the data

suggest that the TVB-AdEx model represents a scale-integrated

neuroinformatics framework capable of recapitulating known

features associated with human brain states as well as elucidating

relationships between space-time scales in brain activity. Due

to its reliance on anatomical data non-invasively available

from humans, this model may further facilitate subject-specific

modeling of human brain states in health and disease, including

restful and active waking states, as well as sleep, anesthesia, and

coma to aid future advances in personalized medicine.

2. Results

We begin by showing essential properties of the components

forming the TVB-AdExmodel. Next, we describe the integration

of AdEx mean-fields into The Virutal Brain (TVB) simulator

of EBRAINS, making the models and analyzes openly available

to facilitate replication and extension of the results. The results

presented here indicate that the TVB-AdEx whole human

brain model captures fundamental aspects of synchronous and

asynchronous brain states, both spontaneously and in response

to perturbation.

2.1. Components of TVB-AdEx models

The first component of the TVB-AdEx model is at the

cellular level, and consists of networks of integrate-and-fire
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adaptive exponential (AdEx) neurons. As shown in previous

studies (Destexhe, 2009; Zerlaut et al., 2018; di Volo et al.,

2019), networks of AdEx neurons with adaptation can display

asynchronous, irregular (AI) states, as well as synchronous,

regular slow-wave dynamics that alternate between periods

of high activity (Up) and periods of near silence (Down).

The necessary mechanistic ingredients needed to obtain both

dynamical regimes include leak conductance and conductance-

based synaptic inputs. Each neuron’s input is comprised by

the firing rates of synaptically connected neurons, weighted

by synaptic strengths, as well as stochastic noise (hereafter

called “drive”; see Materials and Methods), related biologically

to miniature postsynaptic currents. AdEx neurons have the

ability to integrate synaptic inputs and fire action potentials,

followed by a refractory period (Brette and Gerstner, 2005).

AdEx networks with conductance-based synapses can capture

features offered bymore detailed and computationally expensive

models, including AI states and slow-wave dynamics. Figure 1

shows an example of such AI states (Figure 1A) and Up-Down

dynamics (Figure 1B) simulated by the same AdEx network,

changing only the level of spike-frequency adaptation current

(parameter b in the equations, see Material and Methods). In

AI states, the firing of individual units remains irregular, but

sustained (Figure 1A), whereas in slow-wave states the dynamics

alternate between depolarized Up states with asynchronous

dynamics and hyperpolarized Down states of near silence

(Figure 1B). As such, changes in spike-frequency adaptation

lead to differences in cellular kinetics between sleep and wake

states. Biologically, spike-frequency adaptation is suppressed

by enhanced concentrations of neuromodulators such as

acetylcholine during active, conscious brain states that tends to

close K+ leak channels, resulting in sustained depolarization

of neurons (McCormick, 1992) which promotes the emergence

of asynchronous, irregular (AI) action potential firing and

fluctuation-driven regimes associated with waking states. In

contrast, low levels of neuromodulation during unconscious

brain states leave leak K+ channels open, leading to waves of

synchronous depolarisation and hyperpolarization due to the

buildup and decay of spike-frequency adaptation, accounting for

the emergence of slow-wave dynamics as observed in previous

modeling work (Jercog et al., 2017; Nghiem et al., 2020).

The second component of the TVB-AdEx model is a

mean-field equation derived from spiking-neuron network

simulations, capturing the typical dynamics of a neuron in

response to inputs and hence able to describe the mean behavior

of a neuronal population, Zerlaut et al. (2018) and di Volo

et al. (2019) using a Master-Equation formalism (El Boustani

and Destexhe, 2009). This formalism allows one to derive

mean fields from conductance-based integrate-and-fire models.

It has been shown that—using numerical fits of the transfer

function (Zerlaut et al., 2016), an analytical expression for the

relationship between a neuron’s input and output rates - one

can describe complex neuronal models, such as AdEx neurons,

and even Hodgkin-Huxley type biophysical models (Carlu et al.,

2020). In Figures 1C, D, excitatory and inhibitory firing rates

are compared between mean-field simulations using the Master

Equation formalism and spiking neural network simulations

(time binned population spike counts divided by time bin

length T = 0.5 ms). The average adaptation value is also

shown for this network (Figures 1C, D, orange curves). These

population variables are suitably captured by the mean-field

model including adaptation (Capone et al., 2019; di Volo et al.,

2019). This mean-field model can exhibit both AI (Figure 1E)

and Up-Down dynamics (Figure 1F). Like in the AdEx spiking

network model, the transition between two states can be

obtained by changing the adaptation parameter called b in

both cases (di Volo et al., 2019). With no adaptation, the

dynamics are fluctuation-driven around a fixed point exhibiting

nonzero firing rates. With adaptation, as the neurons self-

inhibit due to adaptation, the nonzero rate fixed point is

progressively destabilized by adaptation buildup, driving the

dynamics back to the near-zero firing rate fixed point until

adaptation wears off and noise drives the system back to the

vicinity of the higher-rate fixed point. Thus, with adaptation,

the system displays noise-driven alternation between the two

fixed-points to generate slow waves (Figure 1G). The regimes

are achieved using the mean-field model, which describes

excitatory (RS) and inhibitory (FS) population firing rates as

well as the mean adaptation level of excitatory populations

(Figure 1H).

2.2. Integration of AdEx mean-field
models in TVB

We have used the simulation engines of the Human Brain

Project’s (HBP’s) EBRAINS neuroscience research infrastructure

(https://ebrains.eu and The Virtual Brain https://ebrains.eu/

service/the-virtual-brain) to make access as wide as possible.

Replication of the TVB-AdEx findings can be done here, with

a free EBRAINS account, and users can clone the repositories

to further test or extend the present capacities. The models can

also be downloaded from Github at https://gitlab.ebrains.eu/

kancourt/tvb-adex-showcase3-git to run locally.

