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A lightweight mixup-based short
texts clustering for contrastive
learning
Qiang Xu, HaiBo Zan and ShengWei Ji*

School of Artificial Intelligence and Big Data, Hefei University, Hefei, Anhui, China

Traditional text clustering based on distance struggles to distinguish between

overlapping representations in medical data. By incorporating contrastive

learning, the feature space can be optimized and applies mixup implicitly during

the data augmentation phase to reduce computational burden. Medical case

text is prevalent in everyday life, and clustering is a fundamental method of

identifying major categories of conditions within vast amounts of unlabeled text.

Learning meaningful clustering scores in data relating to rare diseases is difficult

due to their unique sparsity. To address this issue, we propose a contrastive

clustering method based on mixup, which involves selecting a small batch of

data to simulate the experimental environment of rare diseases. The contrastive

learning module optimizes the feature space based on the fact that positive

pairs share negative samples, and clustering is employed to group data with

comparable semantic features. The module mitigates the issue of overlap in

data, whilst mixup generates cost-effective virtual features, resulting in superior

experiment scores even when using small batch data and reducing resource

usage and time overhead. Our suggested technique has acquired cutting-edge

outcomes and embodies a favorable strategy for unmonitored text clustering.
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1 Introduction

Medical records have been a key research focus in recent years (Campbell et al., 2007;
Liu et al., 2019a) due to their invaluable insights into the developmental relationship
between diseases and effective treatment options. However, semi-structured diagnostic
cases or text reports typically constitute the bulk of patient information in the majority
of these records, making it imperative to extract semantic information for selecting
appropriate treatment plans and generating comprehensive patient follow-up reports.

Prior research efforts have primarily concentrated on specific aspects of medical
records, such as that conducted by Lyu and Haque (2018), has focussed on early cancer
detection, whilst Vieira et al. (2017) developed predictive models for diagnosing pathology.
However, the fragmented and piecemeal nature of the data suggests that data miners
may not meticulously consider the intricacies of medical diagnostic decision support.
Therefore, as an effective data mining technique, clustering (Xu and Wunsch, 2005) plays
an important role in the field of text analysis and semantic understanding. Clustering can
be used independently to structure individual pieces of information or as a precursor to
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downstream tasks like classification. Among the many clustering
algorithms, K-means (Hartigan and Wong, 1979), DBscan (Ester
et al., 1996), hierarchical clustering (Murtagh and Contreras,
2012), and Gaussian Mixture Model (GMM) (Dempster et al.,
1977) are the mainstream methods used for categorizing text
based on the distance between sample points in the feature space.
However, the high-dimensional sparsity of short texts often makes
it difficult to reflect the similarity between datasets, and the learned
representations are distributed in a narrow cone, resulting in
unsatisfactory clustering results. Recent studies have shown that
adding contrastive learning (Wu et al., 2018) to the clustering
process can optimize the distance of the initial feature space,
making the local data more compact and the overall features
more uniform.

Contrastive learning has shown impressive outcomes in
unsupervised sentence representation learning (Tang et al., 2022;
Wei et al., 2022). The fundamental concept entails generating
positive pairs and negative pairs via data augmentation (Wei and
Zou, 2019), and feeding these pairs into a pre-trained model to
minimize the distance between positive pairs while maximizing
the distance between negative pairs. This optimization process
aims to enhance sentence embedding. SimCLR (Chen et al., 2020)
is one of the representative works in this field and experiments
have shown that incorporating a large number of negative samples
can improve the experimental results. Increasing the batch size
is the simplest way to achieve this, but MoCo (He et al., 2020)
proposed a method that utilizes a queue to store past small batches
of datasets, thereby increasing the availability of negative samples.
Moreover, momentum was employed to update the encoder in
the queue, facilitating gradual updates and ensuring consistency
in the feature representation of the data in the queue. However,
this approach may result in longer model training time and
increased computing power consumption during data transmission
and parallel computing with GPUs. Research has confirmed that
these issues stem from two primary factors. Firstly, insufficient
contrastive samples, as positive and negative samples must be
selected from each batch for use in contrastive learning. A small
batch size may result in an inadequate number of comparison
samples, limiting the amount of information learned and adversely
affecting model performance. Secondly, the use of a queue to
store past mini-batches of data necessitates comparing each mini-
batch with the data in the queue, requiring additional iterations
to complete the training process. In domains such as electronic
platform shopping, stock trading, and catering, systems often
divide order tasks into multiple small batches to reduce costs, save
time, and ensure accurate processing. Therefore, how to optimize
the model training time and memory consumption without
affecting the clustering effect is a potential research direction.

Given the aforementioned issues, this paper addresses the
challenges by introducing mixup (Zhang et al., 2017) in a low-
resource setting. The technique applies linear interpolation to the
embeddings of positive pairs in the augmented dataset, generating
an additional set of feature vectors to augment contrastive samples
with low resource consumption. This feature vector set takes
into account the semantics of the text and provides a set of
virtual feature vectors in the representation layer that are closer
to the original dataset, and minimizes the impact of deleting or
inserting words on the semantics without significantly increasing
the computational cost. This set of features is then fed into

contrastive learning and clustering modules. Consequently, the
model can learn more nuanced representations by controlling
the weights, achieving a significant improvement in clustering
scores within a mini-batch environment, even without loading
additional text data. The constructed set of virtual vectors is stored
in memory, enabling the direct reading of data during training and
avoiding significant additional memory overhead. Therefore, this
paper combines mixup and SCCL (Zhang et al., 2021), as shown
in Figure 1, and proposes A lightweight Mixup-based Short Texts
Clustering For Contrastive Learning (MCC). Eight datasets are
used to evaluate the performance of the proposed MCC in short
text clustering tasks.

For example, suppose many records mention symptoms such
as fever, cough, and sore throat. These records can be clustered
together, indicating a potential category of respiratory diseases,
such as colds or flu. However, a challenge arises when dealing
with rare diseases that are sparsely represented in the dataset.
Consider a scenario where there are only a few records that
mention a particular set of symptoms that are indicative of a rare
genetic disorder. In traditional clustering, these records may not be
effectively grouped due to their low occurrence and dissimilarity to
other records. To address this challenge, the proposed contrastive
clustering method based on confusion can be applied. By
incorporating contrastive learning, the algorithm optimizes the
feature space and improves the similarity representation between
datasets. It learns to identify patterns and semantic similarities even
in sparsely represented rare diseases.

