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Although many resting state and task state characteristics have been studied, it is still

unclear how the brain network switches from the resting state during tasks. The current

theory shows that the brain is a complex dynamic system and synchrony is defined

to measure brain activity. The study compared the changes of synchrony between the

resting state and different task states in healthy young participants (N = 954). It also

examined the ability to switch from the resting state to the task-general architecture

of synchrony. We found that the synchrony increased significantly during the tasks.

And the results showed that the brain has a task-general architecture of synchrony

during different tasks. The main feature of task-based reasoning is that the increase in

synchrony of high-order cognitive networks is significant, while the increase in synchrony

of sensorimotor networks is relatively low. In addition, the high synchrony of high-

order cognitive networks in the resting state can promote task switching effectively and

the pre-configured participants have better cognitive performance, which shows that

spontaneous brain activity and cognitive ability are closely related. These results revealed

changes in the brain network configuration for switching between the resting state and

task state, highlighting the consistent changes in the brain network between different

tasks. Also, there was an important relationship between the switching ability and the

cognitive performance.

Keywords: synchrony, high-order cognitive networks, the task-general architecture, update efficiency, cognitive

performance

INTRODUCTION

The resting state and task state functional magnetic resonance imaging (fMRI) is widely used for the
non-invasive assessment of functional brain activity. The recent studies have led to many studies
describing the relationship between task state and resting state regions (Friston, 2011; Dajani et al.,
2020; Freitas et al., 2020). The recent studies have found that global information transmission
and the integration of resting state networks (RSNs) will be more efficient during the mission.
The economic theory based on brain network organization indicates that the brain network
should be in an energy-saving mode at the resting state, and at the same time showed a dynamic
network reorganization under the task requirements to promote the transmission of information
between network and network (Bullmore and Sporns, 2012; Avena-Koenigsberger et al., 2017).
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FIGURE 1 | Overview of experimental design. (A) Data pre-processing and calculate synchrony. (B) Relationship between resting state and task states.

However, most of them are based on the study of static properties

such as the functional connections and the network topology

(Markett et al., 2020; Zhang et al., 2020; Zhou et al., 2021),

and how the brain network coordinates to express cognitive
operations in dynamic properties is still unclear.

The current studies have confirmed that the brain is a

complex dynamic system (Vasa et al., 2015; Kringelbach and
Deco, 2020), so the brain should be further developed from
dynamic perspective research. Synchrony is an important feature
of the non-linear dynamics of the brain. In the brain, the
communication between different brain regions should take place
through coherence, in which two brain regions with synchronous
fluctuations of activity can exchange information (Fries, 2005).

Some recent studies advocated a more general architecture

between tasks, while other studies advocated differentiation

between tasks. We believed that a general architecture between

multiple tasks would greatly simplify the research of functional
brain organization. This eliminates the need to consider almost

infinitely diverse task states and only needs to focus on a single (or
a few) network architecture with severely constrained state space.
Studies have confirmed that the brain has a general architecture
of functional interconnection networks among various tasks,
and the functional network architecture during task execution is
mainly a RSNs architecture caused by changes in general tasks
and task-specific networks (Schultz and Cole, 2016a,b).

We assumed that there was also a task-general architecture
of synchrony during the tasks. First, we tried to calculate the
synchrony of interaction between different RSNs, exploring the
differences between resting state and different tasks. Second, we
seek the commonalities of these changes. Finally, we studied the

switching ability of synchrony from resting state to task-general
architecture and explored the relationship with synchrony and
cognitive performance, including the task accuracy, and fluid
intelligence, and crystallized intelligence.

METHODS

The overall experimental design was shown in Figure 1. The
blood oxygenation level-dependent (BOLD) signal was extracted
from the pre-processed image and filtered the extracted BOLD
signal. Then the BOLD signal was converted into phase through
Hilbert transform, and synchrony was calculated (Figure 1A).
Subsequently, the synchrony interaction matrix of resting state
and task states was verified by network-based statistic (NBS)
analysis, and the task-general architecture of synchrony was
obtained by principal component analysis (PCA). Finally, a linear
regression was performed for update efficiency and synchrony, as
well as cognitive performance (Figure 1B).