Here, the connection of mean-field models was defined by

human tractography data (https://zenodo.org/record/4263723,

Berlin subjects/QL_20120814) from the Berlin empirical data

processing pipeline (Schirner et al., 2015) (Figure 2A). A

parcellation of 68 regions was used to place localized mean-field

models, with long-range excitatory connections (Figure 2B) and

delays (Figure 2C) defined by tract length and weight estimates

in human diffusion tensor imaging (DTI) data (Sanz-Leon et al.,

2015). Now it becomes possible to simulate brain-scale networks

using AdEx-based mean-field models in TVB, hence the name

“TVB-AdEx” model.
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FIGURE 1

Asynchronous and synchronous dynamics produced by networks of microscopic AdEx neurons and their mesoscopic approximations. Raster

plots (A, B) and mean firing rates (C–F) from networks comprised of excitatory RS (blue) and inhibitory FS (red) AdEx neurons displaying

asynchronous (A) vs. synchronous states (B) as in Capone et al. (2019) and di Volo et al. (2019). The two simulated states, mimicking wake and

sleep neural dynamics, di�er only in the spike-frequency adaptation current be provided to the model (be = 0 pA in the asynchronous state and

60 pA in the synchronous state), known to be regulated by neuromodulation in vivo (McCormick, 1992). (C, D) Time variation of mean firing

rates (νe,i) and adaptation current (We) corresponding to networks shown in (A, B). Asynchronous (E) and synchronous (F) firing rate dynamics

produced using a mean-field model of AdEx networks implemented in The Virtual Brain (TVB). (G) Input-output firing rate relations are given by

the mean-field model transfer function (TF). Mean output firing rates of excitatory (blue) neurons as a function of mean excitatory input. The

dashed black trace is the identity line. Fixed points of the system (gray circles) occur where the input-output relation intersects with the identity

at the positions marked by circles (see Methods for equations). Note that two fixed points are apparent, one at high firing rates and one at low

firing rates. The inset is an enlargement of the low-input, low-output region, highlighting the presence of the low-firing fixed point. During

asynchronous, wake-like states, firing rates fluctuate around the higher fixed point. During sleep-like states, spike-frequency adaptation builds

up as excitatory neurons fire at the high-rate fixed point, eventually destabilizing the high-rate fixed point and causing the system to transition to

the near-zero rate fixed point. While the neurons are near-silent, adaptation decays through time, allowing noise fluctuations to entrain a

transition back to the high-rate fixed point. (H) Schematic of the simulated network.

2.3. Spontaneous dynamics of large-scale
networks

Having coupled AdEx mean-field models that capture

average microscopic characteristics of neural activity, we

sought to ascertain if hallmarks of brain-scale (macroscopic)

spontaneous activity resembling human brain states were

reproduced, as well as whether increases in adaptation strength

account for transitions between wake-like and sleep-like

macroscopic dynamics. Characterizing temporal hallmarks of

simulated neural activity (Figure 3), we find that asynchronous,

wake-like dynamics across nodes are recovered in the absence

(b = 0 pA, Figure 3A), but not in the presence (b = 60 pA,

Figure 3B) of adaptation. Power spectral analysis reveals a

peak in the delta range (0.5 − 5 Hz) for the high-adaptation

condition (Figure 3C) consistent with empirical data from

deeply sleeping individuals. Further, the power spectrum

in the low-adaptation condition shows a maximum near

10Hz (alpha range), consistent with empirically observed

dynamics during resting wakefulness (Figure 3C). Therefore,

changes in a simulated microscopic process (spike-frequency

adaption) influence spectral features of macroscopic brain

states, with low-adaptation regimes resembling waking states

and high-adaptation regimes reminiscent of slow-wave

sleep.

Increasing adaptation can also tune the spatial correlation

structure of neural activity across brain states. Indeed, as shown

in Figure 4, Pearson correlations across nodes are enhanced

in the presence of adaptation, consistent with asynchronous

dynamics seen during wakefulness vs. synchronous slow waves

seen during deep sleep (Figures 4A, E). We also observe the

correlation matrix is structured into two clusters corresponding

to the two hemispheres in the slow-wave condition (b = 60

pA, Figure 4E). In addition, increased adaptation strength also

causes the emergence of significantly larger correlations between

inhibitory than excitatory firing rates across nodes during sleep-

like dynamics (Figures 4B, F). This reveals that microscopic

variation in adaptation strength alone can account for empirical

reports of increased correlations between inhibitory neurons

across long distances and even different cortical regions

specifically for inhibitory (Peyrache et al., 2012; Le Van Quyen

et al., 2016; Olcese et al., 2016). This is due to different effects of
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FIGURE 2

Connection of AdEx mean-field models in The Virtual Brain. (A) Each mean-field model consists of two populations, excitatory RS (blue) and

inhibitory FS (red) neurons (as in Figure 1H), taking into account spike-frequency adaptation for excitatory neurons (W, orange). Mean-field

models represent the mesoscopic scale, here comprising each of 68 defined regions of cerebral cortex. Brain regions are connected by

excitatory tracts (thick blue lines) following structural connectomes (Schirner et al., 2015). (B) Number of fibers connecting brain regions in

tractography data, divided by the sum of the gray matter volume of regions in anatomical MRI, is used to define connectivity weights between

nodes. (C) The distribution of tract lengths in tractography data informs delays between TVB-AdEx model nodes.

adaptation on excitatory regular-spiking neurons and inhibitory

fast-spiking neurons, key to reproducing empirical dynamics

in unconscious states (Jercog et al., 2017; Nghiem et al., 2020).

Moreover, the Phase Lag Index (PLI) is increased during

sleep-like dynamics (Figures 4C, G), suggesting systematic

phase relations between nodes consistent with traveling slow

waves empirically observed during spontaneous unconscious

dynamics (Destexhe et al., 1999; Steriade, 2003). Such phase

relations, evidenced by a significantly larger PLI, are more

pronounced for inhibitory than excitatory neurons in sleep-like

dynamics, reminiscent of the key role of inhibitory neurons

in organizing the emergence of synchronous dynamics during

sleep (Nghiem et al., 2018).