The main contributions are summarized as follows:

(1) We augment the contrast samples by mixing sentence
embeddings between positive pairs and propose the clustering
model MCC, which is an extension of SCCL, and achieves
good improvement in low resource cases.

(2) The contrastive loss is simplified to widen the similarity score
difference between positive and negative pairs, leading to
improved performance as demonstrated in our experiments.

(3) Through extensive comparative and ablation experiments on
short text clustering tasks, we showcase the benefits of our
approach. Not only do we reduce memory consumption and
training time, but we also optimize the clustering score.

2 Related work

The core idea of this paper is to use contrastive learning
to compare the similarity between samples to learn features,
and then use clustering technology to cluster similar samples
to discover hidden semantic structures. Mixup generates low-
consumption virtual samples through linear interpolation to
increase contrast samples. In this section, we will introduce the
above three main concepts.

2.1 Short text clustering

Short text clustering is an important issue in text mining
and aims to group short texts with similar topics or semantics
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FIGURE 1

Relationship between motivation and contribution in this paper.

into the same cluster. It is a crucial problem in natural language
processing, information retrieval, social network analysis, and other
fields. It roughly goes through two processes: Traditional clustering
methods, such as K-means, hierarchical clustering, etc. The main
advantage of these algorithms is that they are simple and easy to
implement. However, due to the sparsity and high dimensionality
of short texts, the performance of these algorithms is not very ideal
for noisy data. Later, Singular Value Decomposition (SVD) (Golub
and Reinsch, 1971), Principal Component Analysis (PCA) (Wold
et al., 1987), and other methods extracted features from the data to
reduce the dimension and noise of the data, retain more meaningful
content, and improve the clustering effect. The other is the deep
clustering method, which use deep neural networks (DNNS) to
learn text features and clustering targets, have received extensive
attention. DCN (Yang et al., 2017) combines autoencoder and
traditional clustering, which makes features more discriminative
and expressive in clustering, optimizes reconstruction loss and
k-means loss, and has a simple objective and low complexity.
DEC (Xie et al., 2016), the feature representation process and
soft assignment of clustering are put together to jointly optimize
the objective function. Although this deep clustering method
does not surpass the most advanced clustering methods today,
it lays a good foundation for later research. At the same time,

the method based on deep learning can also take into account
the semantic information of the text when dealing with short
text clustering. Such methods are also adopted in our MCC,
which combines clustering with deep representation learning and
introduces contrastive learning to further learn discriminative
representations.

2.2 Contrastive learning

Contrastive learning (CL) is a form of self-supervised learning
that falls under the umbrella of unsupervised learning. Over the
past 2 years, it has been extensively studied by researchers in the
field. The main concept behind CL is to first construct positive
and negative pairs through data augmentation, which pulls the
distance between semantically similar samples and pushes the
distance between semantically dissimilar samples. Measurement
of the stability of feature representation is achieved through
Alignment and Uniformity (Giorgi et al., 2020; Wang and Isola,
2020). Alignment ensures the features of positive pairs are as similar
as possible, while uniformity ensures the distribution of features
maintains as much information as possible. Early research efforts
have focused on exploring various data augmentation strategies
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(Wu et al., 2020). SimCSE (Gao et al., 2021) introduces an implicit
enhancement strategy, where positive pairs are constructed after
applying two different dropout techniques. Consert (Yan et al.,
2021) further investigates data augmentation methods, such as
Cutoff and Token Shuffling, on feature matrices. Experimental
results demonstrate the effectiveness of the implicit enhancement
strategy. CC (Li et al., 2021) also incorporates a clustering objective,
enabling contrastive learning at both the instance and cluster
levels and leading to further optimization of the vector space.
SCCL applies this method to text data and achieves state-of-the-
art results. Additionally, the inclusion of contrast samples has
been shown to improve performance. Therefore, MoCo utilizes
a queue to store past small batches of datasets, increasing the
availability of comparison data. It also proposes an encoder in the
momentum update queue, which promotes a smooth transition in
the high-dimensional space even when the input data is slightly
altered or perturbed. ESimCSE (Wu et al., 2021) adopts a similar
approach and employs word repetition as an enhancement method
to address the limitation of GPU memory when expanding the
batch size. However, it should be noted that this method requires
calculating the distance between two network outputs at different
time steps, which can prolong the training time. Exploring the
learning of sentence representations in low-resource settings still
requires further investigation.

In response, we propose combining mixup with SCCL. This
approach involves summing the vector weights of the original
and augmented data to generate a low-consumption virtual
representation. To maintain semantic coherence, weights are biased
more toward the feature representation of the original samples.
The virtual representations are then optimized in an end-to-end
manner. Our experiments demonstrate that the proposed approach
enables the use of smaller batches during training while still
achieving superior clustering scores. Additionally, this approach
effectively alleviates the problems associated with GPU memory
consumption and time occupation.

2.3 Mixup

Mixup is a virtual and implicit data augmentation technique
that involves combining two different samples to generate a new
training sample, with the goal of increasing the size and complexity
of the dataset to improve the generalization ability and robustness
of the model. It was initially used in image classification and
works by linearly interpolating the input data and corresponding
labels, overlapping the two images to create a new one. Mixup
can be thought of as creating an infinite partition of the input
space, which smooths the regularization of the model and reduces
overfitting. Several variants and extensions have been developed,
including CutMix (Yun et al., 2019), Puzzle Mix (Kim et al.,
2020), and FMxi (Harris et al., 2020). Guo et al. (2019) have
independently explored the mixture of the word embedding layer
and the representation layer in text data and have substantiated its
effectiveness through extensive comparative experiments. On the
other hand, Manifold Mixup (Verma et al., 2019) introduces a novel
approach by replacing the conventional input data mixing with
the mixing of intermediate hidden layer outputs. This technique
investigates the impact of mixing operations on each hidden

layer embedded within the model. Mixup-transformer proposed
using mixup on the transformer architecture to increase data
diversity and generalization performance, with smaller datasets
benefitting most from this augmentation. SSMix (Yoon et al., 2021)
differs from other mixup methods that focus on hidden layers
as it replaces some tokens in the text input while retaining most
important tokens.

