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Alpha rhythms in the human electroencephalogram (EEG), oscillating at 8-

13 Hz, are located in parieto-occipital cortex and are strongest when awake

people close their eyes. It has been suggested that alpha rhythms were

related to attention-related functions and mental disorders (e.g., Attention-

deficit/hyperactivity disorder (ADHD)). However, many studies have shown

inconsistent results on the difference in alpha oscillation between ADHD and

control groups. Hence it is essential to verify this difference. In this study, a

dataset of EEG recording (128 channel EGI) from 87 healthy controls (HC)

and 162 ADHD (141 persisters and 21 remitters) adults in a resting state with

their eyes closed was used to address this question and a three-gauss model

(summation of baseline and alpha components) was conducted to fit the

data. To our surprise, the power of alpha components was not a significant

difference among the three groups. Instead, the baseline power of remission

and HC group in the alpha band is significantly stronger than that of persister

groups. Our results suggest that ADHD recovery may have compensatory

mechanisms and many abnormalities in EEG may be due to the influence of

behavior rather than the difference in brain signals.
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Introduction

Alpha rhythm (8-13 Hz) is prominent in the parieto-
occipital electroencephalogram (EEG) of awake humans. Alpha
power increases with the eyes closed but attenuates on eye-
opening (Berger, 1929; Niedermeyer, 1999; Draguhn and
Buzsáki, 2004). Alpha-band activity was modulated by visual
attention (Hanslmayr et al., 2011; Klimesch, 2012; Weisz et al.,
2014; Snyder et al., 2015; Capotosto et al., 2017) and memory
load (Palva and Palva, 2007; Freunberger et al., 2009; Sauseng
et al., 2010; Foster et al., 2017). Furthermore, alpha has been
considered to provide feedback connections among visual areas
in both macaques and humans (Wang, 2010; Van Kerkoerle
et al., 2014; Samaha et al., 2015; Mejias et al., 2016; Michalareas
et al., 2016; Helfrich et al., 2017). The alpha-band activities were
also thought to be related to attention-related mental deficits like
attention-deficit/hyperactivity disorder (ADHD) (Ter Huurne
et al., 2013; Mazaheri et al., 2014).

Despite over 50% of children with ADHD continuing to
show symptoms in adulthood (Lara et al., 2009), adult ADHD
is less well understood. Hoping to use brain oscillations in
different frequency bands (delta, theta, alpha, and beta bands) as
biomarkers for brain disorders, many studies have been looking
for oscillatory biomarkers for ADHD adults (Clarke et al., 2008;
Giertuga et al., 2017). However, many previous studies showed
inconsistent results. Taking alpha band in the resting state as an
example, some studies showed reduced alpha power associated
with ADHD (Woltering et al., 2012; Li et al., 2019), and some
indicated that the ADHD patients showed an increase in alpha
power (Koehler et al., 2009), and some others showed that alpha
power is not significantly changed in ADHD patients (Clarke
et al., 2008). There are two possibilities that might cause this
inconsistency, one reason might be the sample size in these
previous studies was relatively small, and another one might
be the relatively rough measurement of the power in the alpha
frequency band since these studies did not dissect narrowband
and broadband power in the spectrum.

In this paper, we quantitatively studied the difference in
alpha-band activity among the ADHD persister, remitter, and
healthy control groups, using a three-gauss model to dissect
narrowband (component) and broadband (baseline) power in

the alpha-band in individuals. By using power spectrum analysis
with fine frequency resolution, we found evidence that indicates
the existence of more than two oscillators within the alpha
band. We then demonstrated how these alpha components
and baseline power contributed to differences between ADHD
persisters, remitters, and healthy control adults.

Materials and methods

All participants in EEG experiments gave informed consent
to participate in this study. The experiments were conducted
in accordance with the principles embodied in the Declaration
of Helsinki and approved by the Ethics Committee of Peking
University Institute of Mental Health, and Beijing Normal
University Institutional Review Board.

