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Introduction: Modern consciousness research has developed diagnostic tests

to improve the diagnostic accuracy of di�erent states of consciousness via

electroencephalography (EEG)-based mental motor imagery (MI), which is still

challenging and lacks a consensus on how to best analyse MI EEG-data. An

optimally designed and analyzed paradigm must detect command-following in

all healthy individuals, before it can be applied in patients, e.g., for the diagnosis of

disorders of consciousness (DOC).

Methods: We investigated the e�ects of two important steps in the raw signal

preprocessing on predicting participant performance (F1) and machine-learning

classifier performance (area-under-curve, AUC) in eight healthy individuals, that

are based solely on MI using high-density EEG (HD-EEG): artifact correction

(manual correction with vs. without Independent Component Analysis [ICA]),

region of interest (ROI; motor area vs. whole brain), and machine-learning

algorithm (support-vector machine [SVM] vs. k-nearest neighbor [KNN]).

Results: Results revealed no significant e�ects of artifact correction and ROI on

predicting participant performance (F1) and classifier performance (AUC) scores

(all ps > 0.05) in the SVM classification model. In the KNN model, ROI had a

significant influence on the classifier performance [F(1,8.939) = 7.585, p = 0.023].

There was no evidence for artifact correction and ROI selection changing the

prediction of participants performance and classifier performance in EEG-based

mental MI if using SVM-based classification (71–100% correct classifications

across di�erent signal preprocessing methods). The variance in the prediction of

participant performancewas significantly higher when the experiment startedwith

a resting-state compared to a mental MI task block [X2(1) = 5.849, p = 0.016].

Discussion: Overall, we could show that classification is stable across

di�erent modes of EEG signal preprocessing when using SVM models.
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Exploratory analysis gave a hint toward potential e�ects of the sequence of task

execution on the prediction of participant performance, which should be taken

into account in future studies.

KEYWORDS

motor-imagery, encephalography, machine learning, support vector machine, k-nearest

neighbors, classification, classifier, accuracy

1. Introduction

Mental motor-imagery (MI) is the engagement in mentally
performing a motoric task (Milton et al., 2008, e.g., playing tennis
or swimming). Such tasks can be used in the field of sports (Schack
et al., 2014) or to assess the cognitive performance in severely
brain-injured patients (Stender et al., 2014; Engemann et al., 2018),
making use of event-related desynchronization (ERD) to reliably
detect higher cognitive functioning in brain-injured patients (Cruse
et al., 2011, 2012b). Detecting MI task performance reliably in
healthy people is mandatory for a diagnostic tool estimating covert
awareness in brain-injured patients, who cannot react openly on
a task. In a landmark study (Goldfine et al., 2011) on mental
MI, the authors were able to prove conscious modulations of
electrical brain activity time-locked to an active mental or resting-
state condition in all healthy controls. However, these modulations
were inconsistent. Therefore, we conclude that there is a concern
on whether or not it is possible to reliably distinguish between an
active and a resting-state condition in a mental MI paradigm when
testing healthy persons, i.e., before considering patients with severe
brain injuries. Technically, the detection of a stablementalMI brain
state seems to depend highly on the signal processing, classification
routine and statistical analyses used, as reported in a re-analysis of
mental MI data (Henriques et al., 2016). Therefore, in this work,
we re-visit the potential of the MI paradigm in healthy individuals,
investigating four distinct research questions (RQ).

We first investigate two very critical issues when analyzing
EEG data quantitatively: recognition and rejection of artifacts
and the selection of the electrode space. Visual inspection of
the EEG signal by trained researchers, together with manual
removal of artifact-ridden periods of signal, is a common method
to remove contaminated channels (Cruse et al., 2011, 2012a),
or trails (Cruse et al., 2012b) from the recording. This method
of artifact rejection can be applied to clear-cut artifacts, such
as eye blinks or movements, but myogenic activity, which is
often mixed with brain activity of interest (McMenamin et al.,
2010), cannot be removed from the signal with this strategy.
Independent component analysis (ICA) serves as a powerful
tool in disentangling myogenic from brain activity. The ICA
unmixes the data into independent components, which are
then classified as myogenic or genuine brain activity by visual
inspection. Misclassification by trained experts might, however,
be responsible for the limited performance of an ICA (Olbrich
et al., 2011). About one third of EEG classification studies uses
manual artifact cleaning, followed by no artifact removal, and

automated procedures (e.g., ICA; Craik et al., 2019). Recent work
suggested a combination of semi-automatic thresholding and ICA
artifact detection and removal in order to clean EEG data from
non-cortical activity (Chennu et al., 2017). In EEG-based mental
MI, the space of electrodes has been continuously reduced from
publications using 25 electrodes spanning the primarymotor cortex
in the beginning (Cruse et al., 2011, 2012a), down to four electrodes
(Cruse et al., 2012b). Further research showed that MI tasks are not
restricted to neuronal activity in the motor cortex, and selecting
electrodes over the whole cortex might capture additional relevant
activity in participants who do not show relevant primary motor
cortex activity (Krusienski et al., 2012; Höller et al., 2013b). A
methodological study found that depending on the cross-validation
strategy, a larger electrode set (63 electrodes) performed better than
a small subset (18 electrodes; Henriques et al., 2016). Therefore,
under RQ1 we investigate the effect of artifact rejection methods
applying an ICA on top of the manual detection and two electrode
sets of different size on participant performance.

We then focus on the machine-learning methods used to detect
patterns in the extracted EEG signal features. There are recent
approaches using deep learning algorithms (Craik et al., 2019;
Liu et al., 2021; Zhang et al., 2021; Lomelin-Ibarra et al., 2022).
However, in biomedical applications with many features to take
into account, still linear classifiers (e.g., SVM) or KNN classifiers
are widely used (Mahmoudi and Shamsi, 2018). SVM classifiers are
robust, insensitive against the curse of dimensionality, and easier
to compute than neural networks (Aggarwal and Chugh, 2019).
KNN classifiers are computationally more demanding, but at the
same time not that much sensitive to overfitting as SVM classifiers
(Aggarwal and Chugh, 2022). In a mental MI study with twenty
healthy individuals, the authors found a variation in detection
of command-following based on different signal extraction and
cross-validation techniques (Henriques et al., 2016). In a two-class
classification problem, the authors (Höller et al., 2013b) tested a
KNNmodel against a SVMmodel and found only small differences
in classification accuracy with false-discovery rate (FDR) correction
in healthy individuals. This means that both models could be used
to inform classification accuracy adequately. However, it is not
clear how the treatment of the raw signal before classification
influences the performance of a classifier, as referred to
in RQ2.

RQ1 How do artifact removal and selection of electrode space
(ROI) affect the representation of participant performance
in separating between thementalMI and resting-state task?
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RQ2 How does the data preprocessing described in RQ1 affect
the performance of a classifier that has been trained to
separate between the mental MI and resting-state task?

Furthermore, we looked at the number of correctly classified
instances per preprocessing method, asking:

RQ3 How does the number of correctly classified instances
(mental MI and resting-state tasks) vary across signal
preprocessing methods?

We also tested (a) if the order of tasks in the first two
blocks (mental MI—resting-state vs resting-state—mental MI) of
the experiment could influence the performance of the machine-
learning model and (b) if starting with two blocks of the same
condition (mental MI—mental MI or resting-state—resting-state),
or two blocks of different conditions (mental MI—resting-state
or resting-state—mental MI), influences the performance of the
machine-learning model.

