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Eliminating facial electromyographic (EMG) signal from the

electroencephalogram (EEG) is crucial for the accuracy of applications

such as brain computer interfaces (BCIs) and brain functionality measurement.

Facial electromyography typically corrupts the electroencephalogram.

Although it is possible to find in the literature a number of multi-channel

approaches for filtering corrupted EEG, studies employing single-channel

approaches are scarce. In this context, this study proposed a single-channel

method for attenuating facial EMG noise from contaminated EEG. The

architecture of the method allows for the evaluation and incorporation of

multiple decomposition and adaptive filtering techniques. The decomposition

method was responsible for generating EEG or EMG reference signals for

the adaptive filtering stage. In this study, the decomposition techniques

CiSSA, EMD, EEMD, EMD-PCA, SSA, and Wavelet were evaluated. The adaptive

filtering methods RLS, Wiener, LMS, and NLMS were investigated. A time

and frequency domain set of features were estimated from experimental

signals to evaluate the performance of the single channel method. This set

of characteristics permitted the characterization of the contamination of

distinct facial muscles, namely Masseter, Frontalis, Zygomatic, Orbicularis

Oris, and Orbicularis Oculi. Data were collected from ten healthy subjects

executing an experimental protocol that introduced the necessary variability

to evaluate the filtering performance. The largest level of contamination

was produced by the Masseter muscle, as determined by statistical analysis

of the set of features and visualization of topological maps. Regarding

the decomposition method, the SSA method allowed for the generation

of more suitable reference signals, whereas the RLS and NLMS methods

were more suitable when the reference signal was derived from the EEG.
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In addition, the LMS and RLS methods were more appropriate when the

reference signal was the EMG. This study has a number of practical

implications, including the use of filtering techniques to reduce EEG

contamination caused by the activation of facial muscles required by distinct

types of studies. All the developed code, including examples, is available to

facilitate a more accurate reproduction and improvement of the results of

this study.
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1. Introduction

Electroencephalography is a technique used to record the

activity on the scalp of measured cerebral cortex neuronal

populations. It is derived from a high temporal resolution,

non-invasive macroscopic process and is a low-cost method

compared to a functional neuroimaging test (Pivik et al.,

1993; McMenamin et al., 2011; Mamun et al., 2013). The

electroencephalogram (EEG) is widely used in a variety

of clinical and commercial applications, including cognitive

neuroscience, brain-skill quantification, pathological diagnosis,

biometrics, and Brain-Computer Interfaces (BCIs) (Foxe and

Snyder, 2011; Abo-Zahhad et al., 2015; Mihajlovic et al., 2015;

Ramadan and Vasilakos, 2017).

The system for measuring EEG amplifies the tiny

disturbances of the electrical potentials of the electrodes

positioned on the scalp, which is anatomically separated from

the signal-generating sources by the meninges, skull bones,

and scalp. Thus, the synaptic potentials which usually have low

amplitudes, in the order of millivolts, are strongly attenuated

by these anatomical structures, reducing the amplitude of the

signals recorded at the scalp (Hero, 2006). Due to this low

amplitude, which typically does not exceed 100 µV , the EEG

signal is highly susceptible to artifacts. These artifacts are usually

caused by electromagnetic fields generated by nearby electronic

devices and the power grid. In addition, artifacts can be

produced by other sources of electrophysiological signals, e.g.,

muscular and heart activity or eye movement (Sweeney et al.,

2012; Urigüen and Garcia-Zapirain, 2015). This contamination

decreases the performance of applications such as BCI and

diagnosis of pathological disfunctions, since the amplitude of

the artifact will typically be several orders of magnitude greater

than the EEG amplitude (Nunez and Srinivasan, 2006; Tatum

et al., 2011).

In this context, the characterization and elimination of

artifacts is relevant for the correct interpretation and use of

EEG. Facial electromyographic (EMG) signals are a primary

source of EEG contamination. The main challenge with respect

to the elimination of noise generated by the EMG signal lies in

the fact that EMG emerges from the anatomically positioned

muscles along the skull. Even weak muscular contractions can

be detected throughout the scalp due to the phenomenon of

conductive volume. In addition, the EMG signal overlaps the

spectrum of the EEG signal in virtually all frequency bands

(Goncharova et al., 2003).

To solve this problem, several EEG filtering methods are

described in the literature. However, these methods have some

limitations, mainly related to the inability to completely remove

noise from the corrupted signal without the introduction

of undesired distortions, and the need for a priori noise

information for signal filtering. These limitations, associated

with several features estimated from the EEG signal to suit the

diversity of applications, motivate the search for multiple gold

standards for removing EEG artifacts (Safieddine et al., 2012;

Gabsteiger et al., 2014; Urigüen andGarcia-Zapirain, 2015; Bono

et al., 2016; Upadhyay et al., 2016; Frølich and Dowding, 2018;

Mucarquer et al., 2020).

Frequency selector filters, such as a linear Butterworth filter,

are one of the main techniques described in the literature for the

removal of physiological artifacts from EEG. However, the use of

such filter class is only effective when the frequency range of the

signal and noise are not overlapped (Sweeney et al., 2012).

The literature suggests the use of single-channel techniques

for muscular artifact removal from EEG instead of multichannel

techniques, e.g., Independent Component Analysis (ICA) and

Canonical Correlation Analysis (CCA). The following methods

are commonly employed for this purpose: adaptive filtering

(Correa et al., 2007; Diniz, 2008; Kher and Gandhi, 2016);

Wiener filtering (Maki et al., 2015; Ferdous and Ali, 2017),

Bayesian filtering (Morbidi et al., 2008), Blind Source Separation

(BSS) (James and Hesse, 2004; Albera et al., 2012), wavelet

transform (WT) (Ngoc et al., 2015; Turnip and Pardede, 2017),

Empirical Mode Decomposition (EMD) (Gaur et al., 2015; Alam

and Samanta, 2017), and the combination of these techniques,

i.e., hybrid methods (Chen et al., 2014; Daly et al., 2015; Salsabili

et al., 2015; Bono et al., 2016; Zeng et al., 2016).

