
fncom-16-1079155 December 6, 2022 Time: 6:15 # 1

TYPE Original Research
PUBLISHED 08 December 2022
DOI 10.3389/fncom.2022.1079155

OPEN ACCESS

EDITED BY

Jin Hong,
Guangdong Provincial People’s
Hospital, China

REVIEWED BY

Lei Liu,
Guangdong Provincial People’s
Hospital, China
Jiong Zhang,
University of Southern California,
United States
Yalin Zheng,
University of Liverpool,
United Kingdom

*CORRESPONDENCE

Zhentao Zhu
jshayyzzt@163.com
Weihua Yang
benben0606@139.com

RECEIVED 25 October 2022
ACCEPTED 24 November 2022
PUBLISHED 08 December 2022

CITATION

Wu M, Lu Y, Hong X, Zhang J,
Zheng B, Zhu S, Chen N, Zhu Z and
Yang W (2022) Classification of dry
and wet macular degeneration based
on the ConvNeXT model.
Front. Comput. Neurosci. 16:1079155.
doi: 10.3389/fncom.2022.1079155

COPYRIGHT

© 2022 Wu, Lu, Hong, Zhang, Zheng,
Zhu, Chen, Zhu and Yang. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which
does not comply with these terms.

Classification of dry and wet
macular degeneration based on
the ConvNeXT model
Maonian Wu1,2, Ying Lu1, Xiangqian Hong3, Jie Zhang4,
Bo Zheng1,2, Shaojun Zhu1,2, Naimei Chen5, Zhentao Zhu5*
and Weihua Yang3*
1School of Information Engineering, Huzhou University, Huzhou, China, 2Zhejiang Province Key
Laboratory of Smart Management and Application of Modern Agricultural Resources, Huzhou
University, Huzhou, China, 3Shenzhen Eye Hospital, Jinan University, Shenzhen, China, 4Advanced
Ophthalmology Laboratory, Brightview Medical Technologies (Nanjing) Co., Ltd., Nanjing, China,
5Department of Ophthalmology, Huaian Hospital of Huaian City, Huaian, China

Purpose: To assess the value of an automated classification model for dry and

wet macular degeneration based on the ConvNeXT model.

Methods: A total of 672 fundus images of normal, dry, and wet macular

degeneration were collected from the Affiliated Eye Hospital of Nanjing

Medical University and the fundus images of dry macular degeneration were

expanded. The ConvNeXT three-category model was trained on the original

and expanded datasets, and compared to the results of the VGG16, ResNet18,

ResNet50, EfficientNetB7, and RegNet three-category models. A total of 289

fundus images were used to test the models, and the classification results

of the models on different datasets were compared. The main evaluation

indicators were sensitivity, specificity, F1-score, area under the curve (AUC),

accuracy, and kappa.

Results: Using 289 fundus images, three-category models trained on the

original and expanded datasets were assessed. The ConvNeXT model trained

on the expanded dataset was the most effective, with a diagnostic accuracy

of 96.89%, kappa value of 94.99%, and high diagnostic consistency. The

sensitivity, specificity, F1-score, and AUC values for normal fundus images

were 100.00, 99.41, 99.59, and 99.80%, respectively. The sensitivity, specificity,

F1-score, and AUC values for dry macular degeneration diagnosis were 87.50,

98.76, 90.32, and 97.10%, respectively. The sensitivity, specificity, F1-score, and

AUC values for wet macular degeneration diagnosis were 97.52, 97.02, 96.72,

and 99.10%, respectively.

Conclusion: The ConvNeXT-based category model for dry and wet macular

degeneration automatically identified dry and wet macular degeneration,

aiding rapid, and accurate clinical diagnosis.

KEYWORDS

dry and wet macular degeneration classification models, intelligent assisted
diagnosis, deep learning, ConvNeXT model, artificial intelligence
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Introduction

Macular degeneration, a neurodegenerative diseases and
blinding eye disease, is the leading cause of irreversible central
vision loss in developed countries and is expected to affect
288 million people worldwide by 2040 (Wong et al., 2014;
Rozing et al., 2020). Macular degeneration can be divided into
dry macular degeneration and wet macular degeneration. They
differ in terms of prevalence, clinical symptoms, speed of onset,
and treatment, and the distinction between the two is crucial in
clinical diagnosis (Gelinas et al., 2022; Sarkar et al., 2022; Shen
et al., 2022). The traditional diagnosis of macular degeneration
relies on stereo-ophthalmoscopy, fundus photography, and
optical coherence tomography retinal imaging, which are
inefficient due to the high demand for medical resources for
diagnosis; and some patients are unable to obtain a timely
diagnosis, resulting in a delay in treatment (Qu et al., 2020;
Rubner et al., 2022). Therefore, the design of an automatic
classification model of dry and wet macular degeneration
will aid in large-scale screening of dry and wet macular
degeneration, improve the efficiency of disease diagnosis,
compensate for the shortage of primary medical resource
distribution, and facilitate the early detection, diagnosis, and
treatment of the disease.