Overall, mixup introduces innovative ideas and techniques
to the training and application of deep learning models. In
our proposed model, we incorporate the concept of mixup by
adding the vector weights of the original and augmented data.
This process generates a virtual representation that requires lower
computational resources. The weights are optimized in an end-
to-end manner, aiming to bias them more toward the feature
representation of the original sample. This strategy helps to
preserve the semantics of the data during training. Remarkably,
extensive experiments demonstrate that utilizing a smaller batch
size for training can yield superior clustering scores while
effectively mitigating the issues of GPU memory consumption and
time occupation.

3 Model

The goal of our proposed Model for Compositional Clustering
is to facilitate low-resource representation learning by mixing to
generate low-consumption representations. MCC consists of four
main modules: the text representation module, the representation-
level mixup module, the sibling contrastive learning module, and
the anchor clustering module, as illustrated in Figure 2. (a) The
text representation module is responsible for mapping the original
text and two sets of augmented text into a low-dimensional
feature vector using a pre-trained model. (b) The representation-
level mixup module aims to mix and weight the representations
of three sets of positive pairs, aligning them at corresponding
index positions to create a set of virtual vectors. (c) The sibling
contrastive learning module focuses on progressively reducing the
distance between positive pairs from the two groups in the feature
space, while pushing negative pairs away from positive pairs of
the other group. (d) The anchor clustering module calculates the
soft assignment probability of each sample to each cluster. The
original dataset serves as the anchor point, and the soft assignment
probability of the augmented dataset is optimized using KL
divergence toward the target assignment probability. This process
enhances the confidence of the clustering results. By leveraging
the hybrid virtual dataset generated through these modules, the
MCC model effectively captures more informative text patterns in
scenarios with limited resources. Algorithm 1 provides a summary
of the training and testing processes of the model in pseudo-code.

Input:

datasets X; training epochs L; batch

size N; temperature parameter τ;

learning rate Lr; cluster number K;

augmentations U1, U2; mixup weights λ

Output: cluster assignments

1: initialization cluster center µk by
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FIGURE 2

The MCC model. (A) Extracting text features using BERT. (B) Linearly combine the vectors of positive pairs. (C) Adjusting the distance between
positive instances in the feature space. (D) Fine-tuning the clustering probability of the augmented text with KL scatter, and finally, jointly optimizing
the clustering and comparison losses.

K-means

2: for epochs = 1 to L do

3: obtain mini-batch of features from

dataset X

4: mixing feature E3 by Eq. (1)

5: compute contrastive loss Lpredict−ins by

Eq. (4)

6: compute cluster soft-assignments qik,
pik by Eq. (5) and Eq. (6)

7: compute cluster loss Lanchor−clu by

Eq. (7)

8: compute total loss L by Eq. (8)

9: update µk by minimize L
10: end for

Algorithm 1. Training of MCC.

3.1 Text representation

Data augmentation serves as the initial stage of this module.
Following recent research, we employ context augmentation
(Kobayashi, 2018) as a means of data augmentation. This technique

randomly masks words using a mask language model (MLM).
Subsequently, the predicted words from the data augmentation
model are utilized to replace the masked words, akin to synonym
replacement. This approach effectively captures associations and
semantic information between words. As data augmentation
models, we choose BERT (Devlin et al., 2018) and Robert (Liu
et al., 2019b), denoting their MLM encoders as U1 and U2,
respectively. To begin, let us randomly select N samples and denote
them as Mi = {x1, x2, , xN} from the original text X, with N
representing the batch size and i serving as the subscript index.
We then take the sampled Mi and apply U1and U2 to generate
two transformed data samples, resulting in M1

i = U1(Mi) and
M2

i = U2(Mi), M1
i = {x

1
1, x

1
2, , x

1
N}, M

2
i = {x

2
1, x

2
2, , x

2
N}. The

samples corresponding to each position in M1and M2represent
positive sample pairs, while samples from different positions
represent negative sample pairs. For instance, {x1

1, x
2
1} is a positive

pair, whereas {x1
1, x

2
1} is a negative pair. Subsequently, Mi, M1

i ,
and M2

i are mapped to the feature space via an encoder, which
yields the corresponding feature vectors Ei = {e1, e2, , eN},
E1
i = {e

1
1, e

1
2, , e

1
N}, and E2

i = {e
2
1, e

2
2, , e

2
N}. For the encoder

backbone, in theory, our approach is not constrained to a specific
neural network. In this paper, we simply choose distilbert-basenli-
stsb-mean-tokens from the sentence-bert (Reimers and Gurevych,
2019) library as the basis for extracting feature vectors. The
description in Algorithm 1 is line 3.
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3.2 Representation-level mixup

Mixup is an implicit method to enhance the representation
layer by performing linear interpolation, aiming to expand prior
knowledge and improve model fitting ability and robustness.

e3
i = ϕ(λ, ei, e1

i , e
2
i )

= λei +
(

1− λ
2

)
e1
i +

(
1− λ

2

)
e2
i (1)

Here ϕ(·) is the mixup function, e3
i is the feature vector generated

after mixup, and E3
i = {e

3
1, e

3
2, , e

3
N} is obtained finally. λis the

weight that determines the resulting sentence vector by adjusting
ë, which can be a fixed value belonging to [0,1] or subject to
Beta(α, α), α ε(0).

Mixup increases the dataset size through linear interpolation
of sentence vectors between positive samples, which also generates
additional negative samples from different positions. By expanding
the dataset size, mixup provides more data information to the
model and improves training quality. Furthermore, mixup can
reduce GPU memory consumption and training time compared
to other data expansion techniques due to the smaller batch sizes
needed to train on larger datasets. This process is described in
Algorithm 1, with line 4 denoting the representation-level mixup
that generates a new set of features by linearly interpolating
between three sets of feature vectors at corresponding index
positions.

3.3 Sibling contrastive learning

Narrowing the distance between two positive instances while
extending the distance between a third positive instance and the
negative instances in different groups. This method is referred to as
sibling contrastive learning.