RQ4a Does the order of tasks in the first two blocks (mental
MI—resting-state vs. resting-state—mental MI) of the
experiment influence the performance of the machine-
learning model?

RQ4b Does starting the experiment with two blocks of the
same condition (mental MI—mental MI or resting-
state—resting-state) or two blocks of different conditions
(mental MI—resting-state or resting-state—mental MI),
influences the performance of the machine-learning
model?

2. Materials and methods

2.1. Participants

Participants for this study were recruited for a randomized
controlled trial on the recovery from disorders of consciousness
conducted at the Therapiezentrum Burgau (Burgau, Germany),
serving as healthy control participants. The Therapiezentrum
Burgau is a neurological rehabilitation center specialized for DOC
patients. Ethics approval has been granted by the Ethics Committee
of the Medical Faculty of the University of Munich (Project-
Nr. 560-15). All experiments have been conducted respecting the
relevant guidelines and regulations as mentioned in the Declaration
of Helsinki. In total, 11 participants have been recruited for the
study. Data from three participants had to be excluded due to
technical problems during data acquisition. In total, data from
eight participants was analyzed for this paper (age: M = 43.00,
SD = 15.24; ratio male:female = 2:6). All participants provided
oral and written informed consent for participation. From all
participants, demographic data was recorded together with the
mental MI paradigm. In one participant (P8), two models had
to be excluded as data from the manual artifact correction in
both electrode spaces were not enough for classification after
artifact removal. Data from this case is referred to as “NA” in
Tables 1, 2. None of the participants reported psychological or

neurological diseases. Participants reported prior to the experiment
that they understood the procedure and were asked to follow the
instructions as closely as possible, and to stay focused during the
MI tasks.

2.2. Materials from the experiment on
mental MI

The MI task (mentally performing swimming exercises with
both arms) was adopted from the work of Goldfine et al.
(2011). This task was selected, since it was the only task
producing distinct patterns of frequency changes among all healthy
controls (desynchronization in mu band following the instruction).
Originally, participants had a time window of 13 s to perform the
task per trial. However, as in the study (Goldfine et al., 2011),
DOC patients had difficulties producing clear patterns of power
reduction in the MI tasks, the structure of the task was modified
for this study. The resting-state task included the instruction to
rest mentally and do nothing. In the original work of Goldfine
et al. (2011), the task was openly formulated (“start/stop imagine
yourself swimming”). This task leaves the naıve participant with few
details on how to perform the task. This in return could potentially
negatively affect classification. Thus, the task was modified an
adapted to the clear commands as reported in the work of Cruse
et al. (2011). The length of each trial was shortened, so that
participants had to perform the task for 4 s before the next
trigger appeared. The inter-stimulus interval (ISI) between two
trials was chosen randomly between 7 and 9 s. The instruction
which task to perform (mental MI or resting-state condition) was
given once for 20 consecutive trials. These 20 trials always formed
a block so that unnecessary task-switching was prevented. Each
task block lasted about 3 min. The entire experiment consisted
of three blocks per task condition (mental MI and resting-state).
The blocks were placed in randomized order. The sequence of task
blocks per participant is listed in Supplementary Table 2. Complete
randomization of block order ensured that participants could not
anticipate which block would come next, which may otherwise
have artificially increased performance rates. Between blocks, 1 min
breaks allowed the participants to relax and focus again for the
upcoming block of trials. The block design was adapted from Cruse
et al. (2011). The complete design can be seen in Figure 1.

Auditory triggers announcing a new trial were 1,000 Hz tones
with 100 ms duration. Triggers were kept equal among conditions.
The verbal instruction for the tasks was given prior to every block
by the experimenter (MJR) conducting all HD-EEG sessions. In
the mental MI condition participants were asked to imagine one
stroke of swimming with both arms as soon as they heard the
auditory trigger signal. They were also told to imagine how it would
feel performing the task, forcing their mental engagement in the
task. In the resting-state condition, participants were instructed to
now only listen to the auditory trigger signals. Giving an active
verbal instruction in both conditions ensured that participants
were equally engaged in both conditions. Even more important, it
ensured that the cognitive activation by auditory triggers was equal
among conditions.
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TABLE 1 Overview of support vector machine (SVM) model parameters.

Participant ROI Cleaning Accuracy 95% CI p-value F1 Sensitivity Specificity Precision AUC Brier score

P1 MA ICA 0.610 [0.516 0.699] 0.021 0.629 0.600 0.623 0.661 0.61 0.253

P2 MA ICA 0.766 [0.667 0.847] <0.001 0.789 0.789 0.738 0.789 0.763 0.247

P3 MA ICA 0.558 [0.461 0.651] 0.259 0.603 0.567 0.544 0.644 0.554 0.255

P4 MA ICA 0.827 [0.740 0.894] <0.001 0.813 0.796 0.855 0.830 0.827 0.248

P5 MA ICA 0.670 [0.577 0.753] <0.001 0.688 0.652 0.692 0.729 0.669 0.254

P6 MA ICA 0.964 [0.910 0.990] <0.001 0.964 0.930 1 1 0.966 0.251

P7 MA ICA 0.620 [0.522 0.712] 0.016 0.624 0.576 0.674 0.680 0.624 0.256

P8 MA ICA 0.565 [0.466 0.660] 0.211 0.525 0.619 0.530 0.456 0.571 0.269

Correctly classified
instances: 75%

P1 MA MAN 0.653 [0.559 0.738] 0.001 0.696 0.618 0.714 0.797 0.653 0.271

P2 MA MAN 0.759 [0.667 0.836] <0.001 0.759 0.774 0.746 0.746 0.76 0.250

P3 MA MAN 0.617 [0.522 0.706] 0.012 0.569 0.674 0.583 0.492 0.621 0.269

P4 MA MAN 0.868 [0.792 0.924] <0.001 0.865 0.842 0.895 0.889 0.869 0.25

P5 MA MAN 0.633 [0.541 0.719] 0.004 0.633 0.633 0.633 0.663 0.663 0.25

P6 MA MAN 0.957 [0.901 0.986] <0.001 0.957 0.933 0.982 0.983 0.957 0.251

P7 MA MAN 0.676 [0.578 0.764] <0.001 0.605 0.703 0.662 0.531 0.667 0.262

P8 MA MAN NA NA NA NA NA NA NA NA NA

Correctly classified
instances: 100%

P1 WB ICA 0.661 [0.563 0.749] 0.001 0.648 0.694 0.633 0.607 0.662 0.254

P2 WB ICA 0.747 [0.648 0.831] <0.001 0.797 0.723 0.800 0.887 0.729 0.263

P3 WB ICA 0.737 [0.646 0.815] <0.001 0.643 0.931 0.671 0.491 0.729 0.302

P4 WB ICA 0.838 [0.753 0.903] <0.001 0.821 0.886 0.803 0.765 0.836 0.254

P5 WB ICA 0.591 [0.490 0.685] 0.078 0.469 0.679 0.558 0.359 0.593 0.307

P6 WB ICA 0.943 [0.880 0.979] <0.001 0.944 0.911 0.980 0.981 0.943 0.251

P7 WB ICA 0.561 [0.457 0.661] 0.266 0.557 0.529 0.596 0.587 0.563 0.252

P8 WB ICA 0.723 [0.625 0.807] <0.001 0.754 0.796 0.638 0.717 0.724 0.245

(Continued)
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2.3. HD-EEG acquisition and preprocessing