Recently, artificial intelligence technology has shown broad
application prospects in ophthalmology. Current research
hotspots are based on the automated analysis of fundus images,
including segmentation of anatomical structures, detection,
and classification of lesion sites, diagnosis of ocular diseases,
and image quality assessment (Zheng et al., 2021a,b; Zhu
et al., 2022), involving common eye diseases, such as diabetic
retinopathy (Bora et al., 2021; Sungheetha and Sharma, 2021;
Wan et al., 2021), glaucoma (Mahum et al., 2021; Ran
et al., 2021), age-related macular degeneration (AMD) (Moraes
et al., 2021; Thomas et al., 2021), and cataracts (Khan et al.,
2021; Gutierrez et al., 2022). At present, artificial intelligence
technology has made breakthrough progress in the field
of macular degeneration, and its application in research is
mainly focused on macular degeneration identification and
macular degeneration severity grading. Celebi et al. (2022)
achieved automatic detection of macular degeneration with an
accuracy of 96.39%. Serener and Serte (2019) classified macular
degeneration with 94% accuracy based on the ResNet18 model.
Abdullahi et al. (2022) achieved the classification of macular
degeneration based on ResNet50 with an accuracy of 96.56%.
Few studies have classified dry and wet macular degeneration.
Priya and Aruna (2014) used machine learning methods, such
as probabilistic neural networks, to extract retinal features and
classify dry and wet macular degeneration with a maximum
accuracy, sensitivity, and specificity of 96, 96.96, and 94.11%,
respectively, while Chen et al. (2021) used a multimodal deep
learning framework to automate the detection of dry and wet
macular degeneration with a maximum accuracy, sensitivity,

and specificity of 90.65, 68.92, and 98.53%, respectively. In some
of these studies, the evaluation indicators of the models were not
sufficiently comprehensive, the sensitivity and specificity values
of some models varied widely, and some models studied only
dichotomous categories, with limited practical application.

Based on clinically collected normal, dry, and wet macular
degeneration fundus images, this study trained the ConvNeXT
(Liu et al., 2022) three-category model on the original and
expanded datasets and compared the results with the VGG16
(Simonyan and Zisserman, 2014), ResNet18 (He et al., 2016),
ResNet50 (Khan et al., 2018), EfficientNetB7 (Tan and Le, 2019),
and RegNet (Radosavovic et al., 2020) three-category models. It
is expected that, in this study, a suitable model can be found to
assist AMD diagnosis.

Materials and methods

Data source

The macular fundus image dataset used in this study was
obtained from the Eye Hospital of Nanjing Medical University
as JPG RGB color fundus images with good image quality. As
factors, such as sex and age, did not affect the results of this
study, and to prevent leakage of patients’ personal information,
all images were desensitized before delivery and did not contain
any private patient information. The partner hospital provided
the images along with the true diagnostic result for each image,
which was used as the result for the expert diagnostic group. All
images were reviewed by two ophthalmologists. If the diagnosis
was consistent, the final diagnosis was made; if the diagnosis
was inconsistent, the final diagnosis was made by a third
ophthalmologist. The fundus images provided by the partner
hospital contain only one of the following: normal, dry macular
degeneration, or wet macular degeneration; meaning that the
diagnosis is unique.

In this study, the original dataset consisted of 672 fundus
images, which were first divided into a training set and a
validation set according to 9:1. The training set consisted of
604 images, including 252 normal fundus images, 100 dry
macular degeneration fundus images, and 252 wet macular
degeneration fundus images; the validation set consisted of 68
images, including 28 normal fundus images, 12 dry macular
degeneration fundus images, and 28 wet macular degeneration
fundus images. In this study, 289 fundus images obtained from
the clinic were used as the testing set, and the experts gave a
diagnosis of 120 normal fundus, 48 dry macular degeneration,
and 121 wet macular degeneration. The number of original data
sets is limited and the distribution is not uniform. The number
of images per category in each dataset is shown in Table 1.
Fundus images of normal, dry, and wet macular degeneration
are shown in Figure 1.
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TABLE 1 Original data set division.