An adaptive filter is required when fixed specifications

are unknown. The literature describes that the most prevalent
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family of algorithms for removing EEG artifacts is based on

the method of least squares (Correa et al., 2007; Kim and Kim,

2018). Adaptive filters vary in time because their parameters

are continuously changing to meet a performance requirement

(Gerardo et al., 2011).

Wiener filtering is appropriate in situations in which

the signal and noise spectrum are overlapping, although it

requires an estimated, measured, or reliable reference to operate.

Sengupta and Kay (1995) showed that the performance of the

multichannel Wiener filter (MWF) outperformed that of BSS

for removal of EEG artifacts of various types, i.e., those that

were annotated as unwanted by the user. In addition, Ferdous

and Ali (2017) compared Wiener and Kalman filters, and again

the Wiener filter was more effective for removing EEG artifacts.

However, the Wiener filter was mainly applied to remove ocular

artifacts, not including muscular artifacts with low SNR, i.e.,

lower than−10 dB.

Gao et al. (2010) employed an adaptive algorithm to remove

ECG from EEG during sleep apnea records by means of

DiscreteWavelet Transform (DWT). Iyer and Zouridakis (2007)

compared DWT with an ICA filter for subsequent detection of

single-trial evoked potential. Krishnaveni et al. (2006) compared

the Joint Approximation Diagonalization of Eigen-matrices

(JADE) algorithm (Rutledge and Bouveresse, 2013) with DWT

for the removal of EOG from EEG.

Empirical Mode Decomposition (EMD) was successfully

used for the removal of EEG artifacts in Safieddine et al. (2012)

and Zhang et al. (2012) and also in conjunction with BSS

methods (Zhang et al., 2012; Sweeney, 2013). A broad review

of the application of EMD and its variations on EEG signal

processing is given in Sweeney-Reed et al. (2018).

Recent efforts have been focused on the combination of

these algorithms for removing artifacts from the EEG. Hybrid

methods are, therefore, considered the state of the art in EEG

filtering because they use the advantages of different methods in

two or more stages and have presented the best results in their

applications (Castellanos and Makarov, 2006; Sweeney et al.,

2012; Sweeney, 2013; Urigüen and Garcia-Zapirain, 2015; Bono

et al., 2016; Mannan et al., 2016; Zeng et al., 2016; Frølich

and Dowding, 2018). The main combinations of algorithms in

different filtering stages are: (i) adaptive filtering with BSS-ICA;

(ii) EMD with BSS; (iii) wavelet with BSS; (iv) adaptive filtering

with EMD (Mannan et al., 2016).

Currently, single-channel techniques have been shown to be

the most effective approach for the removal of facial muscular

artifacts from EEG, especially when a reference signal is known

(Chen et al., 2016). However, the main limitation of this

class of noise removal technique is that its performance is

low for signal-to-noise ratios below −10 dB (Chen et al.,

2016; Zeng et al., 2016; Mucarquer et al., 2020), which

is typical in EEG contaminated by facial electromyography.

To the best of our knowledge, there is lack of studies

addressing the removal of facial muscular artifacts from EEG.

This is important when there is a need to monitor brain

activity during human computer interaction (Andrade et al.,

2013).

To contribute to the research on facial EMG removal

from EEG, this study presents an EEG filtering approach

for facial EMG removal that is independent of an external

reference noise and suited for low SNR signals. The strategy

involves determining a single channel reference signal

using a decomposition technique, which is subsequently

utilized by an adaptive filter to attenuate facial EMG.

The reported results consider the evaluation of various

decomposition and adaptive filtering methods, as well

as the evaluation of filtering performance in the time

and frequency domains. The experimental protocol used

in this study is based on the practical need to assess

brain activity for motor learning quantification during

interaction with a myoelectric interface (Andrade et al.,

2013).

2. Materials and methods

2.1. Experimental protocol

Data were collected from ten healthy individuals during

the execution of successive facial muscular contractions

to characterize the EEG signal contamination by facial

muscular activity. This experimental protocol was based on

previous published work (Andrade et al., 2013) reporting

the implementation of a facial EMG interface and motor

learning assessment.

This study followed the Resolution 466/2012 of the National

Health Council. The study was conducted at the Centre for

Innovation and Technology Assessment in Health of the Federal

University of Uberlândia (UFU), Brazil. The experimental

protocol was approved by the Human Research Ethics

Committee (CEP-UFU), CAAENumber: 43670815.4.0000.5152.

The protocol consisted of two sets of facial muscle

contractions, one with the eyes open and one with the eyes

closed. The open and closed eyes conditions allowed for the

evaluation of the filtering methods considering changes in the

EEG amplitude. The participants were instructed to perform a

series of facial expressions (Figure 1) by contracting five distinct

muscles (Frontalis, Masseter, Orbicularis Oculi, Orbicularis

Oris, and Zygomatic).

Each muscle was contracted 15 times following a random

timing protocol (Figure 2) of three distinct patterns: long (3

s), medium (1 s), and short (0.5 s). The onset and duration

of the contractions were controlled by an auditory stimulus

(beep). The volunteer was asked to maintain the contraction

while listening to the beep, and to finish the contraction

immediately after the auditory stimulus considering these

timing patterns. There were five repetitions of each contraction
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FIGURE 1

Participants were instructed to make a variety of facial expressions by activating muscles whose electrical activity corrupts the

electroencephalogram. The facial expressions were performed with both open and closed eyes. In the neutral condition (A) there was no

muscular contraction, whereas in the other conditions the following muscles were activated: Frontalis (B), Masseter (C), Orbicularis Oculi (D),

Zygomatic (E), and Orbicularis Oris (F).

pattern. Each contraction was followed by a 2 s neutral period.

Each participant performed 150 muscle contractions.

Thus, for 10 participants, the data set consisted of 500

contractions lasting 3 s, 500 contractions lasting 1 s, and 500

contractions lasting 0.5 s, for a total of 2,250 s of EEG signals

corrupted by facial EMG.