HD-EEG data acquisition was done using an EGI NA400
amplifier with 256 channel input (Electrical Geodesics Inc./Philips
Neuro, Eugene, Oregon, USA). EEG data was recorded at 500
Hz sampling rate. The amplifier was connected to a HydroCel
GSN sensor net with 256 channels arranged in an extended
10/20 montage. This sensor net works with saline-soaked sponges,
mounted into a flexible cap. Impedances were kept below 50
kOhm. Electrodes were online-referenced to the vertex. Original
data were converted to raw format prior to signal preprocessing.
Preprocessing was done using custom scripts (MATLAB, 2017)
and functions from the Fieldtrip toolbox (Oostenveld et al., 2011).
Before starting the artifact removal procedure, two different sets of
electrodes were created. The first set contained 32 electrodes over
the motor cortex ROI, similar to Cruse et al. (2011). The second
set of electrodes covered the entire cortex and consisted of 172
electrodes. Offline analysis of data started with applying a band-
pass filter between 1–40 and a 50 Hz notch filter removing line
noise via applying a discrete Fourier transform. Data were then
cut into time-locked segments beginning 1.5 s before the auditory
trigger until 4.5 s after the trigger. These segments were referenced
against a baseline time-window of −0.5 to 0.0 s, relatively to the
trigger signal. For the subsequent artifact correction, it was decided
to break the block structure and continue the analyses using a
trial-based structure. This means that all trials of the same task
(mental MI and resting-state, respectively) were grouped together,
keeping their original labels for the machine-learning classification.
This was done for two reasons: First, breaking the block structure
masked the order of trials to the person involved in data cleaning,
thus making the process less subjective. The block membership
of trials was disclosed at the end of the data cleaning steps, just
before the automated classification. Second, analyzing data in a
trial-based structure is recommended by Henriques et al. (2016) for
cross-validation processes.

2.4. Artifact correction

Handling of artifacts in the recordings was two-fold: The first
version of artifact correction was done as in the original work
by Cruse et al. (2011) and Cruse et al. (2012a,b) on mental MI.
The data was cleaned using visual inspection by a trained expert
and consecutive removal of noisy trials and channels. Trials and
channels were displayed in a matrix based on their variance.
Channels and trials with high variance resembling outliers (due
to ocular, muscle, or ECG artifacts) were detected visually and
consequently removed from the data set. In the second version,
data was cleaned from artifacts using a three-step approach adapted
from Chennu et al. (2017): first, data was inspected manually and
noisy channels and trials were removed as in the first version;
second, an Infomax ICA algorithm was run on the data, making
it possible to better remove ECG, ocular and muscle artifacts from
the data. The Infomax ICA algorithm decomposits the data by
maximizing the information which is present in the input data
when decomposing the data into independent components (Bell
and Sejnowski, 1995). The algorithm is trained on the input data
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TABLE 2 Overview of k-nearest neighbor (KNN) model parameters.

Participant ROI Cleaning Accuracy 95% CI p-value F1 Sensitivity Specificity Precision AUC Brier score

P1 MA ICA 0.568 [0.473 0.659] 0.167 0.687 0.539 0.786 0.949 0.568 0.394

P2 MA ICA 0.670 [0.566 0.764] 0.001 0.735 0.662 0.690 0.827 0.652 0.266

P3 MA ICA 0.531 [0.435 0.625] 0.573 0.619 0.538 0.515 0.729 0.522 0.284

P4 MA ICA 0.548 [0.447 0.646] 0.378 0.662 0.500 0.917 0.979 0.586 0.435

P5 MA ICA 0.525 [0.421 0.618] 0.645 0.263 0.588 0.515 0.170 0.525 0.377

P6 MA ICA 0.631 [0.534 0.720] 0.008 0.721 0.564 1 1 0.647 0.386

P7 MA ICA 0.620 [0.522 0.712] 0.016 0.506 0.634 0.613 0.420 0.607 0.273

P8 MA ICA 0.593 [0.494 0.686] 0.067 0.662 0.589 0.600 0.754 0.583 0.271

Correctly classified
instances: 38%

P1 MA MAN 0.525 [0.421 0.618] 0.645 0.678 0.513 1 1 0.525 0.475

P2 MA MAN 0.667 [0.569 0.754] <0.001 0.705 0.642 0.707 0.782 0.665 0.262

P3 MA MAN 0.444 [0.351 0.539] 0.263 0.467 0.459 0.426 0.475 0.557 0.25

P4 MA MAN 0.474 [0.379 0.569] 0.640 0.643 0.474 NA 1 0.5 0.526

P5 MA MAN 0.633 [0.541 0.719] 0.004 0.542 0.722 0.595 0.433 0.633 0.29

P6 MA MAN 0.583 [0.487 0.674] 0.093 0.704 0.5429 1 1 0.586 0.424

P7 MA MAN 0.562 [0.462 0.659] 0.241 0.425 0.548 0.568 0.347 0.549 0.278

P8 MA MAN NA NA NA NA NA NA NA NA NA

Correctly classified
instances: 29%

P1 WB ICA 0.569 [0.470 0.663] 0.180 0.701 0.545 0.875 0.982 0.557 0.420

P2 WB ICA 0.632 [0.526 0.728] 0.013 0.733 0.615 0.706 0.906 0.596 0.316

P3 WB ICA 0.465 [0.371 0.561] 0.512 0.371 0.429 0.486 0.327 0.540 0.263

P4 WB ICA 0.486 [0.387 0.585] 0.845 0.654 0.486 NA 1 0.5 0.514

P5 WB ICA 0.533 [0.433 0.631] 0.558 0.380 0.577 0.519 0.283 0.536 0.316

P6 WB ICA 0.571 [0.471 0.668] 0.172 0.698 0.536 1 1 0.576 0.434

P7 WB ICA 0.531 [0.427 0.632] 0.614 0.589 0.500 0.594 0.717 0.541 0.291

(Continued)
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TABLE 2 (Continued)

Participant ROI Cleaning Accuracy 95% CI p-value F1 Sensitivity Specificity Precision AUC Brier score

P8 WB ICA 0.535 [0.433 0.635] 0.551 0.680 0.575 0.286 0.833 0.535 0.313

Correctly classified
instances: 13%

P1 WB MAN 0.518 [0.421 0.613] 0.777 0.667 0.509 0.667 0.964 0.518 0.449

P2 WB MAN 0.557 [0.457 0.653] 0.285 0.689 0.536 0.778 0.963 0.549 0.414

P3 WB MAN 0.509 [0.412 0.606] 0.924 0.413 0.500 0.514 0.352 0.506 0.271

P4 WB MAN 0.509 [0.412 0.606] 0.924 0.671 0.505 1 1 0.509 0.491

P5 WB MAN 0.509 [0.413 0.605] 0.925 0.546 0.516 0.500 0.579 0.508 0.254

P6 WB MAN 0.535 [0.439 0.629] 0.512 0.675 0.514 0.857 0.982 0.543 0.45

P7 WB MAN 0.589 [0.490 0.683] 0.081 0.560 0.549 0.625 0.571 0.587 0.249

P8 WB MAN NA NA NA NA NA NA NA NA NA

Correctly classified
instances: 0%

ICA, independent component analysis; MA, motor area; MAN, manual artifact detection; ROI, region of interest; WB, whole-brain area; Accuracy, accuracy level of classification and proportional estimate in exact binomial test with 95% confidence interval (CI) and

corresponding p-value. F1 denotes F1 scores indicating participant performance in the classification model. “Correctly classified instances” refers to the relative number of configurations allowing for an accurate prediction of participant performance in the binomial

test at level 95%. The p-values of these accurate predictions are expressed in bold letters. AUC, area-under-curve.
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FIGURE 1

