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Mean-field models have been developed to replicate key features of epileptic

seizure dynamics. However, the precise mechanisms and the role of the

brain area responsible for seizure onset and propagation remain incompletely

understood. In this study, we employ computational methods within The Virtual

Brain framework and the Epileptor model to explore how the location and

connectivity of an Epileptogenic Zone (EZ) in a mouse brain are related to

focal seizures (seizures that start in one brain area and may or may not remain

localized), with a specific focus on the hippocampal region known for its

association with epileptic seizures. We then devise computational strategies

to confine seizures (prevent widespread propagation), simulating medical-like

treatments such as tissue resection and the application of an anti-seizure drugs

or neurostimulation to suppress hyperexcitability. Through selectively removing

(blocking) specific connections informed by the structural connectome and

graph network measurements or by locally reducing outgoing connection

weights of EZ areas, we demonstrate that seizures can be kept constrained

around the EZ region. We successfully identified the minimal connections

necessary to prevent widespread seizures, with a particular focus on minimizing

surgical or medical intervention while simultaneously preserving the original

structural connectivity and maximizing brain functionality.
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1 Introduction

An essential objective of computational neuroscience is to

be able to predict the effects of medical interventions, therapies,

or surgeries on the local and global brain dynamical activity.

A dynamical-model approach can establish connections among

attractors, bifurcations, synchronization patterns, and empirical

neuroimaging data like EEG and fMRI. By appropriately selecting

model parameters it allows us to construct tailored in silico brain

activity profiles for different subjects. These parameter settings

can function as dynamic indicators and prognosticators of distinct

brain states (healthy vs. pathological) and behavioral patterns (see

e.g., Mehta et al., 1993; Popovych et al., 2019). Such an approach

would enable the customization of treatments applied for example

in brain stimulation therapies for different patients. In the latter

ones, the clinical goal is for example to reverse the irregular neural

synchronization linked to various neurological disorders such as

Parkinson’s disease and tinnitus (Tass, 2003; Manos et al., 2018a,b,

2021) or replicate relevant experimental features on motor control

and motor rehabilitation after stroke (see e.g., Allegra Mascaro

et al., 2020). Mathematical models can provide a theoretical

framework to investigate the impact of the localised population

dynamics combined with the complex topology of the brain

network on the overall brain activity (Izhikevich, 2007; Gerstner

et al., 2014) as well as to account for different types of plasticity (e.g.,

Hebbian or structural plasticity) and their impact on the system”s

dynamics (Berry andQuoy, 2006; Butz et al., 2009; Ooyen and Butz-

Ostendorf, 2017; Pitti et al., 2017, 2020; Bi et al., 2021; Manos et al.,

2021; Bergoin et al., 2023; Lu et al., 2023).

Among these neurological disorders, epilepsy is a very

common neurological condition that affects over 46 million people

worldwide (Beghi, 2019). It is characterized by the occurrence

of multiple epileptic seizures, causing a wide range of symptoms

including language and motor troubles, auras, convulsions and

loss of consciousness (Chang et al., 2017). These seizures are

generated by either a localized production of excessive discharges

occurring in one area or hemisphere (i.e., focal), or simultaneously

in both hemispheres (i.e. generalized), that can either remain

localized or propagate in the brain network (widespread seizure)

(Englot et al., 2016; Burman and Parrish, 2018). Around 30% of

the epileptic patients are drug-resistant, and therefore may have

to undergo resective surgical intervention to cure their disease,

which usually consists of the removal of the entire Epileptogenic

Zone (EZ) (Jehi, 2018; Rubio et al., 2019). In Temporal Lobe

Epilepsy, around 70% of the resective surgery operations lead to

the suppression of the epileptic activity or the drastic diminution

of its occurrence, but also causes brain dysfunctions, especially

memory impairment. The surgery is ineffective in around 30% of

the cases (Alexandratou et al., 2021). It is evident that adequately

identifying the epileptogenic brain area is crucial to perform

appropriate resections. Usually based on visual inspections or

quantitative analysis of intracranial electroencephalogram (IEEG)

data, the detection of the EZ may not succeed in cases of complex

seizure initiation patterns (Andrzejak et al., 2014). Alternatives

to standard resective surgery for epilepsy rather aim to alter the

structure of the brain to mildly interrupt the epileptic circuit. For

example, Stereotactic radiofrequency ablation (SRA) is a minimally

invasive technique that uses a needle electrode to inject high-

frequency current into a focal target inducing protein denaturation

and coagulative necrosis. SRA poses little risk to brain function,

can be performed quickly, and is associated with an easier recovery.