Participants
The data were collected by the Washington University–
Minnesota Consortium Human Connectome Project (Van Essen
et al., 2013). The data come from the “S1200 Subject” release
(see https://www.humanconnectome.org/data). A total of 954
participants were selected for this study. See Table 1 for basic
information about the participants. Due to the lack of accuracy
of gambling, social and motor behaviors, only the results of
task working memory (TWmemory), language, emotion, and
relationship are considered. All participants were assessed for a
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TABLE 1 | Basic information of the participants.

Characteristics Value

Gender (Male: Female) 503: 451

Age (Years) 22–35

Language accuracy 80.03 ± 6.96

Emotion accuracy 97.50 ± 3.65

Relational accuracy 76.26 ± 12.49

TWmemory accuracy 87.79 ± 8,79

Fluid intelligence 107.31 ± 16.60

Crystallized intelligence 111.10 ± 16.61

history of neurological and psychiatric disorders, psychotropic
drug use, and physical condition or implants.

Data and Data Pre-processing
The whole-brain echoplanar scans were acquired with a 32-
channel head coil on amodified 3T Siemens Skyra with repetition
time (TR) = 720ms, echo time (TE) = 33.1ms, flip angle =

52◦, bandwidth (BW) = 2290 Hz/Px, in-plane field of view
(FOV) = 208 × 18mm, 72 slices, 2.0-mm isotropic voxels, with
a multi-band acceleration factor of 8 (Ugurbil et al., 2013). In
addition to the resting state, there were seven in-scanner tasks
designed to engage a variety of cortical networks related to
emotion perception, relational reasoning, language processing,
TWmemory, gambling, social cognition, and motor responses.
Table 2 briefly introduces these seven tasks. Barch et al. (2013)
introduced more detail about the tasks.

We used a minimally pre-processed version of the data that
included spatial normalization to a standard template, motion
correction, slice timing correction, intensity normalization, and
surface and parcel constrained smoothing of 2mm full width at
half maximum (Glasser et al., 2013). Filtering 0.06–0.125Hz was
applied to the data, which was thought to be especially sensitive
to dynamic changes in the task-related functional brain (Han
et al., 2017). Since each task contained two runs, to avoid the
impact of insufficient time on the experiment, both runs were
connected to a BOLD signal. The first 10 time points and the
last 10 time points were then removed to minimize the boundary
effect (Ponce-Alvarez et al., 2015). To facilitate the comparison
between resting and task-based conditions, both sets of data were
identically processed.

Definition of RSNs From Functional
Imaging Data
We extracted the BOLD signal from the Human Connectome
Project Multimodal Parcellation (HCP–MMP) atlas and used
the BOLD signal for regional analysis. Using multimodal
segmentation of the human cerebral cortex (Glasser et al., 2016),
360 brain regions were assigned to 14 RSNs, including visual
network (VIS), somatomotor network (SMN), cingulo–opercular
network (CON), premotor1 (PREM1), premotor2 (PREM2),
default mode network (DMN), frontoparietal network (FPN),
primary auditory (AUD), language (LAN), posterior cingulate
(PCC), dorsal attention network (DAN), hippocampal (HIPP),

posterior multimodal (PMULTI) and uncertain (NONE). Refer
to Supplementary Figure 1 for the RSNs distribution.

Calculate the Synchrony
The synchrony was used to describe the “instantaneous”
collective behavior of a group of phase oscillators (Skardal
and Arenas, 2020). Given that the interaction matrix transfers
more behaviorally relevant information than isolating the
functional connectivity between regions, an interaction matrix
was estimated for each subject, reflecting the synchrony
interaction of 14 RSNs (Alderson et al., 2018). First, converted
the BOLD signal into a complex phase through the Hilbert
transform. The calculation formula for synchrony was as follows:

Synchrony =
1
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where 2n(t) is the instantaneous phase of oscillator n at time
t, T is the number of time points. For the global synchrony,
N is the number of brain regions. For the synchrony between
the RSNs, each interaction involved two RSNs, where N refered
to the number of brain regions included in the two RSNs.
With the complete independence, all phases were uniformly
distributed and synchrony approaches 0. Conversely, if all phases
are equivalent, synchrony approaches 1 (Bakhshayesh et al., 2019;
Zirkle and Rubchinsky, 2020).

