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Infrared neural stimulation (INS), as a novel form of neuromodulation, allows

modulating the activity of nerve cells through thermally induced capacitive

currents and thermal sensitivity ion channels. However, fundamental questions

remain about the exact mechanism of INS and how the photothermal e�ect

influences the neural response. Computational neural modeling can provide

a powerful methodology for understanding the law of action of INS. We

developed a temperature-dependent model of ion channels and membrane

capacitance based on the photothermal e�ect to quantify the e�ect of INS on

the direct response of individual neurons and neuronal networks. The neurons

were connected through excitatory and inhibitory synapses and constituted a

complex neuronal network model. Our results showed that a slight increase

in temperature promoted the neuronal spikes and enhanced network activity,

whereas the ultra-temperature inhibited neuronal activity. This biophysically

based simulation illustrated the optical dose-dependent biphasic cell response

with capacitive current as the core change condition. The computational

model provided a new sight to elucidate mechanisms and inform parameter

selection of INS.

KEYWORDS

computational model, infrared neural stimulation, neuronal network, photothermal
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Introduction

Many forms of external physical stimulation (electric, optical, ultrasound, and

magnetic stimulation) can regulate brain functions and the treatment of brain disorders

(Darmani et al., 2022). Compared with electrical stimulation, known as the gold standard

(Barborica et al., 2022), optical stimulation techniques have an extremely high value in

the neuromodulation field due to their high spatial accuracy and positional targeting.

Among the optical stimulation techniques, the ability of infrared neural stimulation

(INS) to activate or inhibit nerve cells without any genetic or chemical tissuemodification

provides better safety and clinical feasibility when compared with the other types of

optical techniques (Rajguru et al., 2011). This form of neuromodulation has potential
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applications in diagnosing and treating many neurological

and psychiatric disorders, such as dementia (Iaccarino et al.,

2016), Parkinson’s disease (Darlot et al., 2016), and depression

(Tanaka et al., 2011). Nevertheless, the rational design and

optimization of INS are hampered by the limited understanding

of its neural effects.

Understanding how infrared (IR) stimulation affects

neuronal activity and the mechanisms of interaction between

the influences generated by IR light and neural tissue is

necessary to address the question regarding the interaction

between INS and neurons. A growing body of in vitro and in vivo

evidence strongly suggests that laser is mediated by absorption

of the local aqueous medium surrounding the heated cell to

produce a thermal transient (Liu et al., 2009). INS regulates

neuronal membrane capacitance and ion channel conductivity

through the temperature-dependent mechanism generated by

this thermal transient effect (Shapiro et al., 2012; Singh et al.,

2019) and then modulates neuronal excitability. It is important

to investigate the effects of physical field modulation on the

neural network by considering the complexities of neuron

types and their connections. However, only a few studies on

the efficiency of INS at the neural network level were reported

(Xia and Nyberg, 2019). Hence, the mechanism of interaction

between the thermal effects produced by IR neural stimulation

and the activity of neuronal populations is still not clearly

elucidated, especially how the changes at one cell level can affect

the network. Indeed, the network effect of neuromodulation

has been shown to exist in other physical stimulations through

experiments and computational models (Miyawaki et al., 2012;

Di Lazzaro et al., 2018).

Computational modeling is a powerful tool for investigating

the mechanisms of INS and for helping bridge research

scales from a single cell to the network. A wealth of

theoretical and numerical models on the interaction of INS

with neural tissue exists. Most of them used spiral ganglion

neurons (SGNs) as potential stimulation targets to explore the

effects of IR stimulation on the level of isolated individual

neurons. For example, acute in vivo experiments using gerbils

to record optically evoked compound action potentials in

the cochlea demonstrated that the auditory nerve could

be stimulated by optical radiation (Littlefield et al., 2010).

Some researchers accurately simulated neuronal responses

by building a modified Hodgkin-Huxley (HH)-type model

to predict the action potential threshold generated by SGN

stimulation (Brown et al., 2021). Optical stimulation techniques

can significantly improve cochlear implants hampered by a

lack of spatial selectivity (Richardson et al., 2020). The above

results showed that most studies were performed at the level

of individual neuronal cells and did not address the dynamic

activity of neuronal networks exposed to IR light. Therefore,

considering the specific effects of photothermal effects on

the complex neuronal network and illustrating the interaction

between the photothermal effect and the neuronal network

through the simulation results of the computational model

are necessary.