Next, we investigate how the connectome’s structure shapes

the landscape of synchrony and phase coherence across

brain regions, alongside adaptation. In particular, how do

the Pearson correlation and PLI scale with spatial distance

between nodes? In both b = 0 pA and b = 60 pA

conditions (Figures 5A, D), the Pearson correlation between

excitatory firing rates significantly decreases with Euclidean

distance between regions, corresponding to tract-length-related

delays in our model. A steeper negative slope is observed

in the awake-like (Figure 5A) than in the slow-wave regime

(Figure 5D), suggesting that the spatial extent of synchrony

between regions is enhanced in the presence of high-adaptation,

sleep-like dynamics.

In Figures 5B, C, E, F, we show a scatter plot and

box plot of the Phase-Lag Index (PLI) as a function of

distance between regions. In both b = 0 pA and b =

60 pA cases, significant differences are observed in the PLI

across regions (Kruskal-Wallis test, ***p < 0.001), suggesting

systematic phase relations consistent with the propagation of

traveling waves are particularly predominant at intermediate

scales. Specifically, in the slow-wave condition (b = 60 pA),

we observe that the PLI between regions approximately 65

mm apart is significantly enhanced (Mann-Whitney U test,

**p < 0.01) in comparison to the PLI at both shorter and

longer distances.

Further, we test whether the predominance of slow waves

at an intermediate spatial scale is an emergent property from

the structure of the human connectome. To this purpose,

we shuffle the connection weights successively for each

region and every other region, to generate a connectome

with the same distribution of connection weights between

regions but retaining none of the graph structure of the

empirical connectome (Figure 5G). The tract lengths are not

modified. Repeating simulations with shuffled connectomes,

we again compute the PLI as a function of distance. With

shuffled connectomes, we find that the PLI no longer

varies significantly as a function of distance in wake-like

dynamics (Figure 5H). As well, the intermediate peak in PLI

as a function of distance—denoting an intermediate spatial
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FIGURE 3

Whole-brain-scale simulations of connected AdEx mean-field models produce activity mimicking wake- and sleep-like states. Time variation of

firing rates (νe,i, top) and adaptation currents (We, bottom) in simulated wake- (A) and sleep-like (B) states for each of the model nodes

representing 68 brain regions. When adaptation (be) equals 0 pA, the activity of model nodes is asynchronous (A), whereas the inclusion of

(Continued)
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FIGURE 3 (Continued)

adaptation (be = 60 pA) leads to the emergence of synchrony between brain regions (B). (C) Fourier power spectra of signals produced by the

TVB-AdEx in synchronous (sleep-like) and asynchronous (wake-like) states for di�erent values of be. Note that maximal power in the sleep-like

condition falls in the delta range (1–4 Hz), while it occurs near 10 Hz, in the alpha range for low adaptation, wake-like states.

FIGURE 4

Emergence of enhanced spontaneous synchrony between brain regions in sleep-like simulations. Functional connectivity is assessed in

wake-like (A–D) and deep sleep-like (E–H) states, by assessing Pearson correlation (A, B, E, F) and Phase-Lag Index (PLI) (C, D, G, H). Heatmaps

show correlations between brain regions in terms of excitatory firing rates (A, C, E, G), whereas scatter plots of show relationships between

inhibitory vs. excitatory firing rate correlations (B, D, F, H) where the dotted trace is the identity line. Inter-region correlations are increased

across regions in sleep-like states (E) as compared to wake-like states (A), consistent with increased synchrony across brain regions in empirical

brain imaging studies (M/EEG). Correlations across nodes are significantly larger between inhibitory firing rates than between excitatory firing

rates in sleep-like dynamics [(F); Independent Student’s t-test, t = −8.5, p = 2.8e− 17], but not during wake-like regimes [(B); t = −0.9,

p = 0.35]. The PLI is consistently larger in sleep-like dynamics (G), unlike in wake-like dynamics where the PLI is diminished (C). Likewise, the PLI

of excitatory vs inhibitory populations is significantly di�erent during sleep-like [(H); Independent Student’s t-test, t = 5, p = 4.6e− 7], but less so

in wake-like [(D); t = 4.2, p = 1.8e− 5] states, altogether possibly suggesting a previously unidentified role of inhibition in the emergence of

long-range synchrony in sleep-like activity.

scale for traveling waves (Figure 5I)—is lost. These results

suggest that the non-trivial organization of phase coherence

phenomena across cortex is an emergent property of both

high adaptation and the weighted graph structure of the

human connectome.

Finally, the transition between wake and sleep-like

dynamics when changing the level of adaptation is robust

for different combinations of parameters of the model

(Figure 6). With a high-density scan of the parameter space

(see Methods), we find that, for lower values of spike-

frequency adaptation (b = 0 pA), AI states are present

independently of the timescale (T) of the AdEx mean-field

model network nodes and the coupling strength between

nodes (S). Consequently, when increasing adaptation, there

is a sharp transition from wake-like dynamics to slow-wave

activity captured by a marked increase in firing rate standard

deviation, again robustly across all values of T and S in the

explored range.

2.4. Responsiveness to external
stimulation

After reproducing features of spontaneous dynamics

between brain states, we test the hypothesis that changing

adaptation in the TVB-AdEx model can also explain differences

in empirically observed stimulus-evoked brain responses,

with stimuli encoded in more sustained, widespread, reliable,

and complex patterns during conscious states (Massimini

et al., 2005). To this end, a square wave of 0.1 Hz, matching

the magnitude of stochastic drive, with 50 ms duration was

input to the firing rates of the transfer function for excitatory

populations in the right premotor cortex of the TVB-AdEx

simulation during awake-like and slow wave sleep-like

conditions, as in previously published empirical studies (Casali

et al., 2013).