However, it also results in poorer outcomes due to the reduced size

of the lesion (see e.g., Quigg and Harden, 2014; Shamim et al., 2021;

Shields et al., 2023).

Over the past years there has been an increasing integration of

neuroimaging data to enhance the accuracy and predictive capacity

of mathematical models (Popovych et al., 2019, 2021; Manos et al.,

2023). This integration occurs within a virtual (computational)

environment where simulations enable the exploration and

derivation of parameters that could eventually facilitate the

prediction of micro- and macro-scale brain activity states

(Shusterman and Troy, 2008; Jirsa et al., 2017; Chizhov and Sanin,

2020). Personalized models of epileptic brain using patient-specific

data allow us to test various resection options before surgery (see

e.g., Jirsa et al., 2016), and the relevance of preferentially removing

connections based on their location in the modular brain structure

(see e.g., Olmi et al., 2019; Nissen et al., 2021). In An et al.

(2019) the authors used mathematical models and brain network

simulations, coupled with modularity analysis based on individual

structural brain connectivity to pinpoint optimal surgical target

areas. Subsequent to this investigation, in Hashemi et al. (2020) the

authors introduced a probabilistic framework capable of inferring

the spatial distribution of epileptogenicity within a personalized,

large-scale brain model of epilepsy propagation. In Makhalova

et al. (2022), the authors used such computational approaches to

compare the regions identified as epileptogenic by the so-called

Virtual epileptic patient brain model to those defined by clinical

analysis (see also Jirsa et al., 2023).

A viable alternative is to use virtual micemodels. Indeed, rodent

species are often regarded as suitable analogs for humans due

to the significant similarities in brain structure and connectivity

between the two (Grone and Baraban, 2015; Marshall et al., 2021).

Scientists frequently opt for laboratory mice as research subjects

because these creatures also bear genetic resemblance to humans

and have shorter lifespans, enabling multi-generational studies.

Furthermore, advancements in imaging technology are rapidly

enhancing the precision and detail of experimental data. The latest

iterations of MRI machines, for instance, provide intricate insights

into the anatomical, structural, and functional aspects of the entire

rodent brain (Stafford et al., 2014). The primary objective of mouse-

based research is to deepen our comprehension of brain function

and malfunction. The ultimate goal is to acquire new knowledge of

the mechanisms controlling and intervening in the brain dynamics

which can be later utilised in human brain”s therapies, like for

example in the treatment of Epilepsy.

A better understanding of the role of neural network”s

topological properties in the spatiotemporal propagation of

epileptic activity would open the path for more effective EZ

identification, and better resection strategies. In Toyoda et al.

(2013), the authors used recording electrodes to assess the

propagation of seizures in rats experiencing spontaneous seizures.

They observed that the initial seizure activity was most frequently

detected in the hippocampal formation, followed by sequential

spreading to the subiculum, entorhinal cortex, olfactory cortex,
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neocortex, and striatum. In Melozzi et al. (2017), the authors

numerically simulated the dynamical behavior of a mouse brain to

replicate certain aspects of the anatomical reorganization observed

in medial temporal lobe epilepsy reported in Toyoda et al. (2013).

To this end, they focused on the loss of neuronal connections in

the hippocampal regions (CA1 and CA3) [see also experimental

findings in Esclapez et al. (1999)] and they eliminated (in silico)

all incoming and outgoing connections of CA1 and CA3 brain

areas in the hippocampus to prevent widespread epileptic seizure

propagation.