In this study, we pursued a mixed strategy and developed a

cortical neuronal network model by lumping both microscopic

and macroscopic aspects to quantify the process of neuronal

network response to IR light stimulation. The model combined

excitatory and inhibitory neurons and synaptic structures, all of

which were essential to accurately model the effects of IR neural

stimulation. The present study aimed to investigate whether

laser irradiation could regulate network activity. With this more

complete model, we illustrated that the thermal effect in optical

modulation affected the activity in individual neurons, as well

as neuronal networks in a biphasic dose-response manner, thus

providing a reasonable reference for biological experiments.

Materials and methods

Based on neurophysiological features and experimental

observations, the typical neuronal network model includes

excitatory and inhibitory neurons, which are connected by

excitatory and inhibitory synapses, respectively, forming a

feedback circuit (Ocker et al., 2015). We focused on two levels,

ion channels and membrane capacitance, and extended to the

network structure to investigate the process of IR regulation on

neurons. Themodel construction and its dynamics analysis from

individual neurons to the neuronal network were as follows.

Neuron model

As the basic element of a neuronal network, the neuron

plays a fundamental role in modeling. Neuron modeling is the

primary step in developing neuronal networks. The well-known

Hodgkin-Huxley (HH) model was used in our neural network

(Hodgkin and Huxley, 1952). The corresponding dynamic

equation is as follows:

Cm
dvm

dt
= −gleak(vm − Eleak)

−gNam
3h(vm − ENa)− gKn

4(vm − EK )+ Iext (1)

whereCm is the membrane capacitance, vm is the membrane

potential, gleak, gNa, and gK are maximal conductance of the

leak, sodium, and potassium channels, respectively. Eleak, ENa,

and EK are the reversal potentials, and Iext is the external current

injected into the membrane, i.e., background current.

The environment to which the neuronal cells are exposed

generates temperature changes according to the rapid thermal

transients generated by IR radiation in biological tissues.

Therefore, a modified model of HH neurons was proposed

through this temperature-dependent process. The improved
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model could visualize the kinetics process of neurons under the

photothermal effect.

We extended the temperature influence factor φ(T)

(Chandler andMeves, 1970), which affected neuronal activity by

modulating the conductance and gating kinetics of ion channels.

Thus, the firing process and dynamic changes of neurons

under the premise of the thermal effect can be effectively

simulated. Additionally, neuronal excitability is acutely affected

by temperature through the changes in Nernst equilibrium

potential (Kim and Connors, 2012). According to the original

hypothesis of Hodgkin and Huxley, the activation m, n and

inactivation h gating variables could be combined with the

temperature coefficient φ(T), thus introducing temperature

variables into the opening and closing rates of ion channels.

Thus, the model of modulation of neuronal ion channels by

photothermal effects is described by the following equations:

αn =
0.032φ(T)5

exp[(−48− vm)/5]
(2)

βn = 0.5φ(T) exp[(−53− vm)/40] (3)

αm =
0.32φ(T)4

exp[(−50− vm)/4]
(4)

βm =
0.28φ(T)5

exp[(−103− vm)/5]
(5)

βh =
4φ(T)

1+ exp[(−23− vm)/5]
(6)

φ(T) = 3(T−6.3)/10 (7)

where αn and βn are the opening and closing rates of the

K+ channel, αmand βm are the opening and closing rates for

the activation gates of the Na+ channel, and αh and βh are the

opening and closing rates for the inactivation gates of the Na+

channel, respectively.

The IR radiation not only thermally modulates the ion

channel but also produces a temperature-dependent effect

on the membrane capacitance. Early experimental studies

demonstrated a correlation between capacitance (Cm) and

temperature (T) (Santos-Sacchi and Huang, 1998). Based on the

ferroelectric Curie-Weiss law, the temperature-dependent effect

of membrane capacitance could be represented visually and

the temperature-capacitance relationship could be effectively

fitted experimentally (Leuchtag, 1995). The fitting equation is

described as follows:

Cm = C0 +
k

Tc − T
(8)

where k is capacitance constant; C0 is a constant membrane

capacitance; and Tc is the Curie temperature of membrane

capacitance. The Curie temperature of the membrane capacitor

varied depending on the type of squid. Therefore, based on the

data obtained from the HH model, the Curie temperature range

was 31–50◦C.