Design of the EEG-based mental motor-imagery experiment. Two consecutive tasks are shown. One block consisted of 20 tasks of the same

condition with a single instruction given by the experimenter at the beginning of the block. The procedure consisted of three blocks per condition,

which were randomly presented across participants.

such that the weight matrix is orthogonal to the previous learning
step (Makeig et al., 1996). This way, the entropy of the data
transformed into ICAmatrix space is maximized (Jung et al., 2000).
Depending on the ROI, the ICA returned a maximum of 32 (motor
cortex) or 172 (whole-brain) components, respectively. Finally a
second visual inspection and manual removal of artifact-ridden
segments and channels was done in order to exclude remaining
noisy epochs or channels. Both versions of artifact correction were
done on each data set. The cleaning of the data sets was done
by an experienced rater (MJR), who also strongly supervised the
second rater (MdPW). In the version with motor area ROI, a
mean of 29.40 (SD = 3.27) out of 32 electrodes was used for
time-frequency analyses. In the version with all cortex electrodes,
a mean of 160.53 out of 172 (SD = 6.08) channels was used. As
for trials, a mean of 111.27 (SD = 6.93) trials could be integrated
into analyses for the motor area configuration, as well as a mean of
106.87 (SD = 5.63) trails in the configuration spanning all cortical
electrodes. The number of included good trials in the motor area
ROI and the whole brain ROI did not differ significantly [t(26.87)
= 1.91, p = 0.067]. However, the mean number of included trials
in the models with ICA-based artifact removal (n = 106.6) was
significantly different from the number of included trials in the
manual artifact removal models [n = 111.9, t(25.27) = −2.4004, p
= 0.024]. In the end, the number of included trials per model did
not correlate significantly with the participant performance values
(F1 scores) in the SVM models (S = 4,663, p = 0.844) or the KNN
models (S = 5613.1, p = 0.185). Supplementary Table 1 gives an
overview on the channels and trials used for each analysis model.
At the end of the artifact correction procedure, channels were re-
referenced to the average of all channels and with channel 257 as
implicit reference. The complete approach of data preprocessing
and artifact correction is displayed in Figure 2.

2.5. Single-subject EEG multivariate
analysis

The multivariate analyses were done using (MATLAB, 2017)
custom scripts. We tested combinations of two different artifact
removal techniques with two ROIs on the performance of a SVM
and a KNN model per participant. This procedure resulted in
the following signal preprocessing strategies: motor area ROI with
manual artifact removal, motor area ROI with manual/ICA artifact
removal, whole brain area ROI with manual artifact removal, and
whole brain area ROI with manual/ICA-based artifact removal
(Supplementary Table 3). After artifact removal and re-referencing,
all remaining trials for each task (mental MI and resting-state) were
grouped together using the original labels attached to each trial
(2 × max. 60 trials). Time-frequency analysis was performed in
a multivariate approach. For the time-frequency analysis, a time
window of 1–4 s post-stimulus was selected for every trial. To stay
close to the original work by Cruse et al. (2011), a frequency range
between 7 and 30 Hz of the EEG signal was selected for the time-
frequency analysis. Almost the same frequency range had been used
before in the analysis of mental motor imagery data (Pfurtscheller
et al., 2008), and was kept in a critical re-analysis of the Cruse
et al. data (Goldfine et al., 2013). A time-frequency analysis was
performed to analyze the signal power at a certain timepoint and
frequency, using the ft_freqanalysis function from the Fieldtrip
toolbox (Oostenveld et al., 2011). Time-frequency representations
were reported with power spectra as output and using a Hanning
window sliding the data in 0.25 s steps on the entire segment
from 1 to 4 s post-stimulus, with each time window lasting 0.5 s.
Multitapers were used to control for spectral leakage and resulted
in frequency smoothing. This prevents data segments, which are
not sampled by the sliding time window from influencing sampled
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FIGURE 2

Flowchart of the EEG-data preprocessing. Data is coming from three blocks of both experimental conditions each. All blocks of one condition are

appended following their sequence of presentation. freq, frequency domain; time, time domain; Swim, mental MI condition; Rest, resting-state

condition; ICA, independent component analysis.

segments of data. Padding the data helped increase the spectral
resolution.

2.6. EEG-derived features for classification

Two matrices were fed into the machine-learning pipeline, (see
also Figure 3): Onematrix (datamatrix) contained the EEG features
in a time-series per participant from the multivariate EEG analyses.
The time-series was organized three-dimensionally (time-points
* frequency-bins * channel) and was as large as the number of
artifact-free trials for the participant (up to 120 trials). The order
of trials in the time-series was stored in a one-dimensional matrix
with n elements. The other matrix (design matrix) contained the
design vector elements, which were defined by two indices for the
resting-state and the MI condition, respectively (“1” for mental MI
and “2” for resting-state condition). The data and the design matrix
were inverted and defined as a vector.

2.7. Single-subject classification with
machine learning algorithms

For the classification, supervised learning with SVM was
chosen. The target variable was the separation between mental
MI and resting-state. A trial-based approach was chosen as done
by Henriques et al. (2016), breaking the block-structure of the

experiment and using all tasks in a row. Random sampling over
all trial labels of both tasks was done to create folds for cross-
validation. Cross-validation allows for a reliable classification if few
trials are available or to make training and testing more effective
(Nguyen and Zeigermann, 2018). For k-fold cross-validation, the
data are split into equal and non-overlapping folds (e.g., k =

10 elements), and the validation score is calculated kn times.
Out of all trials per task group (resting-state and mental MI),
the size of the training and test set was determined by dividing
the number of entries through the folds, e.g., with 60 entries
and 10-folds, the split resulted in the first six entries as test
elements and the other 54 as training elements. Training and test
elements of both tasks (mental MI and resting-state) were then
combined to form a training and test group design matrix for
model prediction. The classifier model was built from the training
sets of the design matrix and the EEG data matrix (see Figure 3).
We performed k-fold cross-validation. In each of the k runs, we
varied the hyperparameters; the performance value of each run is
then the value achieved by the best set of hyperparameter values.
Once the k runs were finished, we computed as performance the
average of the performance values over the k runs. For each kn

we computed the performance in each of the folds and averaged
over all folds. The kn value for which the average over all folds
was best is reported as “kn with best average over all folds.” Of
k = 5/10/20 tested for the SVM classifier, k = 10 was selected
as final parameter, and of k = 1/3/5/10/15 options, k = 10 was
selected for the KNN classifier (see Supplementary Tables 4, 5).
Building the model, training, and testing were done on the same
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FIGURE 3

Flowchart of the machine learning approach on preprocessed EEG data—as trial label we define the condition each of the single tasks belongs to; it

is noted that the number of trial labels varies per participant, because some trials had to be rejected. SVM, support vector machine; F1, indicator for

predicting participant performance through a classifier.

data subsets that had been generated for the SVM model. We did
not validate this kn value on holdout data and did not perform
hyperparameter optimization. We did not build any final model
over all data.