In this study the bipolar, i.e., differential, EEG montage was

used to deliberately differentiating potentials between spatially

adjacent locations as this may lead to improved signal-to-

noise ratio of the collected signal. This type of configuration

is also known as longitudinal configuration and widely

employed in clinical practice (Kutluay and Kalamangalam,

Frontiers inComputationalNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2022.822987
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Queiroz et al. 10.3389/fncom.2022.822987

FIGURE 2

Each muscle was contracted 15 times in one of three timing patterns: long (3 s), medium (1 s), and short (0.5 s). Each pattern of contraction was

repeated five times randomly. A 2-s neutral period followed each contraction. This protocol was executed with open and closed eyes.

2019). Although the employed montage was bipolar, the

electrodes were positioned by using an EEG cap following the

10-20 International system of EEG electrode placement.

EMG signals were detected by using disposable sensors

(Meditrace, USA) and collected simultaneously to EEG by using

the RHD USB interface board (lntan, USA). The signals were

sampled at 5 kHz and band-pass filtered (0.1 Hz–1 kHz).

2.2. Signal processing stages for the
implementation of a single channel
approach to EEG filtering

Figure 3 depicts the sequence of steps required to implement

a single approach for filtering EEG signals corrupted by facial

EMG. The first step is to eliminate any linear and non-linear

trends from the collected signals. These tendencies are typically

due in part to drift caused by changes in the impedance

between the skin and the electrode, as well as cable and skin

motion. By fitting a linear model to the time series and then

subtracting the resulting straight line from the data, the linear

trend is eliminated.

The non-linear trend is estimated by applying a sliding,

non-overlapping, rectangular window of 20 ms (100 samples)

to the data and then estimating the median of each window.

The resultant time-series is interpolated using a Piecewise Cubic

Hermite Interpolating Polynomial (pchip) so that it can be re-

sampled with the same number of samples as the input time-

series. The resultant signal is the non-linear trend that should

be subtracted from the signal (i.e., the electroencephalogram

or electromyogram). Supplementary Figure 1, which is available

as Supplementary Material, shows an example of the result

of this signal processing stage applied to an acquired EMG

signal.

Outliers can result from any sudden abnormal

changes in data amplitude that exceed or fall below

predetermined thresholds. In this study, the upper/lower

threshold was established as the mean plus/minus

ten times the standard deviation of the data in

the EMG-contaminated regions. The outliers were

replaced by random scalars drawn from the standard

normal distribution.

The pre-processed signal is then decomposed by one

of the following decomposition methods: Empirical Mode

Decomposition (EMD) (Huang et al., 1998), Extended

Empirical Mode Decomposition (EEMD) (Wu and Huang,

2009), Circulant Singular Spectrum Analysis (CiSSA)

(Bógalo et al., 2021), Wavelet Decomposition (Turnip

and Pardede, 2017), or Singular Spectrum Analysis (SSA)

(Bógalo et al., 2021). For the methods EMD, EEMD, CiSSA,

and Wavelet, the maximum number of components was

Frontiers inComputationalNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2022.822987
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Queiroz et al. 10.3389/fncom.2022.822987

FIGURE 3

Filtering EEG signals corrupted by EMG via a series of steps. Linear and non-linear trends are eliminated, as well as outliers. The signal is then

decomposed using one of the methods outlined, and the resulting components are thresholded. The thresholding process requires the

identification of noise periods in the signal, which are provided by a binary signal generated by an EMG burst detector (Figure 4). Once the

components have been thresholded, the filtered signal is reconstructed, producing a reference signal, i.e., EEG or EMG reference signal, which

can be used as a reference for one of the indicated adaptive filters. Various characteristics are estimated to evaluate the filtering process at

distinct stages. Note that when the method EMD-PCA is used it is not necessary to execute the soft-thresholding stage.

set to 10. For EMD and EEMD, the pchip interpolation

method was utilized. For the EEMD approach, there were

five ensembles. For Wavelet Decomposition, the mother

wavelet was coif5. For the method SSA, the window

length was 100 and the proportion of explained variance

was 80%.

The obtained components are then soft-thresholded to

eliminate noise as explained in a previous work (Andrade

et al., 2006). For each signal component C = {c1, c2, · · · , cM},

a threshold, tm |m = {1, · · · ,M}, is estimated, and soft-

thresholding is applied to individual components as shown in

Equation (1),

tcm = sign(cm)(|cm| − tm)+ (1)

where tcm is the de-noised (or thresholded) version of the

mth signal component and the function (x)+ is defined as

(x)+ =







0, x < 0

x, x >= 0.
(2)

The threshold tm is estimated by using the following

strategy: a window of noise is selected from the original

signal and then the boundaries of this window are used to

extract regions of noise from the signal components. For

noise information selection, a binary signal is used. Low-level

periods in this binary signal correspond to noise, while high-

level periods correspond to EMG regions. Figure 4 provides

an overview of the required steps for automatic EMG burst

detection (Andrade et al., 2006). Although the EMG signal is
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FIGURE 4

Sequence of required steps for detecting EMG bursts. First, the

input signal is preprocessed by removing linear and nonlinear

trends, and then the resulting signal is decomposed using EMD.

The estimated components are soft-thresholded using a priori

knowledge of the signal’s noise level. Signal filtration is achieved

by summing the thresholded components. The EMG envelope is

determined by estimating the signal’s energy, and bursts are

detected using a threshold. As a result of this step, a binary

signal is generated in which low levels indicate noise and high

levels indicate EMG activity.

the input signal illustrated in Figure 4, EMG bursts can be

detected directly from EEG that has been corrupted by EMG.

Because EMG signals were collected simultaneously with EEG,

we decided not to use the EMG-corrupted EEG in this study for

EMG burst detection.

The standard deviation of each of those regions is then

estimated, multiplied by a constant k, to obtain the required

thresholds (t1, ..., tM). A typical value of k is 1.5 (Andrade et al.,

2006). It is possible to vary k to control the signal filtering.

The EMG reference signal is obtained during the signal

reconstruction stage. The adaptive filter may use this signal

as a reference. Optionally, an EEG signal may be used as a

reference. In this case, the noise-corrupted EEG is subtracted

from the EMG reference signal to produce the EEG reference

signal. Note that the reference signal is a filtered signal, resulting

from the reconstruction of soft-thresholded signal components.