In addition, the photothermal effect also affects the size of

the lipid bilayer, which in turn leads to changes in the membrane

capacitance of the neurons. In conventional models, the

capacitance would be assumed to be constant. However, recent

studies demonstrated that under the condition of IR radiation,

the change in capacitance caused a part of displacement current,

with temperature dependence (Peterson and Tyler, 2012). As a

result, we introduced the capacitive current component (Brown

et al., 2021), which could be expressed as the time derivative of

the membrane capacitance charge Cm(vm − Vs):

Im = (vm − Vs)
dCm

dt
(9)

where dCm/dt denotes the laser-induced dT/dt as a function

of the relational gradient dCm/dT. Vs is the asymmetric surface

charge potential. The capacitive current component was well-

fitted to the equation .

For the heat transfer effect of continuous wave laser,

the increased temperature varied for different wavelengths,

but a similar trend occurred in the case of the temperature

change rate. As the irradiation time increased, the temperature

gradient decreased significantly with respect to the initial

value. Therefore, under the specified laser pulse conditions,

dCm/dt was linearly proportional to dT/dt with a temperature-

dependent capacitance factor dT/dt = 0.313%◦C−1 (Plaksin

et al., 2018). Thus, the capacitor current equation is read

as follows:

Im = 3.13× 10−3 dT

dt
(vm − Vs) (10)

The schematic illustration of IR regulation on ion channels

andmembrane capacitance is shown in Figure 1. The parameters

(Hodgkin and Huxley, 1952) used in the neuronal model are

listed in Table 1.

Synapse model

In neurophysiology, synapses are the sites where

connections between neurons occur functionally and are

also the key players in constituting models of complex neuronal

networks. We used the synapse model originally proposed

by Tsodyks and Markram to describe the dynamics of the

synaptic terminal (Tsodyks et al., 1998; Barak and Tsodyks,

2007). The synaptic release process was achieved by the product

of the variables us and xs, in which us represents the fraction

of available neurotransmitter resources “docked” for release,

and xs is related to the proportion of total neurotransmitters

that could be released. Upon the arrival of an action potential,

us decayed to 0 at the 1/τf rate while xs reinstated to 1

at the 1/τr rate. The process mimicked neurotransmitter

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2022.933818
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Wei et al. 10.3389/fncom.2022.933818

FIGURE 1

Schematic illustration of infrared stimulation at the cellular and molecular levels. Infrared irradiation caused changes in ion channel and

membrane capacitance, increases in the rate of ion channel opening and closing, and changes in the thinning and larger area of the lipid bilayer,

leading to changes in the response current.

TABLE 1 Parameters used in the neuron model.

Parameter Description Value

gleak Leak channel conductance 0.05 mS

gNa Sodium channel conductance 50 mS

gK Potassium channel conductance 30 mS

ELeak Reversal potential of leakage channel −60 mV

ENa Reversal potential of Na+ 90 mV

EK Reversal potential of K+
−85 mV

Vs Asymmetric surface charge potential 28 mV

Vth Firing threshold −63 mV

Vrest Resting potential −70 mV

Iext External current 1 pA

k Capacitance constant 2.2

C0 Constant membrane capacitance 0.824 µF

depletion and reintegration and can be read by the following set

of equations:

dus

dt
=

−us

τf
+ U0 · (1− us) · δ(t − tK ) (11)

dxs

dt
=

1− xs

τr
− rs · δ(t − tK ) (12)

where U0 is initial synaptic release probability at rest;

released neurotransmitter resources from the presynaptic

terminal can be calculated as follows:

rs = us · xs (13)

Then, the neurotransmitter concentration Gs in the synaptic

cleft is given by De Pitta and Brunel (2016):

dGs

dt
= −�c · Gs + rs · Qc · YT · δ(t − tK ) (14)

where in neurotransmitter clearance rate, Qc is vesicular vs.

mixing volume ratio and YT is total vesicular neurotransmitter

concentration. When a presynaptic action potential occurred,

the postsynaptic neuron was responded by increasing

corresponding excitability or inhibition conductance and

then gave rise to postsynaptic currents. The fraction of

postsynaptic receptors in the open state r can be described by

the following first-order dynamic equation:

dr

dt
= α · Gs · (1− r)− β · r (15)

where α and β are the forward and backward rate

constants, respectively. Finally, α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid (AMPA)- and N-methyl D-aspartate

(NMDA)-mediated excitatory postsynaptic currents (EPSCs) are

expressed by the following equations:

Frontiers inComputationalNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2022.933818
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Wei et al. 10.3389/fncom.2022.933818

TABLE 2 Parameters used in the synapse model.