Network-Based Statistic
The NBS is a non-parametric statistical test designed to deal
with the multiple comparisons problem in a graph by identifying
the largest connected sub-component in topological space while
controlling the family-wise error rate (FWER). The synchrony
interaction matrix between the resting state and the task states of
each subject was calculated, and the NBS test was carried out to
determine the difference of synchrony between the resting state
and the seven task states (Figure 1B).

Principal Component Analysis
The PCA was the most common method to reduce the linear
dimensionality (Wong et al., 2021). Its goal was to map high-
dimensional data to low-dimensional space through a certain
linear projection (Li J et al., 2019). Loadings were used for
the importance of a variable in each principal component (PC),
that is, the weight of each variable in different PCs how many
(Petersen et al., 2016; Min et al., 2018). To quantify the level
of sharing of the seven task-based configurations, the PCA was
used to reduce the dimensions of the seven task-based synchrony
interaction matrices to a one-dimensional matrix, retaining
most of the characteristics of the task states (Figure 1B). The
synchrony interaction matrix of a single subject was vectorized
based on the seven task states and obtained the task architecture
of the synchrony of a single subject by PCA. Subsequently, a task-
general architecture of synchrony was obtained by simple average
across subjects.
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TABLE 2 | Seven human connectome project fMRI tasks.

Task Time (min:s) Task design

Language 3:57 Participants were asked to answer questions, including story conditions and math conditions.

Emotion 2:16 Participants were asked to choose the same face at the bottom of the screen and the top of

the screen.

Relational 2:56 Participants determine whether the shape, texture, and size of the two objects are the same.

Social 3:27 Participants watch video clips of objects interacting in an agentive way or random way.

Working memory 5:01 Participants respond when the picture shown on the screen is the same as the two trials back

(2-back) or the same as the one shown at the start of the block (0-back).

Gambling 3:12 Participants guess whether the numbers on the card are greater than 5, to determine whether

they will win or lose

Motor 3:34 Participants move their fingers, toes, or tongue according to the prompts

Update Efficiency
Update efficiency refers to the ability to switch from a resting state
into a task-based configuration (Schultz and Cole, 2016a). The
high update efficiency indicates that the network configuration
was similar between the resting and task state, and few changes
are required to complete the switch from the resting state to
the task state. The high difference in network configuration
between resting state and task state corresponds to the low
update efficiency, suggesting that many changes were required
to achieve task switching. The update efficiency was calculated
for all subjects by vectorizing the upper triangular half and
diagonal of the resting and task-general architecture of synchrony
and calculating their Pearson correlation coefficient. Finally, the
update efficiency of all subjects was transformed to a normal
distribution by Fisher’s z-distribution.

RESULTS

Difference of Global Synchrony Between
Resting State and Task States
Compared with the resting state, the global synchrony during the
tasks was significantly higher (Figure 2). These mainly included
language (t = 19.01, p < 0.001), emotion (t = 19.06, p < 0.001),
relational (t = 20.67, p < 0.001), social (t = 23.49, p < 0.001),
TWmemory (t = 25.35, p < 0.001), gambling (t = 25.04, p <

0.001), and motor (t = 36.09, p < 0.001).

Difference of RSNs Synchrony Between
Resting State and Task States
Figure 3 showed the maximum connected subgraph with
increased synchrony detected by NBS under a fixed threshold
of seven tasks. A fixed threshold of 15 was selected to visualize
the increase in synchrony between RSNs under the same scale
(p < 0.001, corrected). Across the seven tasks, the increase in
synchrony was consistent. In addition, the increase of synchrony
in high-order cognitive networks was more extensive (see
Supplementary Figure 2).