The prediction with the SVM and the KNN model respectively
returned a one-dimensional vector with a label assigned to
each trial. Based on the original and the predicted trial labels
(for the mental MI and the resting-state task) a confusion
matrix was determined. This confusion matrix was built
using the design matrix and the predicted-trial matrix, from
which true positives, true negatives, false positives, and false
negatives were computed with formulae (S1–S5) in custom
(MATLAB, 2017) scripts (Supplementary Data 1), based on
the function “perfcurve.” Sensitivity and specificity for the
classifiers were based on properties of the confusion matrix
after classification. Both were computed for each of the four
processing methods per participant. Sensitivity and specificity
values were computed for every classification separately. All
values for the SVM and KNN models can be found in the
respective tables (Table 1 for the SVM and Table 2 for the
KNNmodel.).

Themean and standard deviation of F1 respectively AUC scores
among the cross-validation iterations define the quality of the

classification process. For single-subject classification, scripts were
written in MATLAB (version R2017a, 9.2.0.556344).

2.8. Predicting classifier performance

Besides the evaluation of the classifier performance within a
particular task, we aimed to test the prediction of the classifier
regarding the two different tasks presented (mental MI and
resting-state). The prediction of classier performance wasmeasured
as the fit of original trial labels to the predicted labels, e.g.,
whether the predicted classes match the original classes of the
experiment, based on the task priors presented to the participant
and his or her actual brain patterns in response to the tasks.
The ratio of fit between real and estimated condition labels
per participant was investigated using an exact binomial test
in R, implemented in the R package “stats,” with the function
“binom.test” (R Core Team, 2019). A p < 0.05 tells that the
frequency distribution of a dichotomous variable is not random. A
statistically significant results in the binomial test was interpreted
as a success in the prediction by the classifier and is subsequently
defined as positive prediction. P-values in bold in Tables 1, 2
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indicate a significant prediction result as a positive result. A non-
significant prediction is expressed as a p > 0.05 and deemed
negative.

2.9. Rating the success of task prediction
among di�erent preprocessing methods
and classifiers

The comparison of preprocessing methods and classifiers
regarding an accurate task prediction was computed as suggested
by Henriques et al. (2016): for each preprocessing strategy (four
preprocessing methods, except 2 for P8, for eight participants) we
divided the number of models with correctly classified instances
(95% level) through the number of total classifications (see
Tables 1, 2).

2.10. Determining the influence of artifact
removal and electrode space on predicting
participant performance and classifier
performance

The influence of the method of artifact removal and the
selection of electrode space on the prediction of participant
performance (F1 score) was investigated using a robust ANOVA
from the R package “WSR2” (R Core Team, 2019). Since data
was not normally distributed as reviewed visually and confirmed
by Shapiro-Wilk tests, a non-parametric test (robust ANOVA)
was applied. The effect of artifact removal and ROI on classifier
performance (AUC scores) was investigated using the same
statistical model as for participant performance (F1 scores).

2.11. Task block configurations

We considered the different configurations of tasks that the
participants received in randomized order in an exploratory
analysis. Task blocks differed in whether the experiment started
with a mental MI vs resting-state task block, and in the adjacency
between these blocks: two blocks of the same task or different tasks
at the beginning of the experiment (see Supplementary Table 2).

2.12. Performance evaluation metrics

Classifier performance was expressed as accuracy and F1-score
(or Precision-Recall; Nguyen and Zeigermann, 2018). Accuracy is
defined as all correctly classified divided through all instances. The
F1 score rates the accuracy of a test in a binary decision task and
is expressed as the harmonic ratio between precision and recall.
Precision can be defined as the number of correctly identified
objects belonging to a class among all identified objects. Recall
is the number of correctly identified objects among all objects in
the sample (Nguyen and Zeigermann, 2018). It is also referred
to as sensitivity. The evaluation of the classifier performance was

accomplished with receiver-operating characteristic (ROC) curve.
The original labels of all trials of a data set (stored in the design
matrix) and the SVM/KNN-model predicted labels (stored in the
predicted trial matrix) were re-structured as column vectors. These
two vectors were passed to the “roc” function in RStudio Team
(2020) (version 2022.02.3), and the area-under-curve (AUC) was
derived from the fitted ROC curve. AUC values were determined
for every single data set (per participant) using a custom R script
and the R package “AUC” (Ballings and Van den Poel, 2013). It
should be noticed that classifier performance was calculated per
participant, and is thus relative to each participant. Brier scores
were used as calibration measure for the classifier. Brier scores
near 0 define good model predictions, whereas values near 1 define
an ill-calibrated model. The brier scores were calculated using the
“scoring” package in RStudio Team (2020) (version 2022.02.3).

3. Results

It is important to note that each classifier was trained on a
participant’s individual set of MI and resting-state trials, which
could vary in number of artifact-free tasks after signal processing.
Effects on the prediction of participant performance and classifier
performance were tested on a group-level. “Participant” was
included as blocking variable in the non-parametric robust ANOVA
tests.

3.1. E�ects of artifact removal technique
and ROI on predicting participant
performance (RQ1)

There was no significant effect of neither the method of artifact
removal on the quality of the model (F1) [F(1,8.997) = 0.002, p =

0.967], nor the ROI on the quality of the model (F1) [F(1,9.998) =
0.184, p = 0.678], see Figure 4A when applying the SVM model.
With the KNN model, there was no significant effect of method of
artifact removal [F(1,9.928) = 0.046, p = 0.836] or ROI on F1 scores
[F(1,7.89) = 0.026, p= 0.877, see Figure 5A]. Descriptively, F1 scores
derived from the SVM model (Figure 4B) ranged higher than the
scores derived from the KNN model (Figure 5B). All values can be
found in Table 1 for the SVM model, and in Table 2 for the KNN
model as well as in Figure 4B (SVM model) and Figure 5B (KNN
model).

3.2. E�ects of artifact removal technique
and ROI on classifier performance (RQ2)

In order to investigate how the classifiers perform among the
different configurations of the experiment, Receiver-Operating-
Characteristic (ROC) curve analyses were performed on the per-
trial pairs of true and SVM-predicted labels. Thus, for each data
set, a ROC-curve was fitted on the data and the area under curve
(AUC) was computed. As the visual inspection and Shapiro-Wilk
tests revealed non-normally distributed data, the robust ANOVA
was applied for non-parametric testing.
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FIGURE 4

E�ect of preprocessing on predicting participant performance in the

SVM model. (A) No e�ect of preprocessing (artifact correction

method and region of interest) on F1 scores using a support vector

machine (SVM) model. The blocking variable “Participant” is ignored

in this figure to better show the e�ect of the preprocessing. Data

cleaning was done either by combined manual and ICA artifact

correction (ICA) or manually (MAN) on either motor area (MA) or

whole-brain (WB) dataset. ROI, region of interest; F1, indicator of

participant performance; SVM, support vector machine; ICA,

independent component analysis; MAN, manual artifact correction.

(B) F1 scores across methods and participants in the SVM model

show a substantial amount of inter-individual variance. In this figure,

the blocking variable “Participant” is accounted for. Methods

indicated as follows: MA, motor area ROI; ICA, independent

component analysis; WB, whole-brain ROI; MAN, manual artifact

correction.