Parameter Description Value

U0 Resting synaptic release probability 0.6

τf Facilitation time constant 0.3 s−1

τr Recovery time constant 0.5 s−1

YT Total vesicular neurotransmitter concentration 500 mM

�c Neurotransmitter clearance rate 40 s−1

Qc Vesicular vs. mixing volume ratio 0.005

αAMPA AMPA forward rate constant 1.1 µM−1
·s−1

βAMPA AMPA backward rate constant 190 s−1

αNMDA NMDA forward rate constant 0.072 µM−1
·s−1

βNMDA NMDA backward rate constant 6.6 s−1

IAMPA = gAMPA · r(t) · (vm − EAMPA) (16)

INMDA = gNMDA ·Mg(vm) · r(t) · (vm − ENMDA) (17)

Mg(vm) =
1

1+ exp(−0.062 ∗ vm)[Mg2+]/3.57
(18)

where g is the maximum synaptic conductance with gAMPA

= 0.35 nS, gNMDA = 0.026mS. E is the synaptic reversal

potential with EAMPA = ENMDA = 0mV. Noteworthily,

NMDA receptor channels contain a voltage-dependent term

representing magnesium (Mg2+) block with [Mg2+] = 1mM

(Jahr and Stevens, 1990). The parameters (De Pitta and Brunel,

2016) used in the synapse model are listed in Table 2.

Neuronal network

The cerebral cortex is a multi-scale structure with local

circuits interwoven to form a global network of remote

connections. Within this complex network structure, neural

activity propagates widely across temporal and spatial scales.

The network model constructed in this study started from

the microscale and took excitatory and inhibitory neurons

as the basic components to respond to the photothermal

effect of INS through synaptic interactions. Based on the

neuroanatomical ratio of excitatory to inhibitory neurons (4:1)

(Manos et al., 2021), the network model we designed comprised

3,200 excitatory neurons and 800 inhibitory neurons. The

excitatory neurons with 5% of the connected weight enhanced

signals, and the inhibitory neurons with 20% of the connected

weight transmitted suppression signals.

Further, the cell populations were distributed in the

Euclidean space to visualize and analyze the neuronal network.

In the 2D map of the network, red represents excitatory

neurons and blue represents inhibitory neurons, as shown

in Figure 2. In cortical neuronal networks, excitatory inputs

and inhibitory equivalents entered the cell together, allowing

targeted transient or sustained opening of signal receptors. This

tight coupling of excitatory and inhibitory signals exhibited

a more intuitive state of network equilibrium (Jirsa, 2004).

The model we developed was implemented in the Brian

2.0 simulator (Goodman and Brette, 2008; Stimberg et al.,

2017).

Results

IR neural stimulation-induced
temperature rise

The IR radiation is absorbed by the cellular tissue and

converted into thermal energy (Wells et al., 2007a; Thompson

et al., 2013). The temperature of the stimulation target increases,

leading to temperature-dependent neuronal stimulation. The

focus of this study was to investigate the spike activity and

coding processes of neurons and neuronal networks in terms

of the thermal effects generated by the action of IR light. Since

the majority of the material in biological tissues is water, we

first considered the process of temperature change produced

by the irradiation of IR light in water. The data obtained

from the experiments provided support for the simulation of

neuronal networks.

The schematic illustration of a laser irradiation detection

device is shown in Figure 3A. Phosphate-buffered solution (PBS;

Solarbio, China) of 0.5ml was irradiated using IR laser 1,550 nm

(Changchun New Industries Optoelectronics, China) in 24-

well plates (Corning, USA) at room temperature. The optical

stimulation was performed at the bottom of each well with a

temperature probe (Fluke 17B+, USA) 10mm away from the

well. The power of the laser over the beam region was monitored

by a Thorlabs (Thorlabs PM100D, USA). The temperature

variation induced by laser irradiation is shown in Figure 3B.

The increased temperature distribution ranged from 0.9 to 30◦C

at the different laser powers, in which the trends showed a

rapid increase and gradual stabilization of temperatures (Xia and

Nyberg, 2019). Consequently, the temperature increases in the

INS computational model were primarily 10, 20, and 30◦C.