In the case of the EMD-PCAmethod, the signal is reconstructed

by selecting the principal components that account for at least

80% of the data variability. For the other methods, the signal is

reconstructed based solely in the estimated components.

The reference signal is sent through an adaptive filter, which

removes EMG noise from the electroencephalogram. One of the

following adaptive filters can be chosen: Recursive Least Squares

(RLS), Wiener filter, Least Mean Square (LMS), and Normalized

Least Mean Square (NMLS) (Farhang-Boroujeny, 1999). Except

for the method NMLS, which had an order of 4, the step-size

utilized for all filters was 10−7 and the order was 10. Matlab

R2022a was used to implement all of the code required for signal

processing (MathWorks, USA).

2.3. Estimate of features for filtering
assessment

Several features were estimated to enable for the

characterization of EMG contamination on EEG and to

compare different approaches used in the investigation. The

stages in which the set of features is estimated are depicted in

Figure 3.

2.3.1. Time domain features

The feature GL assesses the effect of filtering in regions with

no EMG activity, i.e., regions with a low binary signal (Figure 5).

Any filtering method is expected to preserve the amplitude and

shape of the signals in this region as much as possible.

Equation (3) defines GL. The general idea is to apply a

sliding, non-overlapping 1 s window with 5,000 samples to

the data, compute the root-mean-square (RMS) value for each

window, and then estimate the median of the RMS values. As

the length of the window is 1 s, the number of samples in each

window is equal to the sampling frequency fs, which is 5 kHz.

GL = 20 log(Xout′0/Xin
′
0) (3)

where

Xin′0 = median







RMS



Xin0

∣

∣

∣

∣

∣

i2n

i1n











(4)

corresponds to themedian of the RMS values estimated from

the signal Xin0, i.e., the non-filtered signal, and

Xout′0 = median







RMS



Xout0

∣

∣

∣

∣

∣

i2n

i1n











(5)

corresponds to the median of the RMS values estimated

from the signal Xout0, i.e., the filtered signal, being n =
{

1, 2, · · · ,
⌊

N
fs

⌋}

∈ N a set in which each of its values

corresponds to a window,
⌊

N
fs

⌋

the total number of windows,

i1 =

{

1, fs + 1, 2fs + 1, · · · ,
(⌊

N
fs

⌋

fs + 1
)

− fs

}

∈ N the

discrete time in which the window starts, and i2 =
{

fs + 1, 2fs + 1, · · · ,
⌊

N
fs

⌋

fs + 1
}

∈ N the discrete time in
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FIGURE 5

Set of time (GL, GH, GXin, and GXout) and frequency (pr , pf , f rmed , and f
f

med) domain features used to evaluate the performance of distinct methods

for adaptive filtering EEG corrupted by facial EMG. The features compare the signals before and after adaptive filtering and consider the regions

in which there is the presence and absence of muscle activity.

which the window ends. N is the number of samples of the

signal.

GH (Figure 5) is the feature that estimates the ratio between

noise-corrupted and filtered signals in an EMG-contaminated

region. It is defined in Equation (6). It is calculated in a manner

similar to that of GL; hence, equivalent definitions will not be

supplied to prevent duplication.

GH = 20 log(Xout′1/Xin
′
1) (6)

While the GL and GH features evaluate the ratio of signal

amplitudes considering different parts of the binary signal, the

GXin and GXout features measure the ratio of signal amplitudes

comparing regions with and without noise (Figure 5), as given

in Equations (7) and (8). The estimates are similar to that of GL

and GH, thus they are not provided.

GXin = 20 log(Xin′1/Xin
′
0) (7)

GXout = 20 log(Xout′1/Xout
′
0) (8)

2.3.2. Frequency domain features

For the estimate of the frequency domain features (pr , pf ,

f r
med

, and f
f
med

), first the power spectral density estimate, pxx, of

the discrete-time signal was estimated by using the Yule-Walker

method. The signal energy was estimated for the frequency

f = {0, 0.01, 0.02, · · · , fs/2} in Hz, considering a model of order

10. The median frequency and its corresponding energy were

estimated from pxx for the non-filtered (f r
med

and pr) and filtered

(f
f
med

and pf ) signals.

2.4. Statistical analysis

Statistical analysis was performed using R, which is

a language and environment for statistical computing (R

Core Team, 2021). Considering the studied methods and

experimental conditions, the analyses were designed to answer

the following research questions: (i) Which facial muscle

contributes the most to EEG contamination? (ii) Which

decomposition methods are preferable for generating reference

signals for adaptive filtering? (iii) Considering its effect on

the EEG signal and its components, which adaptive filtering

methods are the most desirable?

2.4.1. Characterization of the contamination of
the electroencephalogram by distinct facial
muscles

Figure 6 depicts the main steps employed to characterize

the contamination of EEG by facial muscles. The GL and GH

features were used to investigate how distinct facial muscles

contaminate EEG signals. By varying the parameter k of the soft-

thresholding procedure, from 0.1 to 2.0 with a resolution of 0.1,

it is possible to obtain, for each decompositionmethod, a distinct

feature vector for GL and GH. Figure 7 shows typical vectors for

the collected signals.

The estimated features, GL and GH, were grouped by

subjects, muscles, EEG sensors, and filtering methods. For

each pair of feature vectors a similarity measure based on the

normalized Euclidian distance was computed (Barrett, 2005).

These values of the similarity measures were used to generate

a topological map in which the light colors are associated to the

contamination of facial EMG on EEG. A customized function

was developed in R to generate the topological maps according
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FIGURE 6

Overview of the analysis required for characterization of contamination caused by di�erent facial muscles, as well as a comparison of the

performance of decomposition methods based on the features GH and GL. The analysis takes into account data grouping by participants,

muscles, EEG sensors, and filtering methods. For each group, a similarity measure based on the normalized Euclidian distance can be estimated

between a pair of vectors representing GH and GL estimates for varying a parameter used in the soft-thresholding of the signal components.