Applying the SVMmodel, there was no significant influence of
the artifact removal [F(1,9.36) = 0.024, p= 0.881] or of ROI [F(1,9.858)
= 0.064, p= 0.806] on AUC, (see Figures 6A, B). In the KNNmodel
with k = 10, the effect of artifact removal on AUC values was not

FIGURE 5

E�ect of preprocessing on predicting participant performance in the

KNN model. (A) No e�ect of preprocessing (artifact correction

method and region of interest) on F1 scores of the classifier using a

k-nearest-neighbor (KNN) model. The blocking variable “Participant”

is ignored in this figure to better show the e�ect of the

preprocessing. Data cleaning was done either by combined manual

and ICA artifact correction (ICA) or manually (MAN) on either motor

area (MA) or whole-brain (WB) dataset. ROI, region of interest; F1,

indicator of participant performance; KNN, k-nearest-neighbors;

ICA, independent component analysis; MAN, manual artifact

correction. (B) F1 scores across methods and participants in the

SVM model show a substantial amount of inter-individual variance.

In this figure, the blocking variable “Participant” is accounted for.

Methods indicated as follows: MA, motor area ROI; ICA,

independent component analysis; WB, whole-brain ROI; MAN,

manual artifact correction.

significant [F(1,9.998) = 0.806, p= 0.390]. However, the effect of ROI
on AUC scores was statistically significant [F(1,8.939) = 7.585, p =

0.023, see Figures 7A, B]. The Conover post-hoc (Conover, 1998) (R
package “PMCMR,” Pohlert, 2018), which is based on the Friedman

ANOVA as an alternative to the robust ANOVA, was used to
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FIGURE 6

E�ect of preprocessing on classifier performance in the SVM model.

(A) No e�ect of preprocessing (artifact correction method and

region of interest) on AUC scores in the support vector machine

(SVM) model. The blocking variable “Participant” is ignored in this

figure to better show the e�ect of the preprocessing. Data cleaning

was done either by combined manual and ICA artifact correction

(ICA) or manually (MAN) on either motor area (MA) or whole-brain

(WB) dataset. ROI, region of interest; F1, indicator of participant

performance; SVM, support vector machine; ICA, independent

component analysis; MAN, manual artifact correction. (B) AUC

scores across participants in the SVM model show a substantial

amount of inter-individual variance. In this figure, the blocking

variable “Participant” is accounted for. Methods indicated as follows:

MA, motor area ROI; ICA, independent component analysis; WB,

whole-brain ROI; MAN, manual artifact correction.

identify the combinations of predictor levels, which contributed
to the significant effect in the robust ANOVA. The test revealed
significant differences among three specific combinations of ROI
and artifact cleaning: “Motor Area and ICA artifact correction”
vs. “Whole Brain Area and ICA artifact correction” (p = 0.015),
“Motor Area and ICA artifact correction” vs. “Whole Brain Area

and manual correction” (p = 0.021), and “Motor Area and manual
correction” vs. “Whole Brain Area and ICA correction” (p= 0.027).
All reported p-values were FDR-corrected. The combination of
“Motor Area and ICA artifact correction” returned the highest
AUC, followed by “Motor Area and manual correction,” “Whole
Brain Area and ICA artifact correction,” and “Whole Brain Area
and manual artifact correction.”

For the SVM classifier model, there was no significant effect of
the artifact cleaning on brier scores [F(1,9.690) = 0.531; p = 0.484],
and also no significant effect of the electrodes space [F(1,9.262) =
3.705; p = 0.086] on brier scores. For the KNN classifier model,
there was no significant effect of the artifact cleaning on brier scores
[F(1,7.924) = 0.084; p = 0.779], and also no significant effect of the
electrodes space [F(1,7.188) = 0.958; p= 0.360].

AUC and brier score values over the four different
preprocessing methods applied per participant can be found
in Table 1 for the SVMmodel and in Table 2 for the KNNmodel.

3.3. Correctly classified instances per
preprocessing condition (RQ3)

Determining correctly classified instances were based on p-
values from the single-subject binomial tests (mentalMI vs. resting-
state) as indicated in Section 2. For participant “S8,” classification
could not be done due to excessive artifacts in the manual artifact
correction, resulting in only two models for this participant. For
the SVM model, the method “motor area with ICA” produced
6 out of 8 models (75%) with significant classifications, “motor
area with manual artifact correction” 7 out of 7 models (100%),
“whole brain area with ICA” 6 out of 8 models (75%) and “whole
brain area with manual artifact correction” 5 out of 7 (71%)
success rate (as indicated in Table 1). In the KNN model, with
the preprocessing method “motor area with ICA” 3 out of 8
models (38%) resulted in a significant classification of mental
MI vs. resting-state tasks, with “motor area with manual artifact
correction” 2 out of 7 models (29%), with “whole brain area
with ICA” 1 out of 8 models (13%), and “whole brain area with
manual artifact correction” 0 out of 7 models (0%). Thus, the
probability for a correct detection of mental MI and resting-state
patterns across participants ranged from 63 to 88% for the SVM
algorithm and from 0 to 38% for the KNN algorithm (as listed in
Table 2).

3.4. Trends in order of starting block (RQ4a
and 4b)

In an exploratory way, we looked at the difference in model
quality (F1) variance, depending on the task at the beginning
of the experiment (see Supplementary Table 2). Variance was
chosen instead of the mean since it respects the individual
performance more than the mean. It was investigated, for
example, whether starting with a resting-state block would
facilitate the mental imagination in participants, compared with
starting with a mental MI block. Thus, we looked at differences
in variance between participants starting with mental MI vs.
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FIGURE 7

E�ect of preprocessing on classifier performance in the KNN model.

(A) Significant e�ect of preprocessing (artifact correction method

and region of interest) on AUC scores in the k-nearest-neighbor

(KNN) model. The blocking variable “Participant” is ignored in this

figure to better show the e�ect of the preprocessing. Data cleaning

was done either by combined manual and ICA artifact correction

(ICA) or manually (MAN) on either motor area (MA) or whole-brain

(WB) dataset. ROI, region of interest; F1, indicator of participant

performance; KNN, k-nearest-neighbors; ICA, independent

component analysis; MAN, manual artifact correction. ∗p < 0.05 of

statistically significant contrasts as revealed by post-hoc tests (B)

AUC scores across participants in the KNN model show a low

amount of inter-individual variance. In this figure, the blocking

variable “Participant” is accounted for. Methods indicated as follows:

MA, motor area ROI; ICA, independent component analysis; WB,

whole-brain ROI; MAN, manual artifact correction.

resting-state in the first block presented, using a Fligner-Killeen
test on variance differences. Participants starting the complete
procedure with a resting-state block showed significantly higher
F1 scores variances compared to starting with a mental MI
block [X2

(1) = 5.849, p = 0.016, see Figure 8A]. Expanding this

FIGURE 8

E�ects of the configuration of the first two blocks on predicting

participant performance. (A) Significant e�ect of the condition of

the first block of the experiment on variance in predicting participant

performance (F1 variance) after the first two mental MI and

resting-state blocks. Start condition “mental MI” and “resting-state”

indicate with which condition the randomized block order started

for a participant. * Denotes statistically significant di�erence at 95%

level (B) No e�ect of the configuration of the first two experimental

blocks on variance (F1 variance) in predicting participant

performance after the first two mental MI and resting-state blocks.