Spiking rhythms exposed to IR neural
stimulation

The equations were inserted in editable format from the

equation editor. We described the firing behavior of the

neurons to verify whether IR-induced temperature changes

could evoke neuron depolarization. A constant offset current

with an amplitude of Iext = 1 pA was injected into the

neuronal model to induce tonic spikes in the neuronal action

potential.We used neuronal spikes without photothermal effects

as the original reference and the variation of the neuronal
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FIGURE 2

Neuronal network visualization in the Euclidean space. The 2D network diagram shows excitatory neurons in the red dots and inhibitory neurons

in the blue dots. For the sake of clarity, the connection of 5% out of all excitatory synapses was selected at random (red lines).

FIGURE 3

Temperature distribution at the di�erent laser power. (A) The experimental setup of laser irradiation detection. (B) Temperature change curve

over time caused by infrared light irradiation at 1,550nm (initial temperature 21◦C). PBS, phosphate bu�ered solution.

membrane potential in the experimentally probed temperature

range was characterized.

The thermal effect produced by IR light is interfered with

the spike timing of neurons, as shown in Figure 4. The numbers

of neuronal spikes from the recording time were 22, 52, 34,

and 9 with the temperature increase of 0, 10, 20, and 30◦C,

respectively. Compared with no change in temperature, the

neuronal spikes at 10 and 20◦C were increased by 136.4
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FIGURE 4

Membrane potential of single excitatory neurons under the action of increase in temperature by (A) 0, (B) 10, (C) 20, and (D) 30◦C.

and 45.4%, respectively, and the spike count at 30◦C was

decreased by 59.1%. These results revealed an optical dose-

dependent biphasic cell response. Figure 5 shows the inter-spike

intervals (ISIs) changes in neuronal spiking trains evoked by

different temperature conditions. ISIs were equally distributed

with approximately the same value (84.5ms) in the absence of

optical stimulation. The variations in ISIs were related to the

changes in neuronal spike time.With an increase in temperature

(0◦C < 1T < 20◦C), the lower ISIs values represented a

high neuronal spike count and the data presented irregularity.

With increasing temperature (20◦C < 1T < 30◦C), the higher

value of ISIs referred to sparse firing of neurons, indicating

that the neuronal activity was inhibited, which was in tune

with the results shown in Figure 4D. The large range of ISIs

showed irregular neuron firing. Furthermore, we calculated

and analyzed the Coefficient of Variation (CV) of neurons

under different temperature changes, as shown in Figure 6.

The results visually displayed the increasing trend of CV value

with the increased temperature. In this process, the irregularity

of interspike time became larger, and the neuronal activity

became more active. When the temperature continued to rise,

the CV value began to decrease, and the neuron activity

decreased. Overall, the result of CV is consistent with the

change of spike rate and shape of the single neuron during

treatment with increased temperature. Except that the time

course of an action potential characterized by ISIs and CV

was affected, the result also shows the decrease of amplitudes

of action potentials changing with temperature increase

(Hodgkin and Katz, 1949).

Overall, these results indicated that the temperature

changes of different intensities powerfully influenced neuronal

spiking rhythms by the capacitive current and voltage-gated

ion channels, and this effect was increased with increasing

stimulus intensity.
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FIGURE 5

Inter-spike interval (ISI) sequences of neuronal spiking trains exposed to di�erent temperatures.

FIGURE 6

The Coe�cient of Variance (CV) value of neurons inter-spike intervals exposed to di�erent temperatures.
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Modulation of presynaptic release and
postsynaptic currents with IR neural
stimulation

The aforementioned analysis revealed the impact of IR

neural stimulation on neuronal activity. The neurotransmitters

released from presynaptic terminals were changed with neuronal

spike activity. Thus, we investigated the synaptic transmission

response to the photothermal effects of IR neural stimulation.