Positive sample pairs {e1
i , e

2
i }, {e

2
i , e

3
i }, and {e3

i , e
1
i } are formed

by selecting samples from the same index positions in the
augmented sample sets. Similarly, negative sample pairs {eki , e

k
j }are

created by choosing samples from different index positions, where
I, ∈ {1, 2, ,N}represent the index, and i 6= j,k ∈ {1, 2, 3}represent
the label of the datasets so that 3N-3 negative pairs can be obtained.
The vector eki is fed into a Multilayer Perceptron (MLP) architecture
that consists of two fully connected layers with a ReLU activation
function. The purpose of utilizing this MLP is to effectively reduce
the dimensionality of the vector and perform normalization. As
a result of this process, the output zki is obtained, reflecting the
transformed and normalized representation of the original vector.
We integrate them into the contrastive loss based InfoNCE, as
shown in the following equation:

`1, 2
i = −

1
2

(
log

exp
(
ù
(
z1
i , z

2
i
)
/ô
)

∑N
j = 1

∑3
k = 1

[
exp

(
ù
(
z1
i , z

k
j

)
/ô
]] +

log
exp

(
ù
(
z2
i , z

1
i
)
/ô
)

∑N
j = 1

∑3
k = 1

[
exp

(
ù
(
z2
i , z

k
j

)
/ô
]]) (2)

Here, ù(·) is used to calculate the cosine distance between
samples, the numerator represents the similarity of positive pairs,

and the denominator represents the similarity of negative pairs. τ

is a temperature coefficient that controls how well the model can
distinguish between negative samples. In addition, we simplify the
loss and propose a sibling contrastive learning method as follows:

`1, 2
i = (z1

i , z
2
i
∣∣z3
i
)
= − log

exp
(
ù
(
z1
i , z

2
i
)
/ô
)

∑N
j = 1

∑3
k = 1

[
exp

(
ù
(
z3
i , z

k
j

)
/ô
)]

(3)
In this method, we modify Equation (2) by replacing the

anchor in the denominator with its sibling instance that shares the
same attribute. By separating the anchor node from the negative
instance and aggregating its sibling instance, we achieve the desired
comparison effect. The description in Algorithm 1 is given as line
5. We aim to identify the positive instances in set {E1

i ,E
2
i ,E

3
i }.

Therefore, we compute the contrastive loss for each of the three
data sets as follows:

Lpredict−ins =
1

3N

N∑
i = 1

(
`1, 2
i + `1, 3

i + `2, 3
i

)
(4)

3.4 Anchor clustering

The objective of this module is to classify the samples in the
datasets and cluster similar samples together. Any sample ei in
the original dataset Ei is considered as an anchor. The positive
samples {e1

i , e
2
i , e

3
i } in the three augmented datasets are treated as

child nodes, ensuring that the cluster assignment of the anchor is
consistent with that of the child nodes. This helps to achieve more
accurate clustering.

Specifically, we use K-means to initial K cluster centers, defined
as µk, symbolizing the centroid of each cluster, to partition the
samples into the nearest ìk, k ∈ {1, 2, ,K}. The distance between
sample xi and ìk is measured by the soft assignment probability qik
obtained by the Student’s t-distribution, where qik represents the
probability that sample xi is assigned to the kth cluster center, as
shown in the following equation:

qik =
(1+ ||ei − ìk||22/α)

−
α+1

2∑K
k′ = 1 (1+ ||ei − ìk′ ||22/α)

−
α+1

2
(5)

Here α represents the degree of freedom of the Student’s
t-distribution; the larger α is, the closer the t-distribution curve
is to the standard normal distribution; the smaller α is, the flatter
the t-distribution curve is. Assigning samples to each of the k
cluster centers results in a probability vectorqiconsisting of qik,
qi = [qi1, qi2, , qiK ]. In order to focus on the data with higher
confidence, the soft cluster assignment probability is raised to
the second power to obtain the assistant probability pik, which is
expressed as follows:

pik =
q2
ik/fk∑

k′ q
2
ik/fk′

(6)

In this context, fk =
∑

i qik can be considered as an
approximation that all samples in mini-batch N belong to the
kth cluster, k ∈ {1, 2, ,K}. Then, we normalize the soft assignment
distribution to the second power to further improve confidence
and reduce deviation caused by clustering imbalance. To achieve
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this transition from the soft assignment distribution to the assistant
assignment distribution, we use KL divergence. The definition of
KL divergence is as follows:

Lanchor−clu =
1
3
(KL[pi||q1

i ] + KL[pi||q2
i ] + KL[pi||q3

i ]) (7)

Here, pi is the assistant assignment distribution obtained by
the anchor in the original dataset through Equation (6), and q1

i ,
q2
i , and q3

i represent the soft assignment distribution obtained by
the child nodes corresponding to the anchor in the three enhanced
datasets through Equation (5). By optimizing the loss function of
anchor clustering, we ensure that the child nodes continue to learn
the features in the anchor points with high confidence. Moreover,
it also helps the positive samples to come closer to each other. The
detailed description of Algorithm 1 is provided in line 7.

3.5 Objective loss function

Our total loss can be summarized as follows:

L = Lpredict−ins + γLanchor−clu (8)

The total loss is a combination of the contrastive loss and
the clustering loss, where γ plays a crucial role in balancing
the two losses. The detailed description of Algorithm 1 for
this process is presented in line 8. The experiment is flexible,
and it is possible to replace the clustering module loss by
optimizing only the anchor assignment probability or only the child
node assignment probability. Additionally, we plan to conduct
comparative experiments comparing Equations (2) and (3) in the
CL module, which we will explore in detail in the next chapter.

4 Experiment

To demonstrate the improvement brought about by adding
mixup to the text vector space, we conducted extensive experiments
on eight short text datasets. This chapter sequentially introduces
the dataset selection, experimental settings, evaluation metrics,
comparative experiments with baseline models, and ablation
experiments. Finally, we will test the loss functions discussed
in the previous chapter to evaluate their performance in our
experiments.