Participants

A total of 261 adults (143 ADHD persisters, 24 remitters,
and 94 controls) participated in the experiment, twelve
participants were excluded because they did not follow
the instructions. Analyzed data were collected from 162
ADHD (141 persisters and 21 remitters) adults (ages 18-
39 years old) diagnosed at Peking University; 87 normal
healthy controls recruited through campus advertisements
also participated in the study (Table 1). ADHD participants
fulfilled a diagnosis of adult ADHD through Conners’ Adult
ADHD Diagnostic Interview based on the Diagnostic and
Statistical Manual of Mental Disorders. All ADHD participants
were medication naive. Another current psychopathology was
assessed with the Structured Clinical Interview for DSM-IV
Axis I Disorders (SCID). Control participants were recruited
from local universities and communities, and interviewed to
ensure an absence of past or current ADHD. The ADHD
Rating Scale (ADHD-RS), Conners’ Adult ADHD Rating Scale–
Self-Report Screening Version, and SCID were applied for
assessing all participants. All the control participants had no
current or previous psychiatric disorders. All participants were
of Chinese Han descent.

TABLE 1 Subject information.

Items Persistent ADHD, n=141 Remitters, n=21 Healthy control, n=87 F/χ2 P

Sex Ratio MZF:1,71 MZF:6.00 M/F:2.00 4.17 0.124

Age 25.41 (6.00) 18.61 (0.87) 23.96 (4.27) 16.07 <0.001

IQ 118.34 (12.31) 111.29 (11.44) 120.23 (9.91) 5.16 0.006

ADHD symptoms Inattentive 26.65 (3.64) 17.50 (2.28) 13.45 (4.59) 317.00 <0.001

Hyperactivity-impulsive 19.25 (5.06) 15.69 (2.27) 12.13 (4.28) 64.19 <0.001

Total 45.90 (6.70) 33.19 (3.74) 25.57 (8.38) 221.54 <0.001

The table illustrates the basic information of the three groups (note: M is for male, and F is for female).
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FIGURE 1

Demo of EEG signal during eye-closed state. (A) shows the demo of the channel locations of the EEG, (B) shows the EEG signal in a demo
electrode in the occipital region and (C) shows the corresponding power spectrums.

Electroencephalogram recordings in
the resting state

Participants were seated in a comfortable chair in a dimly
lit, electrically shielded room with a low level of environmental
noise. Scalp EEG data were recorded continuously with a 128-
channel EEG net (Electrical Geodesic Inc., EGI). After they
became familiar with the environment, participants were told
to close their eyes and stay relaxed and still for 6-10 min
(average of 8.84 min), and to do nothing else. Scalp EEG data
were recorded at a sampling rate of 1,000 Hz. All electrode
impedances were kept under 50 k�. Data were referenced
to electrode CZ originally and then referenced to a frontal
channel near FZ. The stereotypical artifacts, such as eye blinks,
eye movements, and muscle tension, were separately removed
using the artifact rejection method based on the blind source
separation algorithm, Independent Component Analysis (ICA)
(Delorme and Makeig, 2004; Li et al., 2019; Zhao et al., 2020).
On average, there are four ICs were selected to remove.

Data analysis

Data processing was performed in MATLAB1 with custom
scripts. The original continuous data were high-pass filtered at

1 www.mathworks.com

0.5 Hz and low-pass at 40 Hz. Both the high-pass and low-
pass filters were zero-phased FIR filters (third order Butterworth
filter) which filter the data both forward and backward to ensure
phase delays introduced by each filter are nullified. The dickey-
Fuller test was used to test the stationary property of the data.
Power spectra of the EEG signals were calculated using multi-
taper methods with 5 tapers. Each epoch lasted 10 s, enabling a
precise spectrum with a resolution of 0.1 Hz.