The similarity metrics are used to create spatial brain maps that depict the contamination of EMG levels at various areas. Statistical analyses are

carried out for GH, GL, and similarity measures.
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FIGURE 7

Examples of typical GL and GH feature vectors obtained for high (Fp2–F8) and low (O1-O2) levels of EMG contamination on EEG signals. By

decomposing the raw EEG signals with EMD, the reference signals were obtained. The contamination level of the EEG signal can be captured by

the distance between the feature vectors, in the sense that an increased distance is related to a lower signal to noise ratio. The examples

demonstrate typical collected signals for the open and closed eyes scenarios.

to the Montreal Neurological Institute (MNI) coordinates

mapped to the International 10-20 System (Okamoto et al.,

2004).

In addition to the visualization of topological maps, the

normalized Euclidean distance between GL and GH were used

to quantify the electromyographic contamination produced by

distinct muscles. The box plot of the normalized Euclidean

distance were computed and the mean of the variables were

statistically compared. The statistical analysis was performed

considering the scenarios of independence and dependence to

the subjects.

To compare the variables, one-way analysis of variance

(ANOVA) was used. After fitting the ANOVAmodel to the data,

the model’s assumptions were verified, i.e., the evaluation of the

homogeneity of variances (Levene’s test) and normality of the

residuals’ distribution (Kolmogorov–Smirnov test). The p-value

for all analyses was 0.05. Tukey’s honestly significant difference

test (Tukey’s HSD) was used to examine the significance of

differences between sample means. If the variables did not meet

the assumptions of ANOVA, the Kruskal–Wallis rank sum test

and Dunn’s test for multiple comparisons were employed to

compare them.
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2.4.2. Comparison of the performance of
distinct decomposition methods

As seen in Figure 3, the decomposition methods in

conjunction with the soft-thresholding procedure act as a

filtering method that enables the generation of a suitable

reference signal for adaptive filtering. In this regard, it is

necessary to preserve EMG regions as much as possible so that

adaptive filters can attenuate them appropriately.

The GL and GH measures were used to compare the

performance of different decomposition approaches. Based on

the definitions of GL (Equation 3) and GH (Equation 6), the

most appropriate filtering method is the one that produces the

lowest GL and the largest GH, i.e., the method that reduces the

signal amplitude in the regions without EMG while preserving

the amplitude in the regions of EEG contaminated by EMG as

much as possible. For the generation of an appropriate reference

signal, a substantially greater reduction of GL relative to GH

is expected.

The box plots of GL and GH were generated, and

their respective means were compared statistically. For this

purpose, the statistical analysis followed the procedure stated

previously, which comprised fitting an ANOVA model to

the data, validating the method’s assumptions, and employing

an alternative non-parametric method if ANOVA was not

appropriate.

2.4.3. Comparison of the performance of
distinct adaptive filtering methods and
experimental conditions

2.4.3.1. Evaluation based in time-domain features

The GL, GH, GXin, and GXout features were evaluated

for both the EMG (EMGr) and EEG (EEGr) reference

signals. GL and GH were used to evaluate the performance

of adaptive filtering for each type of reference signal. In

contrast to decomposition methods, the appropriate adaptive

filtering method should reduce the signal amplitude in regions

contaminated by EMG while preserving signal amplitude in

regions of EEG without EMG contamination. Therefore, the

appropriate adaptive filtering strategy for reducing the influence

of EMG on EEG is the one that produces a GL close to zero (to

preserve the EEG signal) and GH less than zero (indicating the

reduction of EMG contamination).

The feature GXin and GXout were employed to evaluate

and compare the behavior of the adaptive filtering in the

regions of EEG with and without EMG. The lower the GXout

compared to GXin, the greater the attenuation of the EEG

regions contaminated by EMG. In addition, the closer to zero

is GXout (GXout → 0), the greater the capacity of the adaptive

filtering method to preserve the amplitude of the EEG signal in

EMG-contaminated regions.

Box plots were used to visually investigate the values of

central trend, dispersion and symmetry of the characteristics

for each of the scenarios investigated. To verify the differences

between the characteristics estimated from different adaptive

filtering methods, the means of the variables were compared

by ANOVA. If the premises of such a model were not

verified, a non-parametric approach was then employed, as

previously explained.

2.4.3.2. Evaluation based in frequency-domain features

The non-filtered and filtered EEG signals were decomposed

into their fundamental oscillations (Delta, Theta, Alpha, Beta,

and Gamma) and box plots for the median frequency and its

associated power were calculated. The study took into account

the signal regions of the open and closed eye experimental

conditions, as well as the overall signal that combines these

two regions.

The normality of the variables were verified by the

Kolmogorov–Smirnov test (p > 0.05), and then if the

variables had a normal distribution the non-paired t-student

test (p < 0.05) was applied to verify whether the mean of

the variable related to the filtered signal reduced in relation to

the non-filtered signal, i.e., the raw signal. If the distribution

of the variables were not normal then the non-parametric

Mann-Whitney U test was used (p < 0.05). Outliers were

removed by eliminating observations that were outside of

the following interval [Q1 − 1.5IQR,Q3 + 1.5IQR], in which

Q1 is the first quartile, Q3 the third quartile and IQR the

interquartile range.

2.4.4. Comparison of execution time of
decomposition and adaptive filtering methods

The execution time of the adaptive decomposition and

filtering methods were evaluated by the means of the Matlab

timeit function. This function performs multiple calls from

the routine under analysis and returns the median value

of the time measurements. The process for estimating the

execution time employed actual and equal data for all methods.

The evaluation considers samples with sizes from 25,000

to 1,000,000, with increments of 25,000, i.e., 40 different

intervals. For each sample size, eight execution times were

estimated to obtain a more representative estimate of the

execution time.

The machine that processed the data had the following

features: Ryzen 9 5900X 12-core/24-threads @3.7 GHz; RAM 2

× 16 GB DDR4 @ 3200 MHz; video card Asus RTX 3070 8 GB.

The Matlab Parallel Computing Toolbox was used to run the

applications in parallel, utilizing all of the computer’s processors

and available memory.

The comparison of execution time was performed by the

non-parametric Kruskal–Wallis test (p < 0.05) as the Shapiro–

Wilk test confirmed the distribution of the variables were not

normal (p < 0.05). The pairwise comparison between variables

was performed by the Nemenyi test (p < 0.05).
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FIGURE 8

Typical EMG and EEG signals collected during the experimental

trials. The EMG signals from the left and right Frontalis are

shown. These signals were filtered to remove linear and

non-linear trends. The EMG bursts were detected and then the

binary signals oscillating from two levels were generated.