The Similarity of RSNs Synchrony During
the Tasks
Through PCA, there were similar results among the seven
tasks. On average, the PC1 accounted for 85% of the variance

(Figure 4A). The loadings of the seven tasks were positive and
evenly distributed (Figure 4B). These included the following:
Language = 0.374, emotion = 0.378, relational = 0.390, social
= 0.316, TWmemory = 0.370, gambling = 0.382, and motor =
0.397. The Pearson correlation was performed on the synchrony
between seven tasks, it found that the correlation value can reach
more than 0.75 (p < 0.01; Figure 4C).

High Synchrony and Low Synchrony
Between RSNs
The task-general architecture of synchrony was decomposed into
a low synchrony subnet (Figure 5A) and a high synchrony subnet
(Figure 5B). The high synchrony subnets mainly included high-
order cognitive networks, while low synchrony subnets were
related to sensorimotor networks.

Correlation Between Synchrony of RSNs
and Update Efficiency
The correlation analysis between the synchrony and the update
efficiency of the resting state and the task states network was
carried out respectively. The results showed that there is no
significant correlation between the synchrony of the task states
network and the update efficiency. The synchrony of the RSNs
and update efficiency were significantly correlated, and the linear
regression analysis was performed to obtain the slope of the linear
regression equation (Figure 6A). And after the false discovery
rate (FDR) correction, it has a significant correlation (Figure 6B,
p < 0.01). The RSNs showing a significant positive correlation
was mainly in high-order cognitive networks (Figure 6C), while
the most sensorimotor networks were negatively correlated
(Figure 6D).

Correlation Between Update Efficiency and
Cognitive Performance
Next, a linear regression analysis was performed on cognitive
performance and update efficiency. There was a significant
positive correlation between update efficiency and behavioral
accuracy (Figure 7A) or cognitive intelligence (Figure 7B).
Behavioral accuracy included language (F = 12.128, p =

0.001), emotion (F = 5.500, p = 0.019), relational (F =

24.073, p < 0.001), and work memory (F = 23.232, p <
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FIGURE 2 | The difference of global synchrony during resting state and different task states. Bars display the mean value, 95% CI, and one SD with individual subjects

indicated (***, p < 0.001). Tasks are arranged in ascending order of mean synchrony.

0.001). The cognitive intelligence included the fluid intelligence
(F = 13.787, p < 0.001) and crystalline intelligence (F = 21.732,
p < 0.001).

DISCUSSION

The research mainly explored whether there was a task-general
architecture of synchrony during the tasks. We studied 954
healthy young participants. During the tasks, the synchrony was
higher than the resting state (Figure 2), especially in the higher
order cognitive networks (Figure 3). Also, there were similar
patterns for different tasks. Then we received a task-general
architecture of synchrony by PCA (Figures 4, 5). In addition,
the high synchrony of high-order cognitive networks in the
resting state can promote task switching effectively (Figure 6).
The participants with high update efficiency had better
cognitive performance (Figure 7). The results are discussed in
detail hereafter.

There Was the Task-General Architecture
of Synchrony Between Different Tasks
Our results proved that there was a “task-general architecture”
in synchrony (Figures 4, 5). We reached the conclusion based
on the following three results: (1) Most of the differences
between tasks were resolved by PC1 (85%); (2) The loadings were
evenly distributed; (3) There was a high correlation between the
seven tasks. The current results are in agreement with previous
studies, the functional connection network between different
tasks had similar patterns (Schultz and Cole, 2016b; Chan
et al., 2017). Also, the metastability showed a similar pattern
for different tasks (Alderson et al., 2018). The similarities in
functional network configurations across the different behavioral
paradigms form the so-called “task-general architecture” (Cole
et al., 2014). Then the proportion of changes in cerebral blood
flow caused by different tasks was less than 5% (Raichle,
2010). It also showed from the side that different tasks have
similar patterns.
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FIGURE 3 | The difference of synchrony between RSNs in resting state and different task states. The graph used the t-value to show the largest connected subgraph

of the difference. The darker the color, the greater the difference.