Training Validation Test

Normal 252 28 120

Dry 100 12 48

Wet 252 28 121

Total 604 68 289

Data augmentation

In this study, the amount of labeled data in the fundus
image dataset is limited and the number of images in the
three categories is unbalanced, which may lead to under-fitting
in the category with a small amount of data and over-fitting
in the category with a large amount of data during model
training. Although deep learning has shown great potential in
the field of smart healthcare, most of the existing methods

can only handle data with high quality, sufficient data volume,
balanced categories, and the same source. In order to improve
the applicability of the model in helping the initial classification
and diagnosis of macular degeneration, the fundus images of
dry macular degeneration with the least amount of data in the
training set were expanded. First, the original 100 dry fundus
images were flipped horizontally, and then half of the original
images were rotated 3◦ counterclockwise to obtain 250 dry
fundus images, which balanced the number of different kinds of
experimental data and ensured the generalization ability of the
model. The original image, the image after horizontal rotation,
and the image after 3◦ counterclockwise rotation are shown in
Figure 2.

The data in the dataset were enhanced to improve the
robustness and accuracy of the model. The data enhancement
methods are as follows: cropping the images by setting a random
aspect ratio, where the random size is set to 0.08–1 times the
original image, and the random aspect ratio is set to 0.75–1.33

FIGURE 1

Normal, dry, and wet macular fundus images. (A) The normal fundus image; (B) the dry macular degeneration fundus image; and (C) the wet
macular degeneration fundus image.

FIGURE 2

Method of expanding fundus images in dry macular degeneration. (A) The original image; (B) the image after horizontal flip; and (C) the image
after a 3◦ counterclockwise rotation.
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TABLE 2 Comparison of original and expanded datasets.

Original data Expanded data

Training Validation Training Validation

Normal 252 28 252 28

Dry 100 12 250 12

Wet 252 28 252 28

Total 672 822

times of the original image; and horizontally flipping the image
at random with a 50% chance.

Model training

In this study, the classification models were trained on the
original dataset and the expanded dataset, respectively, and the
models were tested using the same test dataset. The number of
images per category in the original and expanded datasets is
shown in Table 2. The Adam optimization algorithm was used
in this study, and after 40 data iterations, the initial value of
the learning rate was set to 0.0005. The dynamic adjustment
strategy was to first calculate the multiplication factor based on
the number of training iterations, and then multiply it with the
initial learning rate. The initial parameters were loaded with
those obtained from training ConvNeXT-T on ImageNet-1K.
Meanwhile, the VGG16, ResNet18, ResNet50, EfficientNetB7,
and RegNet models were selected to compare the classification
results, all of which contain convolutional layers, pooling layers,
and fully connected layers.

The ConvNeXT model has an input image size of 224 × 224,
which is down sampled by a convolutional layer. The image
size is reduced to 56 × 56, passing through four stages in turn,
each consisting of a series of ConvNeXT blocks, and then passed
through a global average pooling layer, normalization, and a
full connection layer to obtain the final classification result. The
structure of the ConvNeXT model is shown in Figure 3. The
input feature matrix of the ConvNeXT block enters the residual
block with two branches. The straight branch first goes through
a depth-separable convolution, then through two convolutions
output the feature matrix, which is added to the original input
branch to obtain the final feature matrix.

Statistical analysis

Statistical analysis was performed using IBM SPSS Statistics
for Windows version 25.0 (IBM Corp., Armonk, NY, USA).
The count data are expressed as the number of images and
percentages. The sensitivity, specificity, F1-score, and area under
the curve (AUC) of the macular degeneration intelligent aid
diagnostic model for the diagnosis of normal, dry macular

degeneration, and wet macular degeneration were calculated,
receiver operating characteristic curves (ROCs) were plotted,
and the consistency of the diagnostic results of the expert
diagnostic group and the model were assessed using the Kappa
test. The results of the expert diagnostic group were used
as the clinical diagnostic criteria, and kappa values of 0.61–
0.80 were considered as significant agreement, >0.80 was
considered high agreement; ROC curves were used to analyze
the diagnostic performance of different models; and AUC values
of 0.50–0.70 were considered as low diagnostic values, 0.70–
0.85 were considered average, >0.85 was considered good
diagnostic value.