Simultaneously collected EEG signals are shown for Fp2–F8

(high contamination) and O1-O2 (low contamination) locations.

The binary signals are placed over the EEG signals for the

indication of the periods in which there was EMG contamination.

3. Results

3.1. Typical collected signals

Figure 8 shows typical EMG and EEG signals simultaneously

collected during the experimental trials. The EMG bursts were

detected by using the procedure described in Figure 4. The

number of EMG bursts and their duration are in accordance to

the protocol illustrated in Figure 2. The binary signals resulting

from the EMG burst detection are plotted together with two

typical EEG signals, one for the Fp2-F8 region, which is more

contaminated, and the other for the O1-O2 region, which is less

contaminated. Note that in the region when the eyes are closed

(see the raw EEG: O1-O2) it is possible to see an increase in the

amplitude of the EEG signal.

3.2. Characterization of the
contamination of the EEG by EMG signals

Figures 9, 10 depict topological maps for each subject and

activated muscle. The visual inspection of the maps allow us

to conclude that the Masseter is the muscle which produced

the largest level of contamination, followed by the Frontalis

and Zygomatic. These maps suggest also that the contamination

and its spread over the brain map is dependent on the subject,

which may be related to specific anatomical characteristics of

the individual.

Figure 11 shows typicalGL andGH feature vectors estimated

for Subject 1. In each graphic six pairs of feature vectors are

presented. Each pair of feature vectors was estimated from a

specific decomposition method. The behavior of the feature

vectors are similar for all subjects. The interpretation of the

results is straightforward in the sense that the more similar

the GL and GH feature vectors, the less contaminated the EEG

signal is. For instance, for the occipital region (O1-O2) there is

a high similarity (i.e., low distance) between the feature vectors

for nearly all muscles, while for the frontal region (e.g., Fp1-

Fp2) the produced contamination is higher for the Frontalis and

Masseter. The estimates of feature vectors for the other subjects

are available as a Supplementary Figures 2–10.

Box plots of the mean of the normalized Euclidean distance

between GL and GH vectors for each muscle are shown in

Figures 12C,D. Figure 12C shows results that are independent

of subjects and decomposition methods, whereas Figure 12D

shows results that are dependent on subjects but independent

of decomposition methods.

The results shown in Figures 12C,D are consistent with those

observed in Figures 9, 10 (topological maps). In general, the

Masseter was the muscle responsible for the highest EEG signal

contamination, followed by the Frontalis and Zygomatic. The

Frontalis exhibited the highest level of contamination variability,

whereas the Orbicularis Oris produced the least. There was no

significant difference between the mean normalized distances

estimated from the Orbicularis Oculi and Orbicularis Oris

muscles (Figure 12C). Figure 12D shows that a similar result was

found for all subjects.

ANOVA could not be employed for the statistical analysis

since its assumptions were violated. To compare the variables,

the Kruskal–Wallis rank sum test and Dunn’s test for multiple

comparisons were used in all analyses.

3.3. Evaluation of decomposition
methods to generate reference signals
for adaptive filtering

In Figures 12A,B, the box plots of GL and GH are presented

for each decomposition method, independently of subject and

brain area. From the box plots, it is possible to compare and

contrast the distributions of feature vectors for each investigated

method. For GL the dashed lines indicate the median of the

method which produces the largest amplitude reduction in the

regions in which there is no EMG contamination. SSA was the

most appropriate method among those considered.
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FIGURE 9

Using the international 10-20 system, the topological maps illustrate how the studied muscles contaminate distinct brain regions. Lighter colors

represent the most contaminated locations, whereas darker colors denote the least contaminated areas. The presented results are for subjects

from 1 to 5. The colors represent the similarity measure between the GL and GH features.

For GH, the dashed lines represent the median of the

approach that yields the lowest amplitude reduction in EMG-

contaminated locations. Wavelet was the most appropriate

method among those studied. In general, when both metrics,

GL and GH, are considered, SSA is the most appropriate

because it reduces the signal amplitude in regions without

EMG contamination the most, while preserving the regions

contaminated by EMG in a satisfactory manner, allowing the
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FIGURE 10

Topological maps for subjects from 6 to 10.

generation of an appropriate reference signal for adaptive filters.

There was no statistically significant difference between the

EEMD and Wavelet methods for GL (Figure 12A). There were

no significant differences between CiSSA and EMD, and EEMD

and EMD-PCA for GH (Figure 12B).

3.4. Evaluation of the filtering based on
the time-domain features

Figure 13 depicts the overall behavior of distinct adaptive

filtering methods according to the time-domain features and
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FIGURE 11

Typical GL and GH feature vectors estimated using di�erent decomposition techniques for Subject 1. Each plot consists of six vector pairs, one

pair for each method. The outcomes are presented for individual EEG sensors and muscles.

type of reference signals (EEG or EMG). In general, all adaptive

filtering methods were capable of filtering EMG contamination

from EEG. As can be seen in Figures 13B,D, the medians

of GH are less than zero, confirming, thus, that the EMG

contamination was attenuated. On the other hand, when

evaluating the preservation of regions of EEG without EMG,

the results vary, depending on the type of reference. Ideally the

median of GL should be as close to zero as possible. When the

reference signal is the EEG, the most appropriate method is the

RLS as it causes the lowest changes in the regions of EEGwithout

EMG contamination. When the reference is the EMG signal, the

most appropriate methods were the NLMS and Wiener.

Figures 13E,F show the behavior of the variables GXin and

GXout for adaptive filtering. For the EEG reference, the obtained

results confirm the attenuation of the EMG signal, as all the

medians of Xout are lower than the median of GXin. On the

other hand, for the EMG reference, the results yielded by the

Wiener filter were not satisfactory.