Epileptic seizures arise from an imbalance in the regulation

of stimulation and inhibition. Cellular-level processes involve ion

transporters, pumps, and channels that govern the entry and exit

of positively or negatively charged ions within neurons. These

mechanisms are further modulated by factors such as voltage or

ligands, either binding directly or through G protein receptors,

which exert control over these pumps and ion channels (see

Bakhtiarzadeh et al., 2023 and references therein). There are

several anti-seizure drugs that have been reported to suppress

epileptiform spikes and improve synaptic and cognitive function

(see Kanner and Bicchi, 2022 for a recent review). In parallel,

neuromodulation techniques have emerged as promising strategies

for influencing brain activity and have gained considerable

attention in the context of managing seizure propagation. One of

the key players in this field is transcranial magnetic stimulation

(TMS), which non-invasively modulates neuronal excitability by

generating magnetic field that induce electrical currents in targeted

brain regions. Studies have shown that repetitive TMS (rTMS) can

alter cortical excitability and disrupt abnormal synchronization of

neuronal networks, thereby attenuating seizure propagation (see

e.g., Tsuboyama et al., 2020) and references therein. Additionally,

vagus nerve stimulation (VNS) has demonstrated effectiveness

in reducing seizure frequency and severity by modulating the

autonomic nervous system and releasing neurotransmitters that

promote inhibitory signaling (see e.g., Toffa et al., 2020) and

references therein. Moreover, recent advancements in closed-loop

neuromodulation, such as responsive neurostimulation (RNS),

offer real-time monitoring and adaptive delivery of electrical pulses

to preemptively suppress abnormal neuronal activity and prevent

seizure spread (Heck et al., 2014). These findings highlight the

potential of neuromodulation techniques as adjunctive therapies

for controlling seizure propagation and improving the quality of

life for individuals with epilepsy.

In this work, we computationally study how the location of

an EZ area and its connectivity relevance in the network are

related to widespread seizure propagation in a mice brain and we

search for strategies that can confine widespread seizures by either

removing theminimum amount of brain tissue (by blocking certain

connections in the network), or suppress the hyperexcitation

(loosely mimicking a anti-seizure drug or neuromodulation effect).

To this end, instead of (computationally) resecting the whole EZ

tissue from both brain hemispheres as in Melozzi et al. (2017) (via

a graph edge removal), we sought out to systematically identify and

remove (or block) the minimal amount of connections required to

prevent a widespread seizure propagation. In addition, we followed

an alternatively approach to computationally model (in a loose

sense) the effect of a drug at a macroscopic scale (i.e., suppression

of network hyperexcitability). To this objective, we altered locally

the outgoing weight connections in our structural connectome to

account for the inhibitory effect of such a drug in the vicinity of

a given EZ area. In both of our approaches, the ultimate goal is

to minimize the surgical or medical intervention and preserve as

much as possible the pre-surgical structural connectivity as well as

the maximum possible amount of the brain functionality.

2 Materials and methods

2.1 The Epileptor model

The Epileptor (Jirsa et al., 2014; Proix et al., 2014; Houssaini

et al., 2020) is a phenomenological model for the description

of local-field potentials during epileptic seizures, comprised by

one susbsystem with two state variables (x1, y1) responsible for

generating fast discharges (Hindmarsh and Rose, 1984) and a

second one with two state variables (x2, y2) generating sharp-wave

events (Roy et al., 2011). The fast and slow variables are linked to

the so-called permittivity variable, z (see below) which evolves on

a very slow timescale. The onset of a seizure takes place through a

saddle-node bifurcation while the time evolution and the offset via

a homoclinic bifurcation. The Epileptor was also used in Melozzi

et al. (2017) to model epileptic activity for mouse brains. In our

study, we consider a network of N Epileptors, coupled via an

adjacencymatrixA = (cji) while we do not include any delays using

track length data. The epileptic seizure-like events are produced by

the model described with the following set of equations:

ẋ1,i = y1,i − f1(x1,i, x2,i)− zi + I1, (1)

ẏ1,i = 1− 5x21,i − y1,i, (2)

żi =

{

r(4(x1,i − x0,i)− zi − 0.1z7i )+ K
∑

j cji(x1,i − x1,j) if zi < 0,

r(4(x1,i − x0,i)− zi)+ K
∑

j cji(x1,i − x1,j) if zi ≥ 0,
(3)

ẋ2,i = −y2,i + x2,i − x32,i + I2 + 0.002g(x1,i)− 0.3(zi − 3.5), (4)