Results

In this study, 289 clinical fundus images were used as test
sets to assess the three-category models of dry and wet macular
degenerations. The expert diagnostic group diagnosed 120
patients with normal fundus, 48 with dry macular degeneration,
and 121 with wet macular degeneration. The results of the
ConvNeXT three-category model on the original dataset were as
follows: 120 normal fundus, 34 dry macular degeneration, and
118 wet macular degeneration. The results of the ConvNeXT
three-category model on the expanded dataset were as follows:
120 normal fundus, 42 dry macular degeneration, and 118 wet
macular degeneration. The diagnostic results of the model are
presented in Tables 2, 3.

Comparing the diagnostic results of the three-category
models VGG16, ResNet18, ResNet50, EfficientNetB7, RegNet,
and ConvNeXT on the original dataset, the EfficientNetB7
model had the best results, followed by the ConvNeXT model.
After data expansion, the ConvNeXT model achieved the best
results, surpassing the EfficientNetB7 model. On the expanded
dataset, the ConvNeXT accuracy was 96.89%, and the kappa
value was 94.99%. The sensitivity, specificity, F1-score, and AUC
values of the model for the diagnosis of normal fundus images
were 100.00, 99.41, 99.59, and 99.80%, respectively. Regarding
the diagnosis of dry macular degeneration, the sensitivity,
specificity, F1-score, and AUC values were 87.50, 98.76, 90.32,
and 97.10%, respectively. For the diagnosis of wet macular
degeneration, the sensitivity, specificity, F1-score, and AUC
values were 97.52, 97.02, 96.72, and 99.10%, respectively. The
evaluation indicators for the diagnostic results of each model are
listed in Tables 4, 5. The ROC curves are shown in Figure 4. The
heap maps of ConvNeXT model are shown in Figure 5.

Discussion

Macular degeneration is a relatively common and
irreversible blinding fundus disease worldwide. Studies
have shown that, as life expectancy increases, macular
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FIGURE 3

Structure of the ConvNeXT model.
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TABLE 3 Diagnostic results of the ConvNeXT model on the
original dataset.

Clinical ConvNeXT diagnoses

Normal Dry Wet Total

Normal 117 3 0 120

Dry 1 45 2 48

Wet 0 19 102 121

Total 118 67 104 289

TABLE 4 Diagnostic results of the ConvNeXT model on the
expanded dataset.

Clinical ConvNeXT diagnoses

Normal Dry Wet Total

Normal 120 0 0 120

Dry 1 42 5 48

Wet 0 3 118 121

Total 121 45 123 289

TABLE 5 Test results of different models trained on the
original dataset.

Model Evaluation
indicators

Normal (%) Dry (%) Wet (%)

VGG16 Sensitivity 97.50 50.00 74.38

Specificity 95.27 86.31 89.88

F1-score 95.51 45.71 78.95

AUC 0.955 0.683 0.854

95% CI 0.929–0.982 0.594–0.771 0.809–0.899

Kappa 68.28

Accuracy 80.13

Model size (MB) 747

Model
parameters
(Million)

138

ResNet18 Sensitivity 100.00 75.00 66.94

Specificity 96.45 83.40 96.43

F1-score 97.56 58.06 77.88

AUC 0.982 0.861 0.912

95% CI 0.966–0.999 0.810–0.911 0.875–0.949

Kappa 72.29

Accuracy 82.01

Model size (MB) 137

Model
parameters
(Million)

12

ResNet50 Sensitivity 100.00 81.25 77.69

Specificity 99.41 88.80 95.24

F1-score 99.59 68.42 84.30

AUC 0.999 0.922 0.963

(Continued)

TABLE 5 (Continued)

Model Evaluation
indicators

Normal (%) Dry (%) Wet (%)

95% CI 0.997–1 0.885–0.960 0.944–0.981

Kappa 80.55

Accuracy 87.54

Model size (MB) 384

Model
parameters
(Million)

26

EfficientNet-B7 Sensitivity 100.00 89.58 90.08

Specificity 99.41 95.02 97.62

F1-score 99.59 83.50 93.16

AUC 1 0.970 0.987

95% CI 0.998–1 0.946–0.993 0.977–0.996

Kappa 90.68

Accuracy 94.11

Model size (MB) 1,919

Model
parameters
(Million)