Figure 7 illustrates the effect of perturbing the large-scale

network defined by the TVB-AdEx models. The effect of an
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FIGURE 5

Spatial extent of synchrony and phase coherence across regions emerge from adaptation strength and connectome structure. (A–F) Pearson

correlation (A, D) and PLI (B, C, E, F) between regions as a function of distance, as scatter plots (A, B, D, E) and box plots (C, F) in the absence

[b = 0 pA, (A–C)] and presence [b = 60 pA, (D–F)] of adaptation. In scatter plots, 400 points were subsampled randomly for graphical

representation, and solid black lines represent linear fits. Correlations are observed to decrease with distance, in a steeper manner in the

wake-like condition. In box plots, distances between regions are subdivided into five bins of equal size, and the mean distance between the two

extremities of each bin is marked on the horizontal axis. The PLI is significantly enhanced, suggesting increased phase coherence, at an

intermediate spatial scale in slow-wave dynamics. (G) Heatmap of connection weights in shu	ed connectivity matrix, where the weights from

one region to every other region are successively randomly permuted. (H, I) Boxplot of PLI as a function of distance for simulations with a

shu	ed connectome for b = 0 pA (H) and b = 60 pA (I) [compare to (C, F)]. The *, **, and *** symbols indicate the values of p < 0.05, p < 0.01,

and p < 0.001 respectively.

external stimulus is apparent for both deep sleep-like and wake-

like states (Figure 7A). The average traces of the stimulated

region are shown in black, and take into account the 40

realizations shown in gray. To examine the spread of activity

following perturbations, the time at which the excitatory firing

rate of each region becomes significantly different from the

unstimulated baseline (prior to perturbation) is plotted using a

color map showing earlier significant changes in brighter colors.

Here, we find that responses are more widespread across time

and space across brain regions in wake-like (Figure 7B) than

sleep-like dynamics (Figure 7C), corresponding to experimental

observations in response to Transcranial Magnetic Stimulation

(TMS) (Massimini et al., 2005).

To better characterize the complexity of stimulus-evoked

responses, the perturbational complexity index (PCI), used in

previous experimental works involving TMS, was computed.

The PCI is the ratio between Lempel-Ziv complexity, which

captures the number of all possible different binary words that

can be extracted from binarized responses to stimuli across

time and regions, and the entropy of the binarized response

that describes how often the response is above the pre-stimulus

baseline (see Methods for binarization procedure). A low PCI

value indicates a “simple” response to stimulus, while a high PCI

value indicates more “complex” response, typically propagating

more effectively to different brain areas (Casali et al., 2013). The

models were perturbed with stimuli smaller (0.01 Hz) than the
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FIGURE 6

Grid search in parameter space for asynchronous and slow oscillatory states. The TVB-AdEx model was run for six di�erent parameter

combinations in the depolarized region (EL,i = EL,e = −64 mV) and the time traces of the inhibitory and excitatory populations of the 68 AdEx

mean-field models are plotted during the last 3 s of the simulation. With be = 0 pA, for intermediate values of S, one can see how AI states

appear, consistent with the low value of SD shown in the feature plot. For S = 0.5, one can see the transition between AI and UD states when

increasing be.

stochastic drive, comparable to the noise in amplitude (0.1 Hz),

and larger than the drive (1.0 Hz) for simulations in which the

value of spike frequency adaptation (be) was varied between

0 and 60 pA. As shown in Figures 7D–F, computing the PCI

from the TVB-AdEx model shows that PCI values are typically

higher for lower-adaptation, wake-like regimes than for higher-

adaptation, slow-wave sleep like regimes. In particular, a sharp

drop in PCI values is observed between b = 40 pA and b = 60

pA, suggesting an abrupt transition between highly responsive

asynchronous and less responsive slow-wave dynamics as

adaptation increases. For each value of noise, a one-way ANOVA

revealed significant differences between PCI distributions across

b-values (p < 0.0001), with multiple comparisons highlighting

that the PCI was significantly larger for wake-like than sleep-

like conditions, in particular for lower-amplitude stimuli. The

same behavior was observed when comparing awake subjects

with subjects in slow-wave sleep (Massimini et al., 2005; Casali

et al., 2013). One may note a sharp drop of the PCI after b =

40 pA, for which enhanced PCI is observed, reminiscent of a

transition from conscious to unconscious response dynamics.

As concentrations of neuromodulators such as acetylcholine are

known to increase with attention and vigilance, b = 40 pA, which

is at the higher-adaptation, lower-neuromodulation end of the

spectrum of high-PCI states, could be reminiscent of states that

lie between waking vigilance and deep sleep, such as resting

wakefulness. Also note the wider distribution of PCI values in

sleep-like simulations, suggesting more variable responses for

each realization of the same stimulus and therefore less reliable

stimulus encoding.

3. Discussion

In this paper, we demonstrated that biologically-informed

scale-integrated mean-field models (di Volo et al., 2019) can

be used to simulate large-scale brain networks using the

TVB platform in EBRAINS. The coupled mean-field models

comprising the TVB-AdEx are derived from networks of AdEx

neurons and display whole-brain asynchronous and slow-wave

dynamics when wired following white matter tracts from a

human connectome. These results demonstrate the natural

emergence of empirically observed patterns of macroscopic
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FIGURE 7

Increased responsiveness to perturbations in simulated wake-like compared to sleep-like states. Excitatory firing rate of a simulated brain region

in time during wake-like (A) and sleep-like dynamics, in response to a stimulus. Black lines show the mean across 40 realizations, reminiscent of

event-related potentials (ERPs), and gray shaded areas show the standard deviation from the mean across realizations. (B, C) Spatio-temporal

propagation of responses to stimuli in wake-like (B) and sleep-like (C) states. Color plotted on the brain surface indicates earliest time at which

each region becomes significantly di�erent from its pre-stimulus baseline (see Methods), with earlier times in lighter colors. Regions in white do

not present significant di�erences in firing rate in response to the stimulus. In wake-like states, stimulus responses recruit more brain regions

and produce more spatially widespread and temporally sustained activity patterns, reminiscent of empirical observations. (D–F) Box plots of

perturbational complexity index (PCI) measurements from 40 realizations of wake-like and sleep-like simulations with increasing stimulus

amplitudes (panels left to right). Significant changes in the PCI are observed when the spike frequency adaptation (be) is varied (one-way

Kruskal-Wallis test; p < 0.05 for each group of adaptation values, be = 0, 20, 40, 60, for each stimulus value (0.01, 0.1, and 1 Hz). Results of

post-hoc Conover test for multiple comparisons between values of be are shown in the figure, where *p < 0.05, **p < 0.01, and ***p < 0.001).