ẏ2,i =
1

τ
(−y2,i + f2(x2,i)), (5)

ġ(x1,i) = −0.01(g(x1,j)− 0.1x1,i), (6)

where

f1(x1,i, x2,i) =

{

3x31,i − x21,i if x1,i < 0,

(x2,i − 0.6(zi − 4)2)x1,i if x1,i ≥ 0,
(7)

and

f2(x2,i) =

{

0 if x2,i < −0.25,

6(x2 + 0.25) if x2 ≥ −0.25.
(8)

The combined x2,i − x1,i variable models the potential of brain

area i. Following the work of Melozzi et al. (2017) and tuning our

system in a similar state, we set I1 = 3.1, I2 = 0.45, r = 8 × 10−5,

K = 0.2, τ = 10 s. Additive Gaussian white noise with standard

deviation σ = 0.0025 is added to Eqs. (4) and (5). Our simulations

were performed with The Virtual Brain (TVB) platform (Sanz Leon

et al., 2013; Sanz-Leon et al., 2015).
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In our work, and for each brain node, we focus only on the

epileptogenicity parameter (x0,i) and we adjust its value according

to healthy or epileptic condition of each node. The critical

epileptogenicity parameter for the transition from one state to the

other is found to be xc0 ≈ −2.06 (see Houssaini et al., 2020).

A node or group of EZ nodes (Jehi, 2018) is selected to produce

spontaneous epileptic seizures, while the rest of the brain nodes

form the healthy Propagation Zone (PZ). We set the values of the

epileptogenicity in these brain nodes as x0 = −1.6 for the EZ and

x0 = −2.1 for the PZ nodes.

In order to systematically detect the seizure onset for each brain

area and its widespread (or not) evolution to other regions, we use

the evolution of the slow permittivity z. First, we allow the system to

evolve for approximately 15 seconds (this also depends on the onset

of a first seizure) to eliminate temporary effects. At this stage all PZ

nodes are in a stable state (i.e., the z variable value is approximately

constant), and the EZ does not produce a seizure yet. Therefore,

we define seizure onset time Tonset,i in each brain area i, as the

time when the slow permittivity (z) starts increasing. To track the

propagation of the seizure among brain areas, we define the time

distance from seizure onset in each network node i:

Ti =

{

0 if node i is the EZ,

Tonset,i − Tonset,EZ otherwise,
(9)

with Tonset,EZ the onset time of the seizure in the EZ.

In Figure 1, we show examples of an epileptogenic (in red) and

healthy (in blue) nodes activity produced by the Epileptor model.

The time evolution of the fast variable x2 − x1 is depicted in blue

(non EZ) and red (initially an EZ). The slow permittivity variable z

is in black. Non-epileptogenic brain areas can either be recruited in

the seizure, or maintain a healthy activity. Some examples detecting

the time stamps of seizure onset in each node using the slow

variable z are also depicted in Figure 1.

2.2 Structural connectome

Our mouse brain network consists of N = 98 Epileptors

(Melozzi et al., 2017) coupled with a structural connectivity (SC)

weight matrix adopted by the Allen Institute that was presented

in Oh et al. (2014) and used in Melozzi et al. (2017). In the

coupling term of Eq. (3), we do not consider self-connections (i.e.,

cii = 0). The SC matrix SC = (cji) is shown in Figure 2,

where cji denotes the weight of the connection going from area

i to area j in base-ten logarithmic scale for better visualisation.

The Allen Institute neuroimaging analysis consistently involves

source regions exclusively situated in the right hemisphere. The

SC matrix used here the left hemisphere’s counterpart constructed

by mirroring the right hemisphere. Originally, the strength of

connections between a given region and another was computed

as the average across several experiments utilizing those specific

brain areas as source and target regions (see Melozzi et al., 2017

for more details). The SC matrix is divided into four blocks,

i.e., R-R, R-L, L-R, and L-L (in a clockwise order from the

upper left), symmetries emerge where R-R equals L-L and R-L

equals L-R. This assumption is grounded in the notable lateral

symmetry observed in the mouse brain, as reported in Calabrese

et al. (2015). The dynamics of Epileptors coupled through this

connectome adequately reproduces the seizure recruitment order

(in the hippocampus, Subiculum, Enthorinal cortex, Olfactory

cortex, Isocortex and Striatum, with epileptogenic left CA1, CA3

andDentate Gyrus) (Melozzi et al., 2017) that is also experimentally

observed by Toyoda et al. (2013).