66

RegNet Sensitivity 100.00 87.50 87.60

Specificity 99.41 93.78 97.02

F1-score 99.59 80.00 91.38

AUC 0.999 0.963 0.984

95% CI 0.998–1 0.946–0.986 0.974–0.994

Kappa 88.51

Accuracy 92.73

Model size (MB) 221

Model
parameters
(Million)

23

ConvNeXT Sensitivity 97.50 93.75 84.30

Specificity 99.41 90.87 98.81

F1-score 98.32 78.26 90.67

AUC 0.997 0.972 0.994

95% CI 0.991–1 0.939–1 0.988–0.999

Kappa 92.39

Accuracy 91.35

Model size (MB) 106

Model
parameters
(Million)

28

Bold indicates the best results for each type of fundus image on different evaluation
criteria after diagnosis by the model.

degeneration is one of the leading causes of vision loss in
the elderly (Gong et al., 2021). However, in less economically
developed countries and regions, the uneven distribution of
medical resources and the long training period for professional
ophthalmologists prevents a large number of AMD patients
from being diagnosed and treated timeously. If manual
diagnostic screening is used, it takes a considerable amount
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FIGURE 4

Receiver operating characteristic curves (ROCs) of normal fundus, dry, and wet macular degeneration on the original and extended data sets for
six models. ROC, receiver operating characteristic curve.

FIGURE 5

Heap maps of ConvNeXT model for dry and wet macular degeneration. Panels (A,B) the heap maps of dry macular degeneration; panels (C,D)
the heap maps of wet macular degeneration.

of time and human training costs. The application of an
automated diagnostic system can provide a good platform
for regular screening, effectively alleviating the medical needs
of a large number of patients, and is vital to reducing the
rate of blindness or impaired visual function due to macular
degeneration (Cai et al., 2020). Thus, this study may assist
ophthalmologists in the initial classification and diagnosis of
macular degeneration by training an automatic classification
model to improve diagnostic efficiency and benefit patients.

Compared with other classification models, the ConvNeXT-
based classification model for dry and wet macular degeneration
obtained excellent results. It borrowed ideas from Swin
transformer and used training strategies such as depth-
separable convolution, image down sampling, and increasing
convolution kernel to extract a larger number of features at a
higher semantic levels from fundus images and to reduce the
computational effort, accelerate feature extraction, and stabilize
model training, thus enhancing the expressive power of the
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TABLE 6 Test results of different models trained on the
expanded dataset.

Model Evaluation
indicators

Normal (%) Dry (%) Wet (%)

VGG16 Sensitivity 97.50 54.17 74.38

Specificity 95.86 86.31 90.48

F1-score 95.90 48.60 79.30

AUC 0.974 0.780 0.899

95% CI 0.954–0.994 0.706–0.854 0.860–0.937

Kappa 69.45

Accuracy 80.62

Model size (MB) 747

Model
parameters
(Million)

138

ResNet18 Sensitivity 100.00 41.67 92.56

Specificity 97.63 96.27 85.71

F1-score 98.36 51.95 87.16

AUC 0.997 0.836 0.925

95% CI 0.990–1 0.764–0.908 0.893–0.958

Kappa 78.95

Accuracy 87.20

Model size (MB) 137

Model
parameters
(Million)

12

ResNet50 Sensitivity 99.17 62.50 90.91

Specificity 99.41 95.44 89.29

F1-score 99.17 67.42 88.35

AUC 0.998 0.928 0.965

95% CI 0.995–1 0.892–0.964 0.947–0.983

Kappa 83.22

Accuracy 89.62

Model size (MB) 384

Model
parameters
(Million)

26

EfficientNet-B7 Sensitivity 100.00 93.75 92.56

Specificity 99.41 96.27 98.81

F1-score 99.59 88.24 95.32

AUC 1 0.968 0.983

95% CI 0.999–1 0.936–1 0.968–0.998

Kappa 93.41

Accuracy 95.84

Model size (MB) 1,919

Model
parameters
(Million)

66

RegNet Sensitivity 100.00 85.42 89.26

Specificity 99.41 94.61 96.43

F1-score 99.59 80.39 91.91

AUC 1 0.960 0.981

95% CI 0.999–1 0.938–0.982 0.970–0.993

(Continued)

TABLE 6 (Continued)

Model Evaluation
indicators

Normal (%) Dry (%) Wet (%)

Kappa 89.01

Accuracy 93.08

Model size (MB) 221

Model
parameters
(Million)