In high-adaptation, sleep-like regimes, a sharp drop in PCI is observed, denoting more spatio-temporally complex responses in the Lempel-Ziv

sense in wake-like compared to sleep-like states, consistent with experiments (Massimini et al., 2005; Casali et al., 2013).

brain dynamics from simulated changes at microscopic scales

from both microscopic adaptation changes and the structural

organization of the human connectome. The TVB-AdEx

integration in EBRAINS is also of interest as EBRAINS

human brain atlas services will be able to provide a large

degree of cytoarchitectural detail such as region-specific

neurotransmitter densities and cell types and densities and

thus add to the biological realism of these virtual brain

models. The vertical integration across scales is provided by

TVB-AdEx-type models, taking advantage of the Big Data

in EBRAINS.

TVB-AdEx mean-field models constituting each node of

the connectome are designed by construction to approximate

the mean and covariance of the firing rate in spiking neural

networks exhibiting stable dynamics in asynchronous irregular

regimes (El Boustani and Destexhe, 2009). This model was

extended to two neuronal populations, excitatory neurons with

adaptation and inhibitory neurons (di Volo et al., 2019), but this

extension has limitations. Importantly, the model is imprecise

when adaptation varies within a range larger than described

here [for adaptation values higher than 100 pA (di Volo et al.,

2019)] and when fast synchronous dynamics like oscillations
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in the gamma range (between 40 and 80 Hz) (El Boustani

and Destexhe, 2009), spindles, or ripples occur. This model

is therefore likely not directly suitable for understanding

the nuances associated with particular microscopic motifs

comprised by transiently communicating assemblies that likely

encode relevant neural information. The model is appropriate

to the type of general dynamics presented here, wake-like

AI and deep sleep-like slow-waves, describing large scale

phenomena with relatively slow time scales. By smoothing

microscopic details, we have built a computationally tractable

bridge from microscopic to macroscopic scales, to elucidate

how general dynamical phenomena relate to differences in

neuronal interactions.

After integration in TVB, the resulting TVB-AdEx model

displays a number of interesting features and several exciting

perspectives for future work. A first result is the emergence of

synchrony across brain regions in the presence of adaptation.

In this case, the TVB-AdEx model displays synchronized slow

waves with structured phase relations at a macroscopic, brain-

wide level (Figure 3). This is consistent with the synchronized

slow-wave dynamics observed during deep sleep in the

brain (Destexhe et al., 1999; Steriade, 2003; Niedermeyer and

Lopes da Silva, 2005). When the same model is set into the

asychronous-irregular regime due to the loss of spike-frequency

adaptation, as is the case in the presence of acetylcholine

and other neuromodulators present in higher concentrations

during waking states (Jones, 2003), the large-scale network

displays a lower level of synchrony (Figure 3), consistent with

asynchronous dynamics typically seen in awake and aroused

states (Destexhe et al., 1999; Steriade, 2003; Niedermeyer and

Lopes da Silva, 2005). These different levels of synchrony

are therefore emergent properties in the large-scale network,

induced by changes at the microscopic level. A detailed grid

scan in parameter space established the robustness of this

phenomenon (Figure 6).

A second main result is that evoked dynamics are also

state-dependent. When the network displays synchronized Up-

and Down-states, a stimulus typically evokes a high amplitude,

simple response that remains local in space and time. When

the model resides in the asynchronous regime, the same

stimulus evokes responses that are weaker in amplitude, but

that propagate in a more elaborate way through space and

time. The PCI measure applied to these two states match the

experimental observations (Massimini et al., 2005; Casali et al.,

2013; D’Andola et al., 2018; Dasilva et al., 2021). Again, this is an

emergent property of the large-scale network.

What are possible mechanisms for such differences? A

previous study (Zerlaut and Destexhe, 2017) showed that

in balanced networks, not all states are equal and that

asynchronous states, despite their apparently noisy character,

can display higher responsiveness and support propagation

of stimuli. This enhanced responsiveness of AI states can be

explained by the combined effects of depolarization, membrane

potential fluctuations, and conductance state. It was proposed as

a fundamental property to explain why the activity of the brain

is systematically asynchronous in aroused states (Zerlaut and

Destexhe, 2017). The present results are in full agreement with

this mechanism, which manifests here in the asynchronous state

as a propagation further in time and space, across many brain

areas, associated with higher values of the PCI.

We believe that this work opens several perspectives.

First, the enhanced propagation of perturbations during wake-

like states could be used as a basis to explain why stimuli

are perceived in asynchronous regimes, and what kind of

modulation of the network activity could support phenomena

such as attention and perception. Second, mean-fieldmodels can

be set to also display pathological states, such as hyper-excitable

or hypersynchronized states, and the TVB-AdEx model could

be used to investigate seizure activity (Depannemaecker et al.,

2021). Other features, such as neuronal heterogeneity, are also

beginning to be included in mean-field models (di Volo and

Destexhe, 2020), paving the way for enhancing biological realism

in future versions of TVB-AdEX models.

In TVB, connectivity depends on the intermediate spatial

resolution of coarse-graining. Here, the brain was parceled in 68

regions, with each mean-field representing a substantially large

brain area. TVB allows such simple simulations using a few tens

of nodes, taking into account the rough long-range connectivity

according to the connectome resolved in tractography of human

DTI. TVB can also simulate much finer-grained connectivity,

by defining a larger number of nodes (usually on the order of

hundreds to hundreds of thousands, approaching the resolution

of cortical columns) (Spiegler and Jirsa, 2013). In such vertex-

based simulations that shall follow the present work, local

connectivity is determined by intracortical connections, whereas

the white-matter connectome from DTI used here captures

effects of longer-range cortico-cortical fibers.