5 Dataset

This study uses a dataset consisting of eight short text
datasets, each with various data types, such as news headlines,
article titles, and web search snippets. The dataset includes
corresponding category labels. The following datasets were used:
AgNews, StackOverflow, Biomedical, SearchSnippets, Googlenews-
TS, Googlenews-S, Googlenews-T, and Tweet. The datasets
presented offer a wide range of contexts and formats, increasing
the potential applicability of the study to real-world situations.
Table 1 provides a concise overview of each dataset, including
their unique characteristics and the specific types of text data they
contain.

6 Setup

In this paper, we employ context augmentation, word deletion,
and random char as data augmentation methods, and Bert-base
and Roberta as augmentation models. For the encoder, we use
distilbert-base-nli-stsbmean-tokens to map the text to a feature
space, with a maximum input length of 32. We run 2000 model
iterations, using Adam as the optimizer with a learning rate of 5e-
6 for the encoder, and a learning rate of 5e-4 for the optimized
anchor node clustering head and the sibling instance contrastive
learning head. For biomedicines, we set α = 10, while for other
datasets, we also set α = 1. We attach a 768∗K linear layer
to the end of the clustering head to model the cluster centers,
where K represents the number of clusters. Additionally, an MLP
(Van der Maaten and Hinton, 2008) is attached to the end of
the CL head to map the feature vectors to a subspace of size
768∗128. For the mixing head, we tested different values of λ

from the range of 0 to 1 and determined that a mixing weight of
λ = 0.8 achieved the best clustering effect. The remaining main
parameters are set as follows: η = 10, τ = 0. 5. We analyzed the
experiments presented in Table 2 to determine the optimal value
of λ.

7 Evaluation metrics

We evaluate our model’s performance using two widely
used metrics in clustering tasks, Normalized Mutual Information
(NMI) and Accuracy (ACC), where higher scores indicate better
clustering results, with values ranging from 0 to 1. Additionally,
we include running time and GPU memory footprint as
supplementary metrics, with smaller values indicating better model
performance. Finally, we use K-means to predict the cluster centers
of the feature vectors passing through the clustering module
and the CL module.

TABLE 1 Overview of the dataset.

Dataset |V| Documents Clusters

ND Len NC L/S

AgNews (AN) 21K 8,000 23 4 1

SearchSnippets (SS) 31K 12,340 18 8 7

Biomedical (Bio) 19K 20,000 13 20 1

StackOverflow (SO) 15K 20,000 8 20 1

Tweet 5K 2,472 8 89 249

Googlenews-T (GT) 8K 11,109 6 152 143

Googlenews-S (GS) 18K 11,109 22 152 143

Googlenews-TS
(GTS)

20K 11,109 28 152 143

TABLE 2 Comparison of accuracy between datasets AgNews and
SearchSnippets across 32 batches.

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

AN 87.2 87.1 87.2 87.2 87.2 87.2 87.2 87.2 87.1

SS 85.0 84.3 84.1 84.4 84.8 84.8 85.6 86.0 85.8
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TABLE 3 Experimental results on eight short text datasets.

Dataset AgNews SearchSnippets Biomedical StackOverflow

Metrics NMI ACC NMI ACC NMI ACC NMI ACC

BOW 2.6 27.6 9.3 24.3 9.2 14.3 14.0 18.5

TF-IDF 11.9 34.5 19.2 31.5 23.2 28.3 58.7 58.4

K-means 59.2 83.9 36.4 59.0 32.7 39.8 52.3 60.8

DEC – – 64.9 76.9 37.7 41.6 75.3 74.7

STCC – – 63.2 77.0 38.1 43.6 54.8 59.8

Self-Train – – 56.7 77.1 47.1 54.8 64.8 64.8

HAC-SD 54.6 82.8 63.8 82.7 33.5 40.1 59.5 64.8

SCCL 68.2 88.2 71.1 85.2 41.5 46.2 74.5 75.5

MCC 67 87.2 71.9 86.0 42.3 49.1 76.1 77.6

Dataset Tweet Googlenews-T Googlenews-S Googlenews-TS

Metrics NMI ACC NMI ACC NMI ACC NMI ACC

BOW 73.6 49.7 73.2 49.8 73.5 49.0 81.9 57.5

TF-IDF 80.7 57.0 79.3 58.9 83.0 61.9 88.9 68.0

K-means 79.0 51.7 83.3 62.2 87.5 67.8 78.4 56.0

DEC – – – – – – – –

STCC – – – – – – – –

Self-Train – – – – – – – –

HAC-SD 85.2 89.6 84.2 81.8 83.5 80.6 88.0 85.8

SCCL 89.2 78.2 88.3 75.8 90.4 83.1 94.9 89.8

MCC 89.6 79.5 88.1 76.3 90.1 83.0 94.6 89.4

Bold values represent optimal values for the experimental setting.

8 Comparison with the baseline

We conducted experiments on eight short text datasets to
evaluate the performance of MCC in clustering tasks. Our
results show that MCC achieves highly competitive performance
compared to other state-of-the-art methods. To provide a more
comprehensive evaluation, we selected several classical text
clustering methods as baseline models, including BOW, TF-IDF,
K-means, DEC, STCC (Xu et al., 2017), Self-Train (Hadifar et al.,
2019), HAC-SD (Rakib et al., 2020), and SCCL. The experimental
results are the average of five experiments, and we obtained the
results of the baseline models from their respective papers. As
observed in Table 3.

We used two experimental environments: one with a data batch
size set to 400, and another with lower data batch sizes ranging from
16 to 128. In the first experiment, the evaluation metrics of our
model outperform the baseline model on most datasets, particularly
on StackOverflow, Tweet, and Biomedical datasets, where ACC is
improved by 2–3%, respectively. The results are shown in Figure 3.
In the second experiment, when compared with SCCL under the
same batches, our model shows a significant improvement over the
baseline.

Furthermore, we compared the model training time and
GPU memory footprint of MCC and SCCL when achieving the
highest clustering score. As observed in Figure 4, our model
has significantly reduced training time and memory footprint
compared to the baseline, while also improving accuracy. In the

contrastive learning phase, SCCL optimizes the data features by
learning a large number of information features that enhance the
data pairs. MCC employs mixup and sibling instance contrast to
enlarge the sample size and contract the distribution between the
original data and the positive pair, improving model performance.