23

ConvNeXT Sensitivity 100.00 87.50 97.52

Specificity 99.41 98.76 97.02

F1-score 99.59 90.32 96.72

AUC 0.998 0.971 0.991

95% CI 0.994–1 0.941–1 0.982–1

Kappa 94.99

Accuracy 96.89

Model size (MB) 106

Model
parameters
(Million)

28

Bold indicates the best results for each type of fundus image on different evaluation
criteria after diagnosis by the model.

model (Zhang et al., 2022). In addition, this study found
that the EfficientNetB7 model gave the best results on the
original dataset, the ConvNeXT model gave the best results
on the expanded dataset, and the results of the EfficientNetB7
model were differed only slightly from those of the ConvNeXT
model. Since EfficientNetB7 is a traditional convolutional neural
network, the accuracy of the model is improved by scaling
network dimensions such as width and depth. ConvNeXT is
a new convolution based architecture with less inductive bias,
introducing the inherent advantages of transformer. ConvNeXT
can often perform slightly better than EfficientNetB7 when the
amount of data increases. Meanwhile, the EfficientNetB7 model
was nearly 20 times larger than ConvNeXT, and the number
of parameters in the EfficientNetB7 model was nearly three
times larger than that of ConvNeXT. Therefore, the ConvNeXT
model is more suitable for practical medical diagnosis. In
addition, some of the model results need to be improved, mainly
because the fundus images themselves are more complex, and
these models have a simpler structure compared to ConvNeXT
and EfficientNetB7, and do not extract the image features
sufficiently.

As shown in Tables 5, 6, the evaluation indices of normal
fundus images are generally higher than the corresponding
indices of dry and wet macular degeneration fundus images.
The main reason for this is that the differences between
the normal fundus images and macular degeneration fundus
images are large and easy to distinguish. Even professional
ophthalmologists have difficulty making accurate diagnoses of
all cases through fundus images alone, so the diagnostic results
of the model are slightly poor. In future, we will consider
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combining features extracted by deep learning with manually
selected features to extract more comprehensive image features
and further improve the sensitivity and specificity of the model.
Simultaneously, the fusion of manually selected features can
increase the interpretability of the features.

In this study, the original data were small and unevenly
distributed, and data expansion was used to equalize the number
of fundus images for each category. Comparing Tables 5, 6, it
can be seen that the evaluation metrics of all models improved
after data expansion, with ResNet18 improving the most, with a
5.19% increase in accuracy and a 6.66% increase in kappa value;
VGG16 improved the least, with a 0.49% increase in accuracy
and a 1.17% increase in kappa value. Thus, data expansion
allows the model to learn features effectively for each category of
images rather than focusing on categories with a larger number
of samples; thus, improving the expressiveness of the model.
The modern field of intelligent medical diagnosis generally has
problems, such as a low amount of annotated data and data
imbalance. This research team will gather more training data,
while focusing on the progress of research on training models on
small sample datasets, with the intention of conducting further
research in the future.

Priya and Aruna (2014) used a machine learning approach
to extract retinal image features for classification, with the
support vector machine (SVM) classifier achieving a maximum
accuracy of 96%. Chen et al. (2021) used a multimodal
deep-learning framework to automatically classify macular
degeneration with a maximum accuracy of 90.65%. Traditional
machine learning algorithms exhibit poor generalization
performance and are prone to over-fitting problems. The deep
learning effect was more prominent when the amount of
data increased. Multimodal deep learning frameworks require
datasets containing diverse forms of color fundus images, optical
coherence tomography, and fundus autofluorescence images,
which are difficult to acquire and can add to the burden of
human and medical resources. In this study, the ConvNeXT
model was used to classify dry and wet macular degeneration,
and only color fundus images were required. It was widely
used in clinical applications, and the data were easy to obtain,
with an accuracy of 96.89%, and demonstrated superior results.
Simultaneously, the ConvNeXT model has fewer parameters
and requires less memory than other models, making it easier
to apply to end devices.

Conclusion

In this study, automatic classification of normal, dry, and
wet macular degeneration was implemented based on the
ConvNeXT model. Twelve models were trained on the original
and expanded datasets. Results showed that the ConvNeXT
model trained on the expanded dataset obtained high sensitivity,
specificity, and accuracy and could be used to develop an

automatic classification system for dry and wet macular
degeneration. This automatic classification system may provide
a good platform for regular screening in primary care and could
help address the problem of many patients in less economically
developed areas with fewer medical resources.
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