FIGURE 4 | The PCA quantifies the degree of sharing based on the functional configuration of seven tasks. (A) The histogram of each component accounts for the

variance between the seven tasks, and the broken line indicates the cumulative proportion of each component. (B) The loading of seven tasks. The error bar indicates

the standard deviation. (C) Correlation between the synchrony of the seven tasks.

The experience-dependent changes in the functional

connectivity of the resting state demonstrate a certain plausibility

for task-driven mechanisms (Hearne et al., 2017; Millar et al.,

2021). The functional network architecture of the brain
during the task performance was shaped, primarily, by an

intrinsic network architecture that was also present during

the resting state and, secondarily, by the evoked task-general

and task-specific network changes (Raichle, 2010; Messel

et al., 2019; Boring et al., 2020). Overall, the brain has a
task-general architecture, but there were still specific task

configurations in different tasks (Cole et al., 2014). This was

the reason why there were similar but not identical patterns in
seven tasks.

The Synchrony of High-Order Cognitive
Networks Has Increased More Widely
During Tasks
The high-order cognitive networks had higher synchrony during
the tasks, while the synchrony of the sensorimotor networks was
relatively low (Figure 2). We suspected that the result was related
to the following reasons. Both higher order cognitive networks
tended to have high between-RSN connectivity, indicating their
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FIGURE 5 | PCA reveals a task-general network architecture of synchrony. (A) Low synchrony subnet. (B) High synchrony subnet.

roles as connector RSNs. The close connection between these
RSNs and the rest of the brain could form a mechanistic
explanation for their utility in myriad complex cognitive
processes (Gu et al., 2015a). In contrast to high-order cognitive

networks that act as connectors, the sensorimotor networks
tended to have poor between-RSN connectivity, indicating

their roles as provincial RSNs. The weak connection between

these RSNs and the rest of the brain indicated that they
displayed distinct profiles of neurophysiological activity, and

might perform more segregated functions (Gu et al., 2015b).

The previous studies had identified the exchange of

information between regions was carried out through synchrony

(Palmigiano et al., 2017; Li M et al., 2019). Then the high-
order cognitive networks were global hubs (Meijer et al., 2017;
Ferrier et al., 2020), and high-order cognitive networks played a
disproportionate role in shaping information transfer between

regions throughout the brain (Ito et al., 2017). So, the universal
flexible hub networks showed a higher synchrony during the
mission. The high-order cognitive networks indicate that it is
more flexible to transfer task information across regions and
networks (Ito et al., 2017).

The High Synchrony of the Resting State
High-Order Cognitive Networks Can
Promote Task-Switching Ability
The high synchrony of the high-order cognitive networks
coupling and the low synchrony of sensorimotor network
coupling could promote the update efficiency between resting
state and task-general architecture (Figure 6). In the brain,
it was assumed that the communication between nerve
groups was based on coherence. Through coherence, two
neural combinations of synchronized activities can exchange
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FIGURE 6 | The correlation between the synchrony of the RSNs and the update efficiency. (A) The correlation coefficient (slope) between synchrony of RSNs and

update efficiency. (B) There is a significant correlation coefficient between synchrony of RSNs and update efficiency. (C) There are RSNs with a positive correlation

between update efficiency and synchrony. The darker the color, the higher the correlation. The size of the node represents the sum of the correlations at the RSN. (D)

There are RSNs with a negative correlation between update efficiency and synchrony.

information (Fries, 2005; Vasa et al., 2015). The update efficiency
of synchrony was a method of isolation and integration. It
indicated that during the resting state, the high degree of
synchrony between the high-order cognitive networks can
predict task performance, and network connectivity showed
the tendency of integration and separation related to cognitive
performance (Alderson et al., 2020). The exchange of information
between the high-order cognitive networks is more flexible, the
information exchange of sensorimotor networks is more stable,
and the ability to switch from resting state to task configuration
is stronger.