As previously reported in the literature, IR stimulation has the

potential ability to modulate glutamate release by stimulating

glutamatergic nerve endings (Amaroli et al., 2018). This

scenario is illustrated in Figure 7, depicting the response of

the synaptic model to a series of action potential changes

induced by the photothermal influence. Increased temperature

(10 and 20◦C) robustly enhanced excitatory presynaptic

release probability (Figure 7, blue and green lines). A slight

temperature increase generated by IR laser light could stimulate

vesicular neurotransmitter release. In the presence of a higher

temperature at 30◦C, the scenario was reversed (Figure 7,

orange line), that is, photoinduced hyperthermia inhibited

excitatory presynaptic release. Figure 8 shows that different

temperatures affect the EPSCs under photothermal action

with a running time of 10 s. At different temperatures, the

discrepancy in postsynaptic activity was observed, which was in

line with the dose of photothermal effect and the quantal size

variability in presynaptic neurotransmitter release (Figure 7).

The increased temperature induced by INS affected synaptic

activity to a large extent when compared with the absence of

photothermal stimulation. It could increase or decrease the

frequency of neuronal spikes and affect synaptic efficacy and

neural information processing.

Impacts of IR neural stimulation exposure
on a neuronal network

The connectivity of excitatory and inhibitory neurons as

the basic ingredients is specified by synapses, which ultimately

make up the interaction and co-regulation of a complex network

structure. Akin to simulate the network structure in cortical

neurons, the network is capable of displaying complex dynamics

analysis behaviors.

The simulation of the neuronal network in Figure 9 shows

a raster plot of the firing activity of 25% of the excitatory

neurons (red) and inhibitory neurons (blue) in the network and

in response to temporarily increasing external stimuli with 10,

20, and 30◦C (rectangular stimulus change in the top panel).

Prior to stimulus onset (t < 3 s, increased 0◦C), the neuronal

ambient temperature was in a moderate situation. Therefore,

the model was in a state of network equilibrium that included a

network-averaged firing rate (bottom panel). For 3 < t < 6 s and

9< t< 12 s (increasing to 10 and 20◦C, respectively), all neurons

were affected with increased temperature. The neuronal activity

was significantly enhanced, as reflected by a denser raster plot

and high-frequency population activity during this period. The

external stimulus returned to its original value (at t= 6 and 12 s),

and the neuronal firing returned to normal accordingly. With a

temperature rise to 30◦C (15 < t < 18 s), the presented network

raster plot and consequently the dynamic characteristics of

the total firing rate were observed to show low-frequency

population activity. The increased temperature and excitatory

and inhibitory spike counts are shown in Figure 10. Thus, it was

inferred that small temperature increases enhanced neuronal

network activity, whereas higher temperatures inhibited the

neuronal spike activity of the neuronal network. These results

matched well with previous experimental observations (Xia and

Nyberg, 2019), that is, beneficial at a low dose and harmful at a

high dose.

Discussion and conclusion

The potential utility of IR stimulation has been

demonstrated by numerous experimental research studies.

However, the lack of understanding of its underlying

mechanisms has hindered its scientific and clinical applications.

Based on neurophysiological findings, we designed a biophysical

neuronal network model to mimic the interaction between the

photothermal effect of IR neural stimulation and neurons. The

simulation results of our study provided new insights to explore

the response of neurons to optical stimulation.

Optical modulation can stimulate discrete groups of nerve

fibers in a contact-free, damage-free, and artifact-free way.

Regardless of the application, the interaction between the

laser and the biological tissue results in light distribution and

absorption, leading to photobiological effects. The generation

of the photothermal effect is related to the transient irradiation

process by IR light, which is a temperature dependent and

transient mechanism. Our experiments are consistent with this

conclusion by measuring the temperature increase of the PBS

caused by the laser. After laser irradiation, the temperature

increases exponentially, which reflects not only the temperature

change but also the continuous transformation of temperature

change rate with laser irradiation time. Combined with research

and experiments (Ebtehaj et al., 2018; Ganguly et al., 2019),

the thermo-induced capacitive current and the modulation of

thermal-sensitive ion channels were modified in response to

IR stimulation. The results suggested that IR light-induced

thermal effects could regulate neuronal spikes, displaying the

characteristics of optical dose dependence, that is, low-level laser

enhances neuronal activity and high-level laser inhibits neuronal

activity. These findings were akin to the expected optical dose-

dependent biphasic cell response (Huang et al., 2009). Though

the excitability of neurons depends on synaptic connections,
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FIGURE 7

Variations in presynaptic glutamate release probability (Pr) in response to di�erent temperatures. The dots represent each presynaptic release

event.

FIGURE 8

Variations in excitatory postsynaptic currents (EPSCs) evoked by glutamate released from the presynaptic terminal during treatment with

di�erent temperatures.

our study here focused on individual neurons, suggesting that

the laser can activate or inhibit the activity of neurons even

without synaptic interactions or neuronal network properties.