Considering the time-domain features, the EEG reference

signal was more appropriate for the adaptive filtering, as it

allowed for the preservation of EEG regions not contaminated

by EMG. Furthermore, when evaluating the variables GXin

and GXout it is clear that when using the EEG as a

reference, the filtered EMG-contaminated region will preserve

the EEG activity. Figure 14 shows an example of EMG-

corrupted EEG and its filtered version. The figure insets

show the effect of the adaptive filtering, in which the

EMG amplitude is attenuated and the EEG activity in the

EMG-contaminated region follows the EEG dynamics of the

EEG signal in the neighbor regions in which there are no

EMG contamination.

3.5. Evaluation of the filtering based on
the frequency domain features

The box plots in Figure 15 show the behavior of the

median frequency and its power for the EEG signal together

with its components, i.e., Delta (0.5–4 Hz), Theta (4–7

Hz), Alpha (7–13), Beta (13–30), and Gamma (30–70 Hz).

The results contrast the raw non-filtered signal with the

filtered signal. The non-parametric Mann-Whitney U test

was used as the distributions of the variables were not

normal ( p < 0.05).

There is a clear drop in the frequency and power of the EEG

signal resulting from the filtering. As expected, the power of

the signal is reduced for all components although their median

frequencies are kept in the expected frequency band. The same

behavior is noted for the experimental conditions of open and

closed eyes, and for the whole signal, which considers the joint

analysis of the open and closed eye regions.
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FIGURE 12

(A) Box plot of GL for distinct decomposition algorithms, regardless of subject and sensor location. The smaller the value of GL, the more

appropriate the filtering method. The dashed lines represent the best result obtained with the SSA approach. Statistically significant di�erences

between methods are represented by labels. All possible combinations of two were evaluated. For example, the EEMD method is represented by

(Continued)
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FIGURE 12

label “b” and was statistically di�erent from CiSSA (label “a”), EMD (label “c”), EMD-PCA (label “d”), and SSA (label “e”). (B) Box plot of GH for

distinct decomposition algorithms, regardless of subject and sensor location. The larger the value of GH the more suitable is the method for

filtering. (C) Box plot of the mean normalized Euclidean distance between GL and GH for each muscle, independent of subjects and EEG

sensors. The larger the value of this metric, the more contamination is caused by the muscle. (D) Box plot of the mean normalized Euclidean

distance between GL and GH for each muscle and subject, independent of the EEG sensor.

FIGURE 13

Evaluation of distinct adaptive filtering methods based on the time-domain features. The assessment is independent of the decomposition

method and specific to the type of reference signal. (A–D) show results referent to GH and GL. (E,F) Present the results related to GXin and GXout.

3.6. Execution time of decomposition
and adaptive filtering methods

Figure 16 depicts the typical execution times for all methods

investigated. The estimates in A and B are based on the

mean of the eight execution times for each sample size. The

linear relationship between sample size and execution time may

indicate that the methods have linear computational complexity,

O(n).

According to the results in Figure 16C, the execution times

for EEMD and SSA are statistically equivalent (Nemenyi Test,

p > 0.05), just as they are for EMD and CiSSA. Wavelet
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FIGURE 14

A typical EEG signal corrupted by facial EMG. The EEG signal is from the Fp2-F8 region because it is most a�ected by facial electromyography.

EMG bursts can be seen on the detrended EEG signal. The EEG signal was used as a reference signal, estimated from EMD, and then filtered

using the RLS filter. The residue, which is the di�erence between the detrended and filtered EEG data, clearly shows the EMG activity that was

eliminated from the signal. The inset plots at the top indicate the selection of two EEG regions contaminated by EMG. The filtered signal is

shown over the contaminated signal in red. For each region, the detrended EEG, reference signal, filtered EEG, and residue are shown.

obtained the shortest execution time. According to the results

in Figure 16D, the execution times for LMS and NLMS are

statistically equivalent. Furthermore, RLS has a significantly

longer execution time than the others.

4. Discussion

The filtering approach depicted in Figure 3 has been

proposed for the removal of facial muscular artifacts from

EEG signals, which is an important requirement for distinct

applications. It is a single channel approach for filtering low

SNR EEG signals. In general, the proposed method is based

on a hybrid filtering approach, combining adaptive filters

with decomposition techniques. Thus, in this research, the

performance of several decomposition (EMD, EEMD, CiSSA,

Wavelet, SSA, and EMD-PCA) and optimal filtering (RLS,

Wiener, LMS, and NMLS) methods were evaluated.

Although it is possible to find some databases containing

EEG signals corrupted by EMG, we could not find any open

data set similar to the one that was collected in this research.

The relevance of the collected data set is that it considers

the influence of the activity of several facial muscles to the

contamination of EEG signals. The experimental protocol was

carefully designed to take into consideration data collection in

practical scenarios, such as the execution of facial expressions

commonly used for some human-computer interfaces based

on facial EMG (Andrade et al., 2013). In addition, all

EEG signals were collected simultaneously with EMG signals

guaranteeing the necessary synchronization between signals and

the possibility of annotating the regions in which EEG signals

were actually contaminated by EMG. The dataset included a
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FIGURE 15

Median frequency and its power of the electroencephalogram (EEG) together with its components for the whole signal (ENTIRE) and the two

experimental conditions (OPEN EYES and CLOSED EYES). A contrast between the raw non-filtered signal with the filtered signal is presented.

The asterisks show the pair of variables in which the variable associated to the filtered signal was significantly reduced in comparison to the

non-filtered signal, i.e., raw signal.

total of 2,250 s of EEG signals corrupted by EMG, with the

participation of 10 subjects and distinct experimental conditions

(e.g., open and closed eyes, EMG bursts of varying durations,

and the activation of different facial muscles), allowing for the

required variability to test the performance of filtering methods.

Other decomposition and adaptive filtering methods can

be added to the filter architecture of the EEG single channel

filtering approach depicted in Figure 3 without altering the

entire filtering strategy. This is an interesting feature for the

development of computational libraries that can benefit from

the use of encapsulated code implementing decomposition and

adaptive filtering methods that can be directly plugged into

the general steps, i.e., the processing pipe depicted in Figure 3.