Three gaussian model

The Three Gaussian Model is the summation of a baseline
and three gaussian functions which represent three component
sources in the alpha band for all 128 channels (Figures 1, 2). It
is described as follows:
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where S(i,h,f) is the i-th source function in h-th electrode of
the signal depending on the frequency f, Wi is the weight of
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FIGURE 2

Emergence of multiple alpha rhythms could be well explained by a three-gaussian model. Two subjects’ EEG power spectrums from three
example electrodes in three brain regions were shown in the first and second rows, respectively. The raw data was shown in black dots, the
fitted curve was shown in a black curve, and the baseline fitted in the model was shown in a black dashed curve.

each source, µi and σi are peak frequency and bandwidth of the
i-th source. To evaluate the fitting performance, we calculated
the fitting index as follows, the value of which indicated the
percentage variance that can be explained by the model. This
method has been used in describing gamma-band activity (Han
et al., 2020, 2021a,b,c; Wang et al., 2021).

FittingIndex =

1−
6
(
FittingData− RawData

)2

N ∗ 6
(
var

(
FittingData

)
+ var (RawData)

) · · · · · · (4)

Statistical analysis

We used the Jarque-Bera test for the normality of the data.
The non-parametric ANOVA test (Kruskal-Walis H test) was
employed first to test whether the difference exists for the
power (baseline and components) among three groups (ADHD
persister, remitter, and control), and then the Mann–Whitney

U test with Bonferroni correction was used as the post-hoc to
check the difference between pairs of groups.

Results

To characterize alpha-band oscillations in the resting state,
we recorded the Scalp EEG from ADHD persister, remitter, and
healthy control adults. Participants were told to close their eyes
and stay relaxed without doing anything for 6-10 min (Figure 1).
For each EEG channel, the recorded data was divided into small
segments 10 s in length, and then the power spectrum was
estimated by a multi-taper method with a frequency resolution
of 0.1 Hz (see Materials and methods).

Multiple oscillatory peaks found in
alpha band

To see the EEG power in the alpha range more clearly on
each electrode, with fine frequency resolution (0.1 Hz), two or
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even three frequency peaks were visible on many electrodes
from temporal (Figure 2 first column), parietal (Figure 2 second
column) to occipital (Figure 2 third column) lobe. Based on
carefully scrutinizing our data (N = 249), we found that it
was typical that there were three frequency components in
the narrow range of the alpha band (low alpha (LA), medium
alpha (MA), and high alpha (HA)). Their range was defined
based on the value orders of their peak frequencies fitted by
the descriptive model. Low alpha was defined as the alpha
with the lowest peak frequency (LA: mean = 8.42 ± 0.94 Hz),
and the high alpha was defined as the alpha with the highest
peak frequency (HA: mean = 11.81 ± 0.84 Hz); the medium
alpha was defined as the one between LA and HA (MA:
mean = 10.15± 0.76 Hz).

Dissecting different components in the
alpha band

Based on the observation in our database, we hypothesized
that for each individual subject, the EEG power in the resting
state in the alpha range on all 128 electrodes could be modeled
by the sum of three frequency components. In more detail,
the EEG power in the alpha range was a weighted sum of

three frequency components and a baseline (Figure 1 dashed
line). The frequency profiles of the three components were all
modeled as Gaussian functions, and the frequency profile of the
baseline was modeled as a function decreasing monotonically in
frequency (see more details in the Materials and methods section
for model and model fitting). The three oscillatory components
were LA, MA, and HA, with different peaking frequencies (LA:
mean = 8.42 ± 0.94 Hz; MA: mean = 10.15 ± 0.76 Hz; HA:
mean = 11.81 ± 0.84 Hz) (Figure 3). We found that the EEG
power could be reconstructed very well by this model. Across
the whole dataset, the model explained 99.29% variance of the
normalized data (99.27, 99.31, and 99.35% in groups of ADHD
persister, control, and ADHD remitter, respectively).