Early stimulation studies in humans and in particular in

rodents are pioneering the use of high-resolution simulations,

demonstrating subtler influences of the connectome in

scaffolding signal propagation through brain networks (Spiegler

et al., 2016, 2020). In those studies, network nodes were

equipped with generic neural mass dynamics, Andronov-

Hopf-oscillators, which are theoretically appealing for their

mathematical simplicity, but are limited with regard to

biophysical interpretability of the results. The inclusion

of high-resolution data from tracer studies in the Allen

Institute was recently demonstrated in virtual mouse brain

models to significantly increase the predictive power (Melozzi

et al., 2019). As well, the inclusion of subject-specific,

personalized connectomes in virtual brain models significantly

outperforms generic simulations in predictive inter-individual

variability (Melozzi et al., 2019; Hashemi et al., 2020). These

studies point together to the importance of personalized brain

network models in future clinical applications and affords novel

methods supporting such goals (Falcon et al., 2016; Jirsa et al.,
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2017). The virtual brains in Spiegler et al. (2016, 2020) captured

the emergence of well-known resting state networks known

during spontaneous activity, but also functionally specific brain

responses to stimulation of regions along the processing chains

of sensory systems from periphery up to primary sensory

cortical areas. The latter responses heavily relied on the Default

Mode Network (DMN) and were suggestive of the DMN playing

a mechanistic role between functional networks. But neither

brain state dependence, nor biological interpretation of the

neural mass model parameters was possible, as it requires the

incorporation of biological complexity and integration across

scales provided here by the here by the TVB-AdEx approach.

Ongoing efforts in EBRAINS aim to enrich high-resolution

brain models with detailed information on regionally-variant

physiological features (neurotransmitters, receptor densities,

cell types, and densities) to next build the Virtual Big Brain,

a high-resolution multi-scale brain network, which will be

continuously updated and available to the community. The

drawback of such fine grained simulations is that they typically

require large computing resources as provided by EBRAINS,

while coarse grained TVB simulations, as presented here, can

easily be run on a standard workstation. To summarize, for the

sake of the initial release of the TVB-AdEx models, we offer a

relatively coarse parcellation, which will become more refined

and personalized in future work.

The TVB-AdEx models presented here are constructed

by connecting conductance-based, mean-field models of

biologically-informed populations of neurons by a human

connectome (Sanz-Leon et al., 2015). While the results

presented in the main figures are made on the backbone

of a single example human connectome, and many of the

reported emergent phenomena could be reproduced with

other topologies of connectivity, it is imperative to note that

the human connectome backbone of the TVB-AdEx model

is interchangeable between human subjects, representing

an opportunity to construct personalized models, digital

twins (Evers and Salles, 2021; Petkoski and Jirsa, 2022), for

any human subject for which diffusion tractography data

are available. While a study of inter-individual variation is

beyond the scope of this study, as a proof of principle, our

data indicate differences in spectral features, particularly

the power of low-frequency activity and power-law scaling,

between personalized TVB-AdEx models made from two

different healthy human subjects (Supplementary Figure S1).

Indeed, a parameter scan using TVB-AdEx models derived

from the subjects identifies different overlapping regions of

parameter space in which transitions between sleep-like and

wake-like activity between human subjects. Construction of

next generation TVB-AdEx models with human connectomes

for which biological and behavioral data are available, for

example, from the Human Connectome Project cohorts, will

allow researchers to use TVB-AdEx models methods introduced

here to test predictions regarding inter-subject differences in

brain states and their transitions. All code is openly available

in the EU digital neuroscience platform EBRAINS (Schirner

et al., 2022) and on Github to facilitate progress in personalized

brain modeling (Falcon et al., 2016) of neural states and their

transitions in health and disease.

It is interesting to note that the global properties used here

to characterize neural dynamics across brain states—synchrony,

frequency spectra, responsiveness, and PCI—all reflect neural

correlates of consciousness (Skarda and Freeman, 1987; Tononi

and Edelman, 1998; Sarasso et al., 2014; Koch et al., 2016). It

has even been argued that asynchronous dynamics (so-called

’activated EEG’) is so far one of the most “sensitive and reliable”

neural correlates of consciousness (Koch et al., 2016). Though

we have only presented results from stimulating one brain

region in different brain states, in the interest of replicating

experimental results (Casali et al., 2013), it is important to note

that our approach offers the possibility to perturb any region

within a given connectome to simulate the effects of various

stimuli or tasks in a variety of states, as well as the dynamical

consequences of transcranial stimulation in experimental and

medical contexts. This further emphasizes the promise of

the present modeling approach to understanding dynamics

associated with conscious and non-conscious states, with broad

potential applications in medicine and computation.

4. Materials and methods

Three types of models are used in this work: a network

of spiking neurons, a mean-field model of this network, and a

network of mean-fieldmodels implemented in The Virtual Brain

(TVB). Here we describe these models successively.

4.1. Spiking network model

We considered networks of integrate-and-fire neuron

models displaying spike-frequency adaptation, based on two

previous papers (Destexhe, 2009; Zerlaut et al., 2018). We

used the Adaptive Exponential (AdEx) integrate-and-fire

model (Brette and Gerstner, 2005). We considered a population

of N = 104 neurons randomly connected with a connection

probability of p = 5%. We considered excitatory and inhibitory

neurons, with 20% inhibitory neurons. The AdExmodel permits

to define two cell types, “regular-spiking” (RS) excitatory cells,

displaying spike-frequency adaptation, and “fast spiking” (FS)

inhibitory cells, with no adaptation. The dynamics of these

neurons is given by the following equations:

cm
dvk
dt

= gL(EL − vk)+ gL1e
vk−vthr
1 − wk + Isyn (1)

uw
dwk

dt
= −wk + b

∑

tsp(k)

δ(t − tsp(k))+ a(vk − EL), (2)
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where cm = 200 pF is the membrane capacitance, vk is the

voltage of neuron k and, whenever vk > vpeak = −47.5 mV for

inhibitory neurons and vk > vpeak = −40.0 mV for excitatory

at time tsp(k), vk is reset to the resting voltage vreset = −65 mV

and fixed to that value for a refractory time Trefr = 5 ms.