On the contrary, the changes in synchrony of the task-based
RSNs have nothing to do with update efficiency. The brain
activity at the resting state when subjects were not performing

any explicit task predicted differences in fMRI activation across
a range of cognitive paradigms. The resting state functional
connectivity thus already contained the repertoire that is then
expressed during task-based fMRI (Tavor et al., 2016). The
observed fluctuations in network topology during the break
were likely to be directly related to ongoing cognitive processing
(Shine and Poldrack, 2018). The current research on RSNs
showed that the functional couplings between regions at resting
state contained information relevant to cognition, perception,
and behavior (Sadaghiani and Kleinschmidt, 2013), rather than
simply reflecting an invariant structural anatomy, historical co-
activation patterns, or internal dynamics of local areas; the
intrinsic activity predicted subsequent perceptual processing (van
den Berg et al., 2016; Xu et al., 2021).
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FIGURE 7 | The correlation between update efficiency and cognitive performance. (A) The correlation between update efficiency and behavioral accuracy. (B) The

correlation between update efficiency and cognitive intelligence. There is a positive correlation between update efficiency and behavioral accuracy.

Participants With Pre-configuration
Showed a Better Performance
The update efficiency in brain network organization is
positively related to general intelligence and behavior
accuracy (Figure 7), the ability to perform a wide variety
of cognitively challenging tasks well. It showed that the
ability of participants to answer correct questions inside
and outside the scanner is related to their internal neuron
dynamics. The update efficiency reflected the difficulty of
switching to the task-general architecture from the resting
state (Schultz and Cole, 2016a,b). Specifically, the brain
network configuration at the resting state was already
closer to a wide variety of task configurations in intelligent
individuals. The ability to modify network connectivity
efficiently when task demands change is a hallmark of high
intelligence (Cole et al., 2014).

Increasing reasoning demands were supported by the flexible

reconfiguration of large-scale functional brain networks (Cocchi

et al., 2014), but a recent study has demonstrated that such

reconfigurations are relatively modest and occur within a

preserved global network architecture (Hearne et al., 2017).

A successful cognition was likely contingent on possessing an
adequate a priori dynamic configuration before the onset of
task-relevant stimuli, as opposed to simple ad hoc adjustments
after the fact (Bolt et al., 2018). Therefore, the resting state
activity may reflect the brain’s predictive engagement with
the environment (Sadaghiani and Kleinschmidt, 2013). Given
that the resting state reflects the previous experience and
the anticipation of likely future events, an RSN architecture

“pre-configured” for the task is more in line with future
cognitive requirements.

The Task States Synchrony Was Higher
Than the Resting State Synchrony
Compared with the resting state, the global synchrony during
the task is higher, and the synchrony interaction between
RSNs is also higher. Compared with the resting state, the
co-activation network shows higher global efficiency, smaller
average clustering coefficient, and lowermodularity, which shows
that the global information transmission and system during
task execution are more effective between integrations (Maffei
and Sessa, 2021). The global integration of the brain increases
during the tasks, and as the neural activities of the internal
brain system required for task execution become relevant, the
functional connections between RSNs become stronger (Cohen
and D’Esposito, 2016; Wei et al., 2022).

The change of synchrony is regulated by the needs of
cognitive tasks and is a distinctive feature of the continuous
activity of the human cortex (Palva et al., 2005). In general,
the successful behavior depends on effective communication
between brain regions. The communication between brain
regions can be assessed by analyzing the synchrony. Moreover,
the degree of synchrony between regions is more representative
of changes in brain function intensity than the analysis of task
activation to a certain extent (Hummel and Gerloff, 2005).
Also, the task performance regulates functional interactions
in the brain (Li et al., 2021). When performing a task, the
brain adjusts its functional connections to exchange more
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information and reconfigure the brain network according to the
task (Friston, 2011). Therefore, the synchrony is higher during
the task.

CONCLUSIONS

We reported a study about the synchrony of healthy young
people at resting state and task states. The different tasks have a
task-general architecture of synchrony. Compared to the resting
state, the synchrony was significantly higher during the tasks,
especially in high-order cognitive networks. It showed that
synchrony provides great potential for associating brain activities
with cognition and behavior. In addition, subjects with high
synchrony at resting state have better pre-configurations and
show more outstanding cognitive abilities.
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