Difference of alpha components and
baseline power among
attention-deficit/hyperactivity disorder
persisters, remitters, and healthy
controls

We further asked whether the powers of alpha components
and baseline showed significant differences among ADHD

FIGURE 3

3D Topographic map of three alpha components. The first row shows the spatial distribution of the power of three alpha components was
shown, respectively. The second row shows the distribution of the peak frequency of three alpha components.
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persister, remitter, and normal group by the non-parametric
one-way ANOVA test (Kruskal-Walis H test). We found that
the power of alpha components was not significantly different
among the three groups by one-way ANOVA test (Figure 4; in
parietal region, LA: p = 0.11, MA: p = 0.98, HA: p = 0.18; in
occipital region, LA: p = 0.18, MA: p = 0.62, HA: p = 0.51).
Instead, the baseline power of the three groups showed strong
significance among three groups by one-way ANOVA test
(Figure 4; in parietal region, LA: p < 0.001, MA: p < 0.001, HA:
p< 0.001; in occipital region, LA: p< 0.001, MA: p< 0.001, HA:
p< 0.001). In specific multiple comparison, the ADHD persister
group is significant smaller than that of remitter (Figure 4; in
parietal region, LA: p = 0.0028, MA: p = 0.0034, HA: p = 0.0017;
in occipital region, LA: p = 0.047, MA: p = 0.040, HA: p = 0.029)

and health control group (Figure 4; in parietal region, LA:
p < 0.001, MA: p = 0.0066, HA: p = 0.0074; in occipital region,
LA: p = 0.0011, MA: p = 0.0024, HA: p = 0.0014).

Discussion

With the increasing number of studies on alpha rhythm
and its relationship to cognitive functions, it is important to
understand the basic properties of alpha. In this study, we
developed a model to dissect three oscillators in the alpha
range (8-13 Hz) in individual humans. The model enabled
us to characterize the properties of distinct alpha components
among different groups of human subjects. Our results showed

FIGURE 4

Comparison of the components and baseline power in alpha band among three groups. The baseline power of three groups showed strong
significance among three groups (One-way ANOVA) (in parietal region, LA: p < 0.001, MA: p < 0.001, HA: p < 0.001; in occipital region, LA:
p < 0.001, MA: p < 0.001, HA: p < 0.001). The multiple comparison of the baseline power in three alpha bands after one-way ANOVA test was
shown in the first (parietal region) and third (occipital region) row, where red is for ADHD group, blue is for HC group, and light blue is for
remission group (ns: no significance, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001). The power of alpha components was not significantly (One-way
ANOVA) different among three groups (in parietal region (second row), LA: p = 0.11, MA: p = 0.98, HA: p = 0.18; in occipital region (fourth row),
LA: p = 0.18, MA: p = 0.62, HA: p = 0.51).
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that no significant difference in alpha was found. However, the
baseline of the spectrum is significantly different. Our results not
only suggest a compensatory mechanism for ADHD recovery
in brain oscillations but also demonstrate that dissecting
distinct narrow-band oscillatory components is a necessary step
for understanding their relation to cognitive functions and
brain disorders.

Compensatory mechanism of
attention-deficit/hyperactivity disorder
recovery

There are some possible perspectives on the mechanisms
of ADHD remission (Sudre et al., 2018). Some researchers
found evidence of a convergence mechanism (Schneider et al.,
2010; Shaw et al., 2013; Hoogman et al., 2017; Schulz et al.,
2017) that views AD/HD as a neurodevelopment defect and
the rectification of early anomalies in brain structure with
age contributes to the relief of clinical symptoms (El-Sayed
et al., 2003). Others proposed that the neural anomalies
of AD/HD leave an indelible mark on the brain that will
persist across the lifespan regardless of the clinical effect
of AD/HD, and remitters recruit new brain systems that
allow effective compensation for AD/HD symptoms (Proal
et al., 2011; Francx et al., 2015) which is referred to as the
“fixed trait” and compensation mechanism. Our results found
that the power of alpha components was not significantly
different among the three groups. Instead, the baseline
power of the remission group in the high alpha band
is significantly smaller than that of persisters and healthy
controls. This suggests that ADHD recovery may have a
compensatory mechanism.

Our work detected a decreased baseline power in the
high alpha band in the ADHD remission group. The previous
inconsistent results might be due to a blurring of multiple
oscillatory components in the alpha band. We should also
notice that for the amplitude of alpha components, there is no
significant difference among ADHD persisters, remitters, and
normal adults, which may indicate that these alpha components
are modulated by some other tasks. Further, dissecting
oscillatory components not only increases the sensitivity of
specific functions related to alpha but also creates a more
precise frequency target for neurofeedback, which has attracted
more and more attention recently for the treatment of brain
disorders including ADHD.