Start condition “di�erent” indicates cases where participants were

presented one mental MI and one resting-state block at the

beginning; “same” indicates cases where participants were

presented either two mental MI or resting-state blocks, respectively.

approach, it was also investigated if starting the experiment with
two different conditions in the first two blocks (e.g., mental
MI—resting-state; resting-state—mental MI) differed from the
same condition delivered in these blocks (e.g., resting-state—
resting-state; mental MI—mental MI) in terms of F1 score
variance. There was no significant difference between these
configurations in F1 score variance [X2

(1) = 1.339, p = 0.247, see
Figure 8B].
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4. Discussion

There was no significant effect of signal-processing method
on F1, indicating participant performance, irrespective of the
machine-learning model used (SVM model with a linear kernel
and fold optimization in the cross-validation or KNN model with
optimization of neighbors). In the words of RQ1: the representation
of participant performance was not influenced significantly by
the signal-processing applied to the EEG data. AUC scores from
ROC analyses were not influenced by signal preprocessing in
the SVM model, but they were influenced by preprocessing in
the KNN model. In the framework of RQ2: Signal-processing
affected the quality of the machine-learning algorithms only in
the KNN models, not in the SVM classifier models. Artifact
cleaning and electrodes space selection did not influence model
calibration scores (brier scores), neither in the SVMnor in the KNN
classifier model. Furthermore, in RQ4a we looked at the variance in
participant performance related to the first block of tasks (mental
MI vs. resting-state). The variance in the performance scores was
significantly higher in participants who started the experiment with
a resting-state task block (F1 scores reached from under 0.4 to
almost 1.0) compared to a mental MI task block (F1 cores ranging
from 0.4 to 0.8).

To the best of our knowledge, a comparable approach to
investigate EEG signal preprocessing strategies and different
classifiers in a mental MI classification setting has not been done
before, and literature is lacking a clear consensus on how to
deal with EEG signal preprocessing, ROI selection and classifier
selection. Henriques et al. (2016) varied the field of electrodes
together with the signal extraction method (Fourier method vs.
parametric model), finding that a larger electrodes set performed
better than a smaller set. Höller et al. (2013a) found the same
effect of electrodes set size. Actually, the current trend in literature
is a down-sizing of the number of electrodes to standard 21-
electrodesmontage (Claassen et al., 2019) or three electrodes (Coyle
et al., 2015). However, focusing on a minimal number of electrodes
over a central region might miss important activity of other brain
areas involved in mental MI. Imagining oneself swimming and
concentrating on the motion itself is intended to activate the motor
cortex. Still, the prefrontal cortex (planning) or the visual cortex
might be activated as well by the instruction. Analyzing the whole
brain’s activity thus seems straight-forward. As Höller et al. (2013a)
and Henriques et al. (2016) found a more correctly classified
instances of mental MI in larger electrodes sets, it can be assumed
that apart from the central region over the primary motor cortex
further brain regions might be relevant. This could not be shown
in the trial-based analysis of this study, neither in the SVM, nor
in the KNN model. The reason why this effect was missed in this
work could be due to the fact that the choice of artifact rejection
was directly linked to the choice of the electrodes set and thus was
hiding the effect.

In the end, the more sophisticated preprocessing approach
combining manual artifact rejection before and after an ICA, as
applied in more recent literature (Chennu et al., 2017) did not
result in a better representation of participant performance than
just removing artifacted trials and EEG channels from the analysis
as applied in some publications on MI (Cruse et al., 2011, 2012a,b).

The ICA approach had been chosen to remove any particular
ocular, myogenic, or myographic artifacts, which could not be
removed by solely removing contaminated channels and trials. Due
to a back-transformation into time-frequency space (Höller et al.,
2013a), no additional channels or trials were removed by the ICA
itself. As reported in Section 2.4, the number of trials removed
in the smaller ROI over M1 was not significantly different from
the number of trials removed in the whole-brain ROI. Generally,
data sets had not the same number of good trials included (see
Supplementary Table 1). Models with ICA-based artifact removal
had significantly less good trials than models with manual artifact
removal. It seems that with the second manual removal procedure
after ICA, data was further artificially reduced. Thus, the number
of included trials in the process of artifact removal could be
an important confounding factor for the classification of mental
MI and resting-state tasks, leading to the observed variability
in the outcomes (representation of participant performance and
classifier performance). Artifact correction only with an ICA (no
manual removal of trials or channels) was not tested in this study,
as it had shown no gain in clean signal over manual artifact
correction in a study by Horki et al. (2014). For patients’ data,
the authors recommend an artifact identification and removal
procedure combining thresholds for bad channels/trials and an
ICA, which was adopted in this protocol, in the prospect of future
work on patients’ data sets.

Single-subject analysis revealed that for many of the
classification models, the quality of the separation between
mental MI and resting-state tasks was not significantly better than
chance. On a group level, cases where the classifier was operating
significantly better than chance level in correctly detecting
instances of mental MI and resting-state tasks was higher for the
SVM-based models (between 71 and 100%) than for the KNN
models (between 0 and 38%). So, probably the SVM algorithm
was better able to correctly classify brain patterns reflecting
mental MI and resting-state than the KNN algorithm. Notably,
the accuracy scores (F1) representing participant performance
values were not perfect in any models: In all SVM models where
the classifier was operating significantly better than chance level
in correctly detecting instances of mental MI and resting-state
tasks, the accuracy values ranged from 60.8 to 96.4%, in all KNN
models between 62.0 and 67.0% (see Tables 1, 2). These results
are consistent with the literature: in a comparable study 75%
of all healthy controls were able to produce MI brain patterns,
which could be distinguished statistically from each other, and of
these healthy controls who managed to follow commands (9 out
of 12), the classification accuracies ranged between 60 and 91%
(Cruse et al., 2011). In a follow-up project (Cruse et al., 2012b),
the authors changed the task to only include imagined movements
of the left or right hand and reduced the EEG registration to
four central electrodes. The paradigm was tested in a chronic
UWS patient successfully; however, only 5 out of 6 (83%) of
healthy controls were able to produce EEG patterns significantly
distinguishing left-hand from right-hand imagined movements
on command with a median classification accuracy of 67% (range
60–80%). These accuracies were reached using a naive Bayes
classifier, SVM-based accuracy values obtained from our healthy
controls sample are even higher. Yet, this work fail to be perfect

Frontiers inComputationalNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fncom.2023.1142948
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Rosenfelder et al. 10.3389/fncom.2023.1142948

in the sense of detecting patterns that map participant behavior
to 100% accuracy. This certainly presents a severe threat to
validity. As outlined above, prior work can only give an estimate
of good performance values, and stable performance values are
hard to obtain. Bad classification could be linked to the quality
of the participant’s covert mental responses to the tasks (i.e.,
mental MI and resting-state), which are participant-dependent
and thus a-priori unknown. The classifier tries to obtain the
most important (e.g., recurrent) features from highly individual
EEG signal, which underlies natural variability and is never
fully predictable.