As observed, the performance of biomedical datasets differs
significantly from that of other datasets. We believe this is due
to the limited amount of biomedical data in the corpus of the
transformer pre-training model, leading to insufficient learning for
such datasets and inaccurate feature information. Hence, our model
brings significant improvement to biomedical datasets, enabling
it to learn more prior knowledge about such data. However,
biomedical datasets typically contain a significant amount of high-
dimensional data, such as genes and proteins, which possess
complex and variable characteristics that are difficult to generalize
and classify. Additionally, they may contain a considerable amount
of noise and outliers, which can interfere with the performance of
clustering algorithms and result in a degradation of the clustering
quality. There is still much room for improvement in the future.

9 Ablation experiment

Ablation experiments were conducted on the Tweet dataset
to prove the effectiveness of each module in the model. We
successively discarded parts of the loss to demonstrate the
importance of each component to the model, as shown in
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FIGURE 3

We compared MCC with the baseline in five low-quality environments, with data batch sizes set to 16, 24, 32, 64, and 128, respectively, and the
results are shown in separate plots. To alleviate the score interval difference between Biomedical dataset and other datasets, a separate plot is made
for it.

FIGURE 4

Comparison of time and GPU when MCC and SCCL get the highest score.

Table 4. We used k-means behind the presentation layer to
calculate the score performance in the three cases. The experiments
demonstrated that mixup and anchor clustering are important
components.

With the addition of a contrastive learning module, our model
achieves better results. This is because the "same class is different"
challenge is alleviated, and samples of the same class are close
to each other in the feature space, while the samples of different
classes are more scattered. Contrastive learning can improve the
discriminative power and distinction of the clustering model by
emphasizing the similarity between samples of the same class
and the difference between samples of different classes. After

TABLE 4 Performance of each loss on the Tweet dataset.

LOSS ACC NMI

Cluster 73.4 85.1

Instance + Cluster 78.2 89.2

Instance + Cluster + Mixup 79.5 89.6

introducing mixup, we can generate virtual samples, which have
certain combination characteristics. The model can learn more
relative relationships and boundaries between samples, generalize
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better to unseen samples, and focus on the correlation between
samples in the learning process.

10 Comparative experiment

This section describes experiments conducted to select the
best data augmentation methods and clustering loss to achieve
optimal performance of the model. We conducted comparative
experiments and analyzed the results to determine the most
effective combination of methods and loss functions.

10.1 Performance of data augmentation

Through our research, we found that different data
augmentation methods yield varying performances when used in
our method. To verify the importance of data augmentation, we
compared the performance of three augmentation methods on the
model: word deletion, random char, and context augmentation.
As shown in Table 5, these strategies produced different clustering
scores.

Random char can enhance the model’s robustness to
minor misalignments or spelling errors in the input, thereby

TABLE 5 Performance of different data augmentation.

Dataset Augmentation ACC NMI

AgNews Random char 86.0 64.9

Word deletion 87.1 67.2

Context augmentation 87.2 67.3

SearchSnippets Random char 84.6 70.5

Word deletion 64.8 56.5

Context augmentation 86.0 71.9

Biomedical Random char 44.8 39.7

Word deletion 45.1 40.2

Context augmentation 49.1 42.3

StackOverflow Random char 72.3 69.6

Word deletion 74.9 77.4

Context augmentation 77.6 76.1

Tweet Random char 75.1 87.6

Word deletion 77.6 88.5

Context augmentation 79.5 89.6

Googlenews-T Random char 73.4 86.5

Word deletion 73.8 86.8

Context augmentation 76.3 88.1

Googlenews-S Random char 80.0 88.9

Word deletion 81.9 89.3

Context augmentation 83.0 90.1

Googlenews-TS Random char 87.3 93.8

Word deletion 88.1 94.0

Context augmentation 89.4 94.6

TABLE 6 Performance of different anchor loss functions on
the tweet dataset.

Contrastive-head Clustering-head ACC NMI

Eq. (3) KL[qi, pi] 77.4 88.5

KL[q1
i , p

1
i ] + KL[q2

i , p
2
i ] + KL[q3

i , p
3
i ] 76.8 88.4

KL[qi, p1
i ] + KL[qi, p2

i ] + KL[qi, p3
i ] 79.2 89.4

Eq. (4) KL[qi, pi] 77.6 88.4

KL[q1
i , p

1
i ] + KL[q2

i , p
2
i ] + KL[q3

i , p
3
i ] 77.0 88.3

KL[qi, p1
i ] + KL[qi, p2

i ] + KL[qi, p3
i ] 79.5 89.6

improving its generalization ability. However, it is important to
note that this technique may inadvertently alter the meaning
or grammatical structure of words, potentially resulting in
unnatural or semantically distorted text generation. On the
other hand, word deletion serves as a means to simulate
noise and missing information in textual data, thereby
enhancing the model’s capacity to process incomplete text.
Nevertheless, there is a risk of disrupting the intended meaning
of the original text, leading to generated text that appears
disjointed or semantically unclear. Context enhancement,
which involves predicting blocked words to enrich the article’s
information, introduces additional variations and diversities.
This approach helps the model adapt more effectively to different
contextual scenarios.

Overall, their effects are carefully balanced in order to preserve
the coherence and meaning of the original text while enhancing the
power of the model.

10.2 Performance of anchor loss function

The loss function of the clustering module is studied in
the traditional contrastive module and the sibling contrastive
module, respectively. Specifically, it is to prove the effectiveness
of the selected function by replacing the anchor function
with the potential objective function and then optimizing its
loss function combined with Eq. (2) and (3). As shown in
Table 6, pushing the augmentation to the anchor clustering
module with the Sibling contrastive learning module leads to the
highest score.

11 Conclusion

In this article, we aim to model scarce rare disease data
using small batches of data. Our proposed hybrid-based short-text
clustering comparison learning algorithm introduces hybridisation
in the feature extraction phase. In small batch experiments on
eight short-text datasets, our proposed algorithm concentrates
on constructing features and expanding the comparison samples
with minimal computational pressure. As a result, we achieved
effective improvements across multiple datasets. For the short-text
clustering issue in the medical sector, our algorithm can reduce
GPU memory consumption and training time, besides providing
more precise clustering outcomes. This method offers a practical
solution to process medical text data for healthcare professionals,
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proficiently advancing medical technology. In the future, we plan
to improve our algorithm and test it on larger datasets. We will
also explore other hybridization techniques to enhance the feature
extraction phase. Furthermore, we aim to integrate our algorithm
into medical technology systems for real-time processing and
disease prediction.