Multiple distinct alpha oscillation-band
vs. sub-bands of alpha

With the increasing number of studies on alpha oscillation,
it has been suggested that there existed two or even three

sub-bands of alpha oscillation (Klimesch, 1999; Makeig et al.,
2002), which might be related to different cognitive functions.
Previous results have shown that the power in these different
sub-bands (upper and lower alpha) also differed in tasks
requiring visual attention (Ding et al., 2006; Sadaghiani et al.,
2010; Liu et al., 2016) and memory (Gruber et al., 2005;
Michels et al., 2008; Hanslmayr et al., 2012; Elmer et al.,
2015; Barnes et al., 2016), and also in the brain’s network
(Murias et al., 2007; Sadaghiani et al., 2012), mental disorders
(Stoffers et al., 2007; Poil et al., 2014; Yu et al., 2017),
neurofeedback training and resting state (Manshanden et al.,
2002; Thorpe et al., 2016). Some animal and human studies
also suggested that different cortical regions could generate
their own alpha oscillations (Lopes Da Silva et al., 1977;
Bollimunta et al., 2008, 2011; Scheering et al., 2016). More
specifically, previous works have shown that alpha rhythms
could be dissected into two components in scalp EEG (Chiang
et al., 2011; Barzegaran et al., 2017; Knyazeva et al., 2018).
Our results showed that three components are necessary to
reconstruct the power spectrum around the alpha band for
most individuals. This suggests that alpha contains at least
three distinct and significant oscillatory components in the
resting EEG, a result that is consistent with the three sub-
bands concept. However, our results also suggest that the way to
divide multiple oscillatory components based on fixed frequency
bands/ranges with respect to the alpha peak frequency might not
be precise; one precise way to divide these components should
be based on their oscillatory properties, such as peak frequencies
and bandwidths in the power spectrum. The theory of Alpha
suppression suggests that many cortical regions can generate
alpha rhythm when the main rhythm is inactivated (Palva and
Palva, 2007) and electrophysiological studies on animals also
showed that multiple cortical regions could generate their own
alpha oscillation (Lopes Da Silva et al., 1977; Bollimunta et al.,
2008, 2011). Therefore, in theory, we might be able to find
multiple alphas in the scalp EEG, but practically, our data
suggest that three components are enough to capture alpha at
the resting state.

Potential sources for the multiple
alpha components

Besides the alpha rhythm in the parieto-occipital lobe, two
other rhythms, the mu rhythm and the sensorimotor rhythm
(SMR) were also found oscillating in the alpha band (8-13 Hz).
The mu rhythm is found in the sensorimotor, motor, and
somatosensory cortex (Arroyo et al., 1993; Jones et al., 2010; Liao
et al., 2015; Coll et al., 2017). The sensorimotor rhythm (SMR)
appears over the sensorimotor cortex (Reichert et al., 2015).
Some studies suggested that spectral or topographic properties
of the functionally- identified mu rhythm strongly reflect those
of upper alpha (Thorpe et al., 2016). Based on previous work
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on the brain regions that are sources of the EEG (Plattner et al.,
2014), our results indicate that low and high alpha is unlikely to
be mu and SMR because they are mostly peaking in the parietal
lobe, more posterior to sensorimotor, motor and somatosensory
cortex. Besides mu and SMR rhythms, alpha oscillation can also
be generated by other cortical regions, including multiple areas
in the visual cortex (Lopes Da Silva et al., 1977; Bollimunta et al.,
2008, 2011).

Limitations of the study

In this study, there are some limitations should be
mentioned. The subjects were Chinese, whose data was collected
in Beijing, China. Future studies would collect the data in a
wider spatial range. Another limitation is the small sample size
of the ADHD remitter group, since the EEG data of the follow-
up group is precious, and not easy to collect. Future work would
consider more follow-up subjects.
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