The high inter-subject variability in F1 and AUC scores found
in this study resembles the results obtained by Henriques et al.
(2016) andGoldfine et al. (2011). Henriques et al. (2016)mentioned
that the order of task execution could influence the signal detection.
Exploratory, we looked at mechanisms which could have produced
this inter-subject variance, e.g., sequence of tasks and task difficulty.
On a trial-level, we investigated whether or not starting with a
block resting-state tasks followed by a block of mental MI tasks or
vice versa had an effect on participants’ performance (variance in
F1 scores). There was a significant difference in F1 score variance
if participants started with a resting-state task block instead of a
mental MI task block (see Figure 8A). Thus, the variance in the
classifier detecting mental command-following was lower when
participants started with aMI sequence, compared to a resting-state
sequence. Starting with a resting-state sequence seemed to display
the participants’ ability for command-following more detailed than
starting the experiment with a MI sequence. Such effects of block
order in the presentation of the tasks were also taken into account
by Cruse et al. (2011) and Cruse et al. (2012a,b), who chose a
pseudo-randomization of task blocks. According to the authors,
pseudo-randomization should ensure that dependencies within
and between blocks were reduced to a minimum and thus did not
affect performance (Cruse et al., 2011). To suppress such inter- and
intrablock dependence in this study, blocks were fully randomized.
Going further, we additionally investigated whether two blocks
of the same task caused a significantly different outcome than
two blocks of different tasks at the beginning of the experiment.
Starting with two resting-state or mental MI task blocks was not
associated with significantly higher inter-subject variance in F1
scores compared to starting with blocks from different tasks (see
Figure 8B). Regarding intrablock-dependence (Henriques et al.,
2016) this means that two adjacent blocks of the same condition
at the beginning of the experiment did not facilitate classification
compared to two different conditions (see Figure 8B), and also did
not affect trial-based prediction of participant performance. Thus,
adjacency of blocks at the beginning of the experiment was unlikely
to have contributed to the inter-subject variability in classification
in the present work. As the block-structure was broken in the trial-
based machine-learning analyses, the order of block presentation
might not be the only valid explanation for inter-subject variability.
The number of trials might be another explanation for variability
of participant performance scores on the single-subject level. This
explanation could be ruled out, as the number of included trials
per model and the participant performance scores did not correlate
significantly with each other, neither in the models with SVM
classification, nor with KNN classification.

Besides the sequence of tasks, we expected the task’s cognitive
load to account for variability in classification. As Henriques et al.
(2016) mentioned, only a diagnostic method with high sensitivity
and specificity in healthy controls is ready for use in patients
with DOC. Thus, the task should be easy to solve for detecting
as many true positives as possible. Obviously, the less participants
have to switch between blocks of different conditions the easier a
task becomes. Switching between trials of different tasks is harder
then sticking to one task for an entire block of trials (Horki et al.,
2014). In the present study there was no significant difference in
the variance of predicting participant performance scores (F1) if
the tasks in the first tow blocks were the same or not, so switching
tasks after only one block was not harder for the classification
process than the same task for two consecutive blocks. Additionally,
it has to be taken into account that all participants reported to be
unfamiliar withmentalMI. After the experiment, some participants
mentioned that they had difficulties executing the mental MI task
without exercise or adjustment to the surroundings. Inspired by
these comments, we looked at participants who had started with
a mental MI block vs. resting-state block. Indeed, we found a
significantly higher variance in mental MI performance scores (F1)
for participants starting with a resting-state block, no matter of the
experimental condition of the following task blocks (Figure 8A).
Starting the experiment with a resting-state block could help
participants to become familiar with the experiment and the lab
surroundings. However, it has to be taken into account that data
from eight participants is not enough to draw proper conclusions.
For an ideal classifier performance, tasks should be on the one
hand complex, and on the other hand familiar (Gibson et al., 2014).
Familiarity is also mentioned by Henriques et al. (2016) as an
important prerequisite for successful classification, together with
salient stimuli. A particular mental MI task is probably not suited to
all participants (Mohamed et al., 2018). The mental MI task in this
study tried to fulfill these recommendations for a good MI task, as
it was on the one hand more engaging and complex than, e.g., hand
movements, and also a culturally transmitted task that should be
familiar to many people.

The protocol also comes along with limitations: The present
work only compared a limited amount of signal processing
methods and classifiers that are currently available. Therefore, we
can only give a limited answer to the research questions regarding
the overall effect of signal processing. The sample size of the study
was small, limiting the power to detect a statistically meaningful
effect. Reduced power could lead to false-negative findings (e.g.,
in this case poor KNN classifier performance). Further testing in
bigger sample sizes would be necessary to address this limitation
and to answer the second research question on sequence effects
of block sequence more in-depth. Future studies could test other
existing classifiers to address the generalizability of the results [e.g.,
linear discriminant analysis, common spatial patterns (Fu et al.,
2020), or successive decomposition indices (Sadiq et al., 2020)]. The
complete randomization of blocks was chosen to avoid intra-block
dependency, however it might have caused the high variability
in performance values across participants. A design with a fixed
order of task blocks could exclude potential influences of the task
order that lead to an overly optimistic prediction of participant
or classifier performance. Further, in one participant, excessive
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artifacts in the signal made the application of a purely manual
artifact correction (without ICA) impossible. This case justifies the
additional value of an ICA in case of artifact-ridden data, as it
removes artifacts more carefully than a deletion of entire sections of
data. On a group level, with the ICA procedure significantly more
trials had been removed compared to manual artifact removal.
This might have been caused by the additional manual correction
after the ICA. In future work, one iteration of manual artifact
removal plus ICA might be a good way not to delete too much
data and still keep the in-depth removal of noisy signal. It is
of course impossible to infer from EEG signal that participants
actually imagined themselves swimming or if they just listened to
the auditory triggers. The SVM and KNN model trained on the
EEG features was supposed to discriminate between two different
brain states, but it cannot serve as a “mind-reader.” Thus, it is
beyond the scope of this work to draw any conclusions on the actual
content of thoughts. The intention of a mental MI task proving
for command-following is to test if participants can repeatedly
and consciously manipulate their brain activity successfully. Of
course, participants could engage in more than two brain states
during the EEG session, which is not modeled by the algorithm.
Consequently, the SVM would try to classify these deviating brain
states to the known imagery classes. Hidden Markov Models
could be an alternative for future studies interested in capturing
of multiple brain states. Additionally, EEG signals present a low
signal-to-noise ratio, making them prone to the phenomenon of
volume conduction. Thus, conclusions regarding the underlying
neural mechanisms are difficult to draw (Lu et al., 2016). Source
localization in scalp EEGs is a possible way to localize changes in
EEG patterns (Qin et al., 2004).

The present study sought to determine the role of signal
preprocessing (e.g., choice of electrode space and method for
artifact rejection) and machine-learning approaches on the
prediction of participant performance and classifier performance
in an EEG-based mental MI paradigm in healthy adults. Effects
of signal preprocessing procedures on predicting participant
performance (F1 scores) could not be found, neither in the
SVM nor the KNN model. Importantly, the KNN model
classifier performance (AUC scores) was influenced by the signal
preprocessing (electrode space selection), compared the SVM
model. Exploratory analyses gave a hint toward potential effects
of task sequence in the protocol design on the prediction of
participant performance: a resting-state task block at the beginning
of the experiment seems to ease mental command-following
detection. The analyses helped to gain insight into important
mechanisms to consider, such as the choice of electrodes space,
artifact removal technique, classifier type, and task sequence when
designing and analyzing EEG-based mental MI paradigms. Choices
should be made thoroughly and be based on careful considerations
of the experiment design.
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