Data availability statement

Publicly available datasets were analyzed in this study. This
data can be found here: https://github.com/rashadulrakib/short-
text-clustering-enhancement/tree/master/data.

Author contributions

QX: Writing—review and editing. HZ: Writing—original draft.
SJ: Writing—review and editing.

Funding

The author(s) declare that no financial support was received
for the research, authorship, and/or publication of this article.
This work was supported by Program for Scientific Research
Innovation Team in Colleges and Universities of Anhui Province

2022AH010095 and the Natural Science Research Project of Anhui
Educational Committee under grant 2023AH052180.

Acknowledgments

We sincerely thank the reviewers and editors for their valuable
comments and suggestions on this study. We would also like
to acknowledge the unwavering support of the Hefei University
Arithmetic Platform.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Campbell, M. J., Donner, A., and Klar, N. (2007). Developments in cluster
randomized trials and statistics in medicine. Stat. Med. 26, 2–19. doi: 10.1002/sim.2731

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). “A simple framework
for contrastive learning of visual representations,” in Proceedings of the international
conference on machine learning: PMLR, 1597–1607.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. J. R. Stat. Soc. Series B 39, 1–22. doi: 10.1111/j.
2517-6161.1977.tb01600.x

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. J. (2018). “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in Proceedings of
NAACL-HLT 2019, (Minneapolis).

Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in Proceedings of the
international conference on knowledge discovery in databases and data mining (KDD-
96), Portland, 226–231.

Gao, T., Yao, X., and Chen, D. J. (2021). “Simcse: Simple contrastive learning of
sentence embeddings,” in Proceedings of the Empirical methods in natural language
processing (EMNLP). doi: 10.18653/v1/2021.emnlp-main.552

Giorgi, J., Nitski, O., Wang, B., and Bader, G. J. (2020). “Declutr: Deep contrastive
learning for unsupervised textual representations,” in Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing. doi: 10.18653/v1/2021.acl-long.72

Golub, G. H., and Reinsch, C. (1971). Singular value decomposition and least
squares solutions," in Numer. Math 14, 403–420. doi: 10.1007/BF02163027

Guo, H., Mao, Y., and Zhang, R. J. (2019). Augmenting data with mixup for sentence
classification: An empirical study. arXiv. arXiv:1905.08941.

Hadifar, A., Sterckx, L., Demeester, T., and Develder, C. (2019). “A self-
training approach for short text clustering,” in Proceedings of the 4th Workshop on
Representation Learning for NLP (RepL4NLP-2019)), 194–199. doi: 10.18653/v1/W19-
4322

Harris, E., Marcu, A., Painter, M., Niranjan, M., Prügel-Bennett, A., and Hare, J. J.
(2020). Fmix: Enhancing mixed sample data augmentation.

Hartigan, J. A., and Wong, M. A. (1979). Algorithm AS 136: A k-means clustering
algorithm. J. R. Stat. Soc. Series C 28, 100–108. doi: 10.2307/2346830

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). “Momentum contrast
for unsupervised visual representation learning,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, Seattle, WA, 9729–9738. doi:
10.1109/CVPR42600.2020.00975

Kim, J.-H., Choo, W., and Song, H. O. (2020). “Puzzle mix: Exploiting saliency and
local statistics for optimal mixup,” in Proceedings of the International Conference on
Machine Learning: PMLR, 5275–5285.

Kobayashi, S. J. (2018). “Contextual augmentation: Data augmentation by words
with paradigmatic relations,” in Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, New Orleans, LA. doi: 10.18653/v1/N18-2072

Li, Y., Hu, P., Liu, Z., Peng, D., Zhou, J. T., and Peng, X. (2021). Contrastive
clustering. Proc. AAAI Conf. Art. Intell. 35, 8547–8555. doi: 10.1609/aaai.v35i10.
17037

Liu, H., Hong, G., Luo, Z., Chen, J., Chang, J., Gong, M., et al. (2019a). Atomic-
precision gold clusters for NIR-II imaging. Adv. Mater. 31:1901015. doi: 10.1002/
adma.201901015

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., et al. (2019b). Roberta: A
robustly optimized bert pretraining approach.

Lyu, B., and Haque, A. (2018). “Deep learning based tumor type classification
using gene expression data,” in Proceedings of the 2018 ACM international conference
on bioinformatics, computational biology, and health informatics), Washington, DC,
89–96. doi: 10.1145/3233547.3233588

Murtagh, F., and Contreras, P. (2012). Algorithms for hierarchical clustering: An
overview. Wiley Interdiscip. Rev. Data Mining Knowledge Discov. 2, 86–97. doi: 10.
1002/widm.53

Rakib, M. R. H., Zeh, N., Jankowska, M., and Milios, E. (2020). “Enhancement of
short text clustering by iterative classification,” in Proceedings of the 25th international
conference on applications of natural language to information systems, NLDB 2020„ June
24–26, 2020, Springer), Saarbrücken, 105–117. doi: 10.1007/978-3-030-51310-8_10

Frontiers in Computational Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2023.1334748
https://github.com/rashadulrakib/short-text-clustering-enhancement/tree/master/data
https://github.com/rashadulrakib/short-text-clustering-enhancement/tree/master/data
https://doi.org/10.1002/sim.2731
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.acl-long.72
https://doi.org/10.1007/BF02163027
https://doi.org/10.18653/v1/W19-4322
https://doi.org/10.18653/v1/W19-4322
https://doi.org/10.2307/2346830
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.18653/v1/N18-2072
https://doi.org/10.1609/aaai.v35i10.17037
https://doi.org/10.1609/aaai.v35i10.17037
https://doi.org/10.1002/adma.201901015
https://doi.org/10.1002/adma.201901015
https://doi.org/10.1145/3233547.3233588
https://doi.org/10.1002/widm.53
https://doi.org/10.1002/widm.53
https://doi.org/10.1007/978-3-030-51310-8_10
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-17-1334748 January 5, 2024 Time: 17:17 # 12

Xu et al. 10.3389/fncom.2023.1334748

Reimers, N., and Gurevych, I. J. (2019). Sentence-bert: Sentence embeddings using
siamese bert-networks. arXiv. doi: 10.18653/v1/D19-1410

Tang, X., Dong, C., and Zhang, W. J. (2022). Contrastive author-aware text
clustering. Pattern Recogn. 130:108787. doi: 10.1016/j.patcog.2022.108787

Van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE. JMLR 9,
2579–2605.