The result proves that the INS mechanism is mediated by

temperature transients induced by IR absorption, and neural

activation with laser light results from the thermal transient.

In fact, mounting evidence indicates that many types of mild

stresses, such as hyperthermia, hypothermia, and an altered pH,
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FIGURE 9

Raster plot and mean firing rate of neural activity during treatment with di�erent temperatures. Simulations of neuronal network for a

rectangular-pulse increase in temperature by 10, 20, and 30◦C (top panel). The raster plot (middle panel) shows the spike activity of 25% of all

excitatory (red) and inhibitory neurons (blue) of the network. The mean firing rate of the network is shown in the bottom panel.

can directly or indirectly interfere with protein functions and

signaling pathways in cells and then affect cell activity (Chen

and Chiao, 2020). It is worth noting that the temperature change

caused by the photothermal effect not only has an effect on

voltage gating but also affects the reversal potential of sodium

and potassium current based on the application of the Nernst

equation (Yu et al., 2012).

A further interesting prediction of this model was

the modulation of synaptic and network activity by IR

neural stimulation. The results of the present study showed

that moderately increased temperatures indeed enhanced

neurotransmitter release probability and neuronal network

activity in an optical dose-dependent manner. Irradiation-

induced photothermal effect somehow stimulated the release

of neurotransmitters at the synaptic level, thus facilitating

the transmission of neural information. The efficiency of

exocytosis is higher at a slightly increased temperature than

without stimulation, while laser above a certain energy

threshold reduced synaptic activity. This was in agreement with

existing literature and experimental observations that nerve

endings were sensitive to light, and the IR light was shown to

induce amino acid neurotransmitters to release by stimulating

glutamatergic or GABAergic nerve endings (Nouvian, 2007;

Wells et al., 2007b; Ahmed et al., 2008; Feng et al., 2010;

Amaroli et al., 2018), leading to the transmission or inhibition

of nerve excitation. However, the specific neuron types and

corresponding stimulus parameters have not been integrated

into a unified framework. The reasons for this variability may

be the different neuronal types in the brain, such as excitatory

neurons and inhibitory neurons, or their subtypes vary in

response to INS (Ahmed et al., 2008; Feng et al., 2010). Though

precise stimulus parameters have not been validated, and the

mechanism by which optical energy causes changes in synaptic

function remains unclear, our simulation result showed that
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FIGURE 10

Spike count of excitatory and inhibitory neurons in the neuronal network during treatment with di�erent temperatures.

synapses could act as filters through a release-decreasing or

release-increasing response to the external stimulus (Abbott and

Regehr, 2004). The changes in synaptic structure and function

often represent plasticity, which is the candidate mechanism for

the change in brain function. Numerous studies on transcranial

magnetic stimulation and transcranial electrical stimulation

demonstrated that these two types of stimulations had effects

on synaptic plasticity (Fritsch et al., 2010; Tang et al., 2017).

However, optical stimulation working through direct or indirect

effects on synapsis requires further exploration to elucidate the

exact mechanism. In addition to the cell level, the photothermal

effect of optical stimulation could regulate neural network

firing rhythms in the manner of dose-dependent biphasic cell

response. It is well-known that brain activity depends largely on

collective phenomena, which arise from the complex networks

connected through synapses. The network model structure can

be adapted and adjusted by sensing external stimuli, which is

a scale between the macroscopic brain and the microscopic

neuron (Sporns et al., 2005). Numerical simulation results

of our model show that the characteristics of changes in the

network match well with the response of individual neurons and

synaptic activity to temperature increase. The most important

was that these scenarios were reversible, not permanent. Apart

from photothermal effects, photochemical and optoacoustic

effects or some other effects could also potentially contribute the

neuronal response to IR neural stimulation (Kramer et al., 2009;

Shi et al., 2022). Further experiments are needed to explore

these possibilities.

In conclusion, this study developed a computational model

for simulating the response of cortical neurons to IR neural

stimulation and enabled the quantification of the effects of

photothermal effects on individual neurons, synapses, and

networks. The numerical simulation results demonstrated the

importance of the photothermal effects of INS. This model will

be optimized and integrated into a multi-scale model in the

future to guide non-invasive brain stimulation programs.
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