The voltage threshold vthr is –50 mV. The leak term gL had

a fixed conductance of gL = 10 nS and the leakage reversal

EL was of −65 mV for inhibitory and −63 for excitatory. The

exponential term had a different strength for RS and FS cells,

i.e., 1 = 2 mV (1 = 0.5 mV) for excitatory (inhibitory) cells.

Inhibitory neurons were modeled as fast spiking FS neurons

with no adaptation (a = b = 0 for all inhibitory neurons)

while excitatory regular spiking RS neurons had a lower level of

excitability due to the presence of adaptation (while b varied in

our simulations we fixed subthreshold adaptation a = 0 nS and

uw = 500 ms).

The synaptic current Isyn received by neuron i is the result

of the spiking activity of all neurons j ∈ pre(i) pre-synaptic

to neuron i. This current can be decomposed in the synaptic

conductances evoked by excitatory E and inhibitory I pre-

synaptic spikes

Isyn = Ge
syn(Ee − vk)+ Gi

syn(Ei − vk),

Where Ee = 0 mV (Ei = −80 mV) is the excitatory

(inhibitory) reversal potential. Excitatory synaptic conductances

were modeled by a decaying exponential function that sharply

increases by a fixed amount QE at each pre-synaptic spike, i.e.,:

Ge
syn(t) = Qe

∑

exc.pre

2(t − tesp(k)) e
−(t−tesp(k))/ue ,

Where 2 is the Heaviside function, ue = ui = 5 ms

is the characteristic decay time of excitatory and inhibitory

synaptic conductances, and Qe = 1.5 nS (Qi = 5 nS) the

excitatory (inhibitory) quantal conductance. Inhibitory synaptic

conductances are modeled using the same equation with e → i.

This network displays two different states according to the level

of adaptation, b = 0 pA for asynchronous irregular states,

and b = 60 pA for Up-Down states (see Zerlaut et al., 2018

for details).

4.2. Mean-field models

We considered a population model of a network of AdEx

neurons, using a Master Equation formalism originally

developed for balanced networks of integrate-and-fire

neurons (El Boustani and Destexhe, 2009). This model

was adapted to AdEx networks of RS and FS neurons (Zerlaut

et al., 2018), and later modified to include adaptation (di Volo

et al., 2019). The latter version is used here, which corresponds

to the following equations using Einstein’s index summation

convention where sum signs are omitted and repeated indices

are summed over:

T
∂νµ

∂t
= (Fµ − νµ)+

1

2
cλη

∂2Fµ

∂νλ∂νη
(3)

T
∂cλη

∂t
= δλη

Fλ(1/T − Fη)

Nλ
+ (Fλ − νλ)(Fη − νη)

+
∂Fλ

∂νµ
cηµ +

∂Fη

∂νµ
cλµ − 2cλη (4)

∂W

∂t
= −W/uw + bνe + a(µV (νe, νi,W)− EL) , (5)

where µ = {e, i} is the population index (excitatory or

inhibitory), νµ the population firing rate and cλη the covariance

between populations λ and η. W is a population adaptation

variable (di Volo et al., 2019). The function Fµ={e,i} =

Fµ={e,i}(νe, νi,W) is the transfer function which describes the

firing rate of population µ as a function of excitatory and

inhibitory inputs (with rates νe and νi) and adaptation level W.

These functions were estimated previously for RS and FS cells

and in the presence of adaptation (di Volo et al., 2019).

At the first order, i.e., neglecting the dynamics of the

covariance terms cλη , this model can be written simply as:

T
dνµ

dt
= (Fµ − νµ) , (6)

Together with Equation (5). This system is equivalent to

the well-known Wilson-Cowan model (Wilson and Cowan,

1972), with the specificity that the functions F need to be

obtained according to the specific single neuron model under

consideration. These functions were obtained previously for

AdEx models of RS and FS cells (Zerlaut et al., 2018; di Volo

et al., 2019) and the same are used here.

For a cortical volume modeled as two populations of

excitatory and inhibitory neurons, the equations can be written

as:

T
dνe

dt
= Fe(νe + νaff + νdrive, νi)− νe (7)

T
dνi

dt
= Fi(νe + νaff , νi)− νi (8)

dW

dt
= −W/uw + bνe + a(µV (νe, νi,W)− EL), (9)

where νaff is the afferent thalamic input to the population

of excitatory and inhibitory neurons and νdrive is an external

noisy drive simulated by an Ornstein-Uhlenbeck process.

The function µV is the average membrane potential of the

population and is given by

µV =
µGeEe + µGiE+ i+ gLEL −W

µGe + µGi + gL
,

where the mean excitatory conductance is µGe = νeKeueQe and

similarly for inhibition.
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This system describes the population dynamics of a single

region, and was shown to closely match the dynamics of the

spiking network (di Volo et al., 2019).

4.3. Networks of mean-field models

Extending our previous work at themesoscale (Chemla et al.,

2019; di Volo et al., 2019) to model large brain regions, we define

networks of mean-field models, representing interconnected

brain regions (each described by a mean-field model). We

considered interactions between cortical regions as excitatory,

while inhibitory connections remain local to each region. The

equations of such a network, expanding the two-population

mean-field (Equation 7), are given by:

T
dνe(k)

dt
= Fe

[

ν
input
e (k)+ νaff (k), νi(k)

]

− νe(k)

T
dνi(k)

dt
= Fi

[

ν
input
e (k)+ νaff (k), νi(k)

]

− νi(k) (10)

dW(k)

dt
= −W(k)/uw + bνe(k)

+ a(µV (νe(k), νi(k),W(k))− EL) , (11)

where νe(k) and νi(k) are the excitatory and inhibitory

population firing rates at site k, respectively, W(k) the level

of adapation of the population, and ν
input
e (k) is the excitatory

synaptic input. The latter is given by:

ν
input
e (k) = νdrive(k)+

∑

j

Cjk νe(j, t − ‖j− k‖/vc) (12)

where the sum runs over all nodes j sending excitatory

connections to node k, and Cjk is the strength of the connection

from j to k (and is equal to 1 for j = k). Note that νe(j, t − ‖j −

k‖/vc) is the activity of the excitatory population at node k at

time t−‖j−k‖/vc to account for the delay of axonal propagation.