Verma, V., Lamb, A., Beckham, C., Najafi, A., Mitliagkas, I., Lopez-Paz, D.,
et al. (2019). “Manifold mixup: Better representations by interpolating hidden
states,” in Proceedings of the international conference on machine learning: PMLR,
6438–6447.

Vieira, S., Pinaya, W. H., and Mechelli, A. (2017). Using deep learning to investigate
the neuroimaging correlates of psychiatric and neurological disorders: Methods and
applications. Neurosci. Biobehav. Rev. 74(Pt A), 58–75. doi: 10.1016/j.neubiorev.2017.
01.002

Wang, T., and Isola, P. (2020). “Understanding contrastive representation learning
through alignment and uniformity on the hypersphere,” in Proceedings of the
international conference on machine learning: PMLR, London, 9929–9939.

Wei, F., Chen, Z., Hao, Z., Yang, F., Wei, H., Han, B., et al. (2022). Semi-supervised
clustering with contrastive learning for discovering new intents. arXiv preprint.
arXiv:2201.07604.

Wei, J., and Zou, K. J. (2019). “Eda: Easy data augmentation techniques for boosting
performance on text classification tasks,” in Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, 6382–
6388. doi: 10.18653/v1/D19-1670

Wold, S., Esbensen, K., and Geladi, P. (1987). Principal component analysis.
Chemometr. Intell. Lab. Syst. 2, 37–52. doi: 10.1016/0169-7439(87)80084-9

Wu, X., Gao, C., Zang, L., Han, J., Wang, Z., and Hu, S. J. (2021). Esimcse: Enhanced
sample building method for contrastive learning of unsupervised sentence embedding.
arXiv preprint. arXiv:2109.04380.

Wu, Z., Wang, S., Gu, J., Khabsa, M., Sun, F., and Ma, H. J. (2020). Clear: Contrastive
learning for sentence representation. arXiv preprint. arXiv:2012.15466.

Wu, Z., Xiong, Y., Yu, S. X., and Lin, D. (2018). “Unsupervised feature learning
via non-parametric instance discrimination,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, Salt Lake City, 3733–3742. doi: 10.1109/
CVPR.2018.00393

Xie, J., Girshick, R., and Farhadi, A. (2016). “Unsupervised deep embedding for
clustering analysis,” in Proceedings of the 33rd international conference on machine
learning, PMLR, 478–487.

Xu, J., Xu, B., Wang, P., Zheng, S., Tian, G., Zhao, J., et al. (2017). Self-Taught
convolutional neural networks for short text clustering. Neural Netw. 88, 22–31. doi:
10.1016/j.neunet.2016.12.008

Xu, R., and Wunsch, D. (2005). Survey of clustering algorithms. IEEE Trans. Neural
Netw. 16, 645–678. doi: 10.1109/TNN.2005.845141

Yan, Y., Li, R., Wang, S., Zhang, F., Wu, W., and Xu, W. J. (2021). “Consert:
A contrastive framework for self-supervised sentence representation transfer,” in
Proceedings of the 59th AnnualMeeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume
1), Virtual Event. doi: 10.18653/v1/2021.acl-long.393

Yang, B., Fu, X., Sidiropoulos, N. D., and Hong, M. (2017). “Towards k-means-
friendly spaces: Simultaneous deep learning and clustering,” in Proceedings of the
international conference on machine learning: PMLR, 3861–3870.

Yoon, S., Kim, G., and Park, K. J. (2021). “Ssmix: Saliency-based span mixup for
text classification,” in Proceedings of the Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, 3225–3234. doi: 10.18653/v1/2021.findings-acl.285

Yun, S., Han, D., Oh, S. J., Chun, S., Choe, J., and Yoo, Y. (2019). “Cutmix:
Regularization strategy to train strong classifiers with localizable features,” in
Proceedings of the IEEE/CVF international conference on computer vision, Seoul,
6023–6032. doi: 10.1109/ICCV.2019.00612

Zhang, D., Nan, F., Wei, X., Li, S., Zhu, H., McKeown, K., et al. (2021). “Supporting
clustering with contrastive learning,” in Proceedings of the 2021 conference of the North
American chapter of the association for computational linguistics: Human language
technologies, 5419–5430. doi: 10.18653/v1/2021.naacl-main.427

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. J. (2017). mixup: Beyond
empirical risk minimization. arXiv. arXiv:1710.09412.

Frontiers in Computational Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2023.1334748
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1016/j.patcog.2022.108787
https://doi.org/10.1016/j.neubiorev.2017.01.002
https://doi.org/10.1016/j.neubiorev.2017.01.002
https://doi.org/10.18653/v1/D19-1670
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1109/CVPR.2018.00393
https://doi.org/10.1109/CVPR.2018.00393
https://doi.org/10.1016/j.neunet.2016.12.008
https://doi.org/10.1016/j.neunet.2016.12.008
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.findings-acl.285
https://doi.org/10.1109/ICCV.2019.00612
https://doi.org/10.18653/v1/2021.naacl-main.427
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/

	A lightweight mixup-based short texts clustering for contrastive learning
	1 Introduction
	2 Related work
	2.1 Short text clustering
	2.2 Contrastive learning
	2.3 Mixup

	3 Model
	3.1 Text representation
	3.2 Representation-level mixup
	3.3 Sibling contrastive learning
	3.4 Anchor clustering
	3.5 Objective loss function

	4 Experiment
	5 Dataset
	6 Setup
	7 Evaluation metrics
	8 Comparison with the baseline
	9 Ablation experiment
	10 Comparative experiment
	10.1 Performance of data augmentation
	10.2 Performance of anchor loss function

	11 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