To aid in the diffusion of this architecture, the authors of this

paper have made available all Matlab and R scripts at https://

doi.org/10.5281/zenodo.6591866. In addition, sample data and

demonstration scripts are provided to facilitate comprehension

and replication of the filtering approach presented and evaluated

in this study.

In this study, the detection of EMG bursts is relevant

because these bursts mark the regions contaminated and

non-contaminated by electromyography automatically. The

identification of these regions are used in the stage of

soft-thresholding signal components and for computing the

proposed set of features to measure the performance of filtering

methods. We decided not to detect the bursts directly from the

EEG contaminated signal to guarantee that the noise present in

the EEG signal was really from the EMG activity. However, the

use of the proposed filtering approach (Figure 3) can be applied

without the simultaneously collection of EMG signals. If this is

the case, it would be necessary to detect EMG bursts directly

from the EMG-corrupted EEG.

The time and frequency domain features proposed in this

work (Figure 5) were advantageous for the characterization of

facial EMG contamination on the EEG. Figures 9, 10 depict an

approach for energy visualization of topological maps displaying

the degree of contamination created by distinct muscles based

on this set of characteristics. Utilizing the normalized Euclidean

distance as a measure of similarity allowed for the visual,

qualitative, and quantitative comparison of topological maps

estimated for various subjects and active muscles.

As indicated in Figure 3 an important step for adaptive

filtering is the generation of reliable reference signals. In the

proposed approach the reference signal is generated from the

application of soft-thresholding to the signal components. To

evaluate the performance of distinct decompositionmethods the
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FIGURE 16

Execution time of distinct decomposition (A) and adaptive filtering (B) methods as function of the number of samples. The box plots show the

central trend and dispersion of execution times (C,D).

GL and GH metrics were proposed. These metrics were also

employed to characterize the EMG contamination in distinct

regions of the scalp (Figures 9, 10). An interesting aspect of the

contamination is that although there is a general pattern, e.g.,

muscles such as the Frontalis and Masseter contributed more to

the EEG contamination, the way this contamination spread over

the scalp is specific to the individual. This fact can be verified

by the relatively large variability of the variables presented in

Figures 12C,D.

According to the findings (Figures 9, 10, 12), the Masseter

muscle provided the highest degree of contamination, followed

by the Frontalis and Zygomatic. Variability between individuals
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was an important component of this study; for example,

the Orbicularis Oris of subject 8 produced a substantial

contamination of the EEG obtained in the frontal region. This

may involve anatomical and behavioral characteristics of the

individual. This requires that EEG filtering methods be devised

to accommodate data variations introduced by anatomical,

physiological, and experimental settings. This also justifies

the more sophisticated experimental methodology utilized in

this study.

In general, all decomposition methods investigated in this

study were suitable for generating adequate adaptive filtering

reference signals. Nonetheless, we believe that the SSA method

is superior because it successfully preserved EEG in non-

contaminated regions while lowering the signal amplitude

in EMG-contaminated regions significantly (Figures 12A,B).

Considering the type of signal reference (EMG or EEG) the

results reported in Figure 13 suggest that the reference based

on the EEG signal is preferable because of the lower variability

exhibited (Figures 13E,F) when compared to the EMG reference.

This study also investigated various adaptive filtering

algorithms (LMS, NLMS, RLS, and Wiener) to reduce

electromyographic activity as much as possible in EEG data

heavily contaminated by EMG. When using the EEG as

a reference signal, RLS and NLMS were the best methods

among those tested. In general, these methods best ensured:

(i) attenuation of electromyographic activity in regions of

EMG-contaminated EEG (Figure 13B), (ii) preservation of

electroencephalographic activity in regions of EEG without

EMG (Figure 13A), and (iii) the dynamics of the resulting signal,

not mischaracterizing the EEG signal over time (Figures 13, 14).

However, when the reference signal was the EMG, the LMS, and

RLS algorithms performed best. Thus, the RLS method is the

most preferred, as it produced satisfactory results regardless of

the type of reference signal.

The results shown in Figure 15 confirm that the single

channel approach proposed in this research was capable of

reducing EMG contamination on the EEG signals, while

preserving relevant information of the electroencephalogram.

For instance, typical values of frequency were found for each

EEG component. In addition, there was reduction in the power

of the non-filtered EEG signal compared to its filtered version,

and this could also be observed for each EEG component.

The results presented in Figure 16 reveal that there is a

linear relationship between the number of samples, i.e., signal

length, and the execution time required to process the data.

This suggests that the decomposition and filtering algorithms

have a linear computational complexity. In total, 90 h were

spent processing the entire data set of this investigation, taking

into account the processing time for ten subjects and all

experimental conditions. Methods that need less time to process

data are desirable in this regard, even if they do not produce

optimal results.

In future research, the proposed method could be utilized

to reduce interference produced by electromyography in

applications controlled by electroencephalographic activity

(such as brain-computer interfaces). Furthermore, while

this study only involves healthy people, we encourage the

examination and confirmation of the technique created for

people with disorders like amyotrophic lateral sclerosis.

This would allow for the creation of more robust assistive

technology as well as a better understanding of the

electroencephalographic activity associated with this type

of clinical condition.

5. Conclusion

This study introduced a single-channel filtering method

for reducing facial electromyography from EEG signals. The

proposed method is sufficiently general to accommodate

multiple decomposition and adaptive filtering techniques within

a single architecture.

Using a data set that enabled the generation

of EMG-corrupted EEG in experiments involving

facial muscular activation, the filtering method was

evaluated. The set of time and frequency domain

characteristics enabled the visualization and quantification

of facial EMG contamination of the EEG. This

set of features allowed for comparative analysis of

filtering methods.

The results indicated that the Masseter was the muscle that

contaminated the EEG the most; however, individual variation

should not be disregarded, as the contraction of other facial

muscles in some people may generate significant contamination

on EEG signals.

In general, all investigated decomposition and

adaptive filtering methods effectively filtered facial EMG-

corrupted EEG; however, the decomposition method

SSA reduced EMG contamination while preserving

the EEG signal more. This method’s relative slowness

in comparison to other studies is its most significant

drawback. In terms of the adaptive filtering method,

it was observed that the reference signal (EMG or

EEG) affects the method’s performance, despite the

methods’ similarities.
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