Here, ‖j− k‖ is the distance between nodes j and k and vc is the

axonal propagation speed.

4.4. Spontaneous activity

The Phase-Lag Index (PLI) was computed for each pair of

nodes, averaged over simulation time. The Hilbert transform

is employed to extract the phase ψ(t) of the time series. From

there, the PLI, given by

PLI ≡ |< sign(ψi(t)− ψj(t)) >|, (13)

is computed for nodes i and j, where < · > denotes averaging

over time (Silva Pereira et al., 2017). One may note that the

PLI takes values between 0 (random phase relations or perfect

synchrony) and 1 (perfect phase locking). In this work we report

the mean PLI over all time epochs for excitatory and inhibitory

firing rates of each region pair for each adaptation value.

4.5. Parameter space exploration

A model such as the TVB-AdEx contains many parameters

whose impact on the dynamics needs to be understood.

Additionally, it is necessary to have reasonable, physiological

ranges determined for them. As described above, most of

them have were already fixed via biological or mathematical

arguments, but there is still a subset of parameters whose

impact needed to be studied to have a deeper and general

understanding of the model. In Table 1, one can find the

characteristics of the parameters chosen and the reason for

their choice. For each parameter, 16 evenly spaced values were

obtained inside the described range. Preliminary results allowed

to reduce the explored parameter space to a total of 675,840

different configurations to be analyzed. Using High Performance

Computing, the simulation of each parameter combination was

parallelized. For each configuration, a seven second simulation

was run and, afterwards, multiple features were extracted (mean

and standard deviation of the excitatory and inhibitory firing

rates, mean value of functional connectivity, etc.). By plotting the

value of these features as a function of the parameter values, one

can observe the influence of the latter on the model’s dynamics

(as is shown in Figure 6).

TABLE 1 Name, description, reason of choice, range and units of the parameters chosen for the parameter scan.

Parameter Description Reason of choice Range Units

S Coupling strength between nodes. Has to be

chosen phenomenologically.

Has to be chosen phenomenologically. [0, 0.5] Adimensional

EL,i Leakage reversal potential of AdEx inhibitory

neurons.

Resting membrane potential of a neuron might

vary depending on external conditions.

[−80,−60] mV

EL,e Leakage reversal potential of AdEx excitatory

neurons.

Resting membrane potential of a neuron might

vary depending on external conditions.

[−80,−60] mV

T Timescale of the AdEx mean field model. Has to be chosen phenomenologically. [5, 40] ms

be Adaptation strength of excitatory AdEx neurons. Models the change in neuromodulation that

induces transition between AI and UD.

[0, 120] pA
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4.6. Evoked activity

We computed the Perturbational Complexity Index (PCI) in

response to a localized square wave stimulus, over the firing rates

in a given brain region of a TVB-AdEx simulation, following

the method proposed by Casali et al. (2013). This stimulus

was applied by augmenting the firing rate of the excitatory

population during the pulse. This is done for multiple trials

with the same stimulus delivered to the same node at a random

point in time and with different realizations of noise. The

PCI is the ratio of two quantities: the Lempel-Ziv algorithmic

complexity and the source entropy (Casali et al., 2013). To

compute both quantities, firing rates ν(t) must be binarized to

produce significance vectors s(t). First, the trials are aligned

to stimulation time, considering only the 300 ms before and

after stimulus onset. Then, each node’s firing rate is re-scaled

and mean and standard deviation given by pre-stimulus activity

averaged over nodes. Afterwards, all pre-stimulus firing rates are

randomized across time bins, this procedure being repeated 500

times. The threshold for significance T is then given by the one-

tail percentile of themaximum absolute value over all repetitions

within a series of 20 trials. For each trial of those 20 trials, we

can then write s(t) = 1 whenever post-stimulus ν(t) > T and

s(t) = 0 otherwise. For what follows, we concatenate all s(t)

vectors from all simulation nodes into one single significance

vector S(t) per trial.

The Lempel-Ziv complexity LZ(S) is the length of the

“zipped” vector S(t), i.e., the number of possible binary

“words” that make up the binary vector S(t). Briefly, S(t)

is sectioned successively into consecutive words of between

one and Nt characters where Nt is the total length of

S(t). Scanning sequentially through all words, each new

encountered word is added to a “dictionary,” and LZ(S) is the

total number of words in the dictionary at the end of the

procedure.

The spatial source entropy H(S) is given by:

H(S) = −p(S = 0) log2(p(S = 0))− p(S = 1) log2(p(S = 1)),

(14)

where log2 denotes the base-two logarithm.

The PCI can then be expressed as PCI(S) = LZ(S)
H(S)

.

Code availability

A python-based open-access code to run the present whole-

brain model will be accessible online in the EBRAINS platform

(https://ebrains.eu) as a companion to the publication of the

present article. The scripts are also accessible on Github at

https://gitlab.ebrains.eu/kancourt/tvb-adex-showcase3-git.
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SUPPLEMENTARY FIGURE 1

Inter-individual di�erences in model parameters predicted by personal

connectomes from di�erent healthy human subjects. High performance

computing (HPC) grid search of parameters from a TVB-AdEx model

constructed with a second unique human connectome (subject

DH20120806 available from https://zenodo.org/record/3497545#.

Y4YybezMK3I, compared to the TVB-AdEx model featured in the main

text (subject QL20120814). Spectral features are extracted and

di�erences between personalized TVB-AdEx models are shown in

heatmaps. In particular, the two subject models show di�ering

dependencies on connectivity strength and spike-frequency adaptation

parameters, transitioning between wake- and sleep-like states at

di�erent values. Spectral profiles of simulated neural activity vary

between subjects with distinct connectomes, with delta, theta, alpha

power, and power law scaling showing di�erences in parameter space.

With easily interchangeable individual connectomes from subjects in

which behavioral and biological data are also available, TVB-AdEx

models will help make testable personalized predictions regarding

individual variation in transitions between conscious and unconscious

brain states in healthy and pathological conditions.
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