For statistical relevance of our computational findings, we also

produced a set of 20 connectomes derived from the original SC.

Namely, each new weight c′ji value of the connection between

areas i and j is randomly generated from a normal distribution

with mean cji and standard deviation 0.1cji. In the case where

a new weight is negative, we set c′ji = cji. Note that the most

prominent modifications occur in the relatively strong connections

and that these modifications induced a minor loss of the original

SC’s symmetry between left and right hemisphere.

2.3 Network graph measurements

We describe the mice brain network as a graph G = (V ,E)

containing a set of vertices V , and a set of E edges. The adjacency

matrix SC = (cji) is such that cji denotes the weight of the

connection going from node i to node j. We characterize each node

of the network with different connectivity measurements (see e.g.,

Newman, 2010):

• Degree. The amount of connections leaving (resp. arriving) a

node i is given by its outdegree deg+(i) (resp. indegree deg−(i)):

deg+(i) =
∑

j∈V

cij, (10)

deg−(i) =
∑

j∈V

cji. (11)

For an unweighted graph, indegree and outdegree represent a

number of connections. However, in the case of a weighted graph,

they take the real value of the total connective strength the node

receives or releases.

• Eigenvector centrality. The eigenvector centrality xi is used to

quantify the relative importance of a given node i:

xi =
1

λ

∑

j∈V

cijxj, (12)

where λ is the adjacency matrix’s larger eigenvalue. Eigenvector

centrality gets higher when a node has more, stronger connections,

especially connections with other central nodes of the network.

•Average shortest path length.The shortest path length lij between

any two nodes i and j is the total connective length on the shortest

path going from one to another, computed following Dijkstra’s

algorithm. The length of each connection is artificially defined as

lji = cm− cji, with cm the largest weight value of a connection in the

network, so that strong connections account for short distance. We

define the shortest path length of a node i as the average shortest

path between i and any other node of the network:

Li =
∑

j∈V

lji

N
. (13)
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FIGURE 1

Coupled Epileptor model time-series. Time series of the fast variable x2 − x1 of the Epileptor model (in color) depicting the neural activity of the

nodes, and of the slow variable z (in black). The epileptogenic Epileptor (in red) produces spontaneous seizures, with x0 = −1.6. The

non-epileptogenic Epileptors (in blue), with x0 = −2.1, can either be recruited in the seizure or maintain healthy activity. For all recruited areas, time

stamps indicate seizure onset.

FIGURE 2

Structural connectivity matrix and mouse brain network. (A) Allen Structural Connectivity matrix. The elements of the matrix show the logarithm of

the weight for the connections between any pair of brain areas. Node indices ranging from 1 to 49 form the right hemisphere (R), node indices

ranging from 50 to 98 form the left one (L). (B) Mouse brain network graph. Only connections of weight higher than 0.1 are shown for visibility

reasons. The red nodes indicate the areas composing the left hippocampus. Note that the left brain hemisphere appears on the right hand side of our

template.

Note that lji is always defined as the mice brain graph

is complete, i.e., each pair of graph vertices in the graph

is connected by an edge. Therefore there is always a way

connecting node i to node j. The lower the shortest path

length, the fastest the information goes from one node

to another.

To study the relative importance of various nodes within a brain

network, each initial connectivity measurement mi (for node i) is

normalized, i.e., mi
mmax , where mmax denotes the maximal value of

the measurement among the brain nodes.

3 Results

3.1 Simulating widespread and localized
epileptic seizures

The location of the Epileptogenic Zone in a given mice brain

network determines the propagation (i.e. generalized seizure—

occurring in both hemispheres of the brain) or non-propagation

(i.e., focal—occurring in one area of the brain or hemisphere in the

brain that remains localized) of the epileptic seizure. We start by
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computationally initiating epileptic seizures within different areas

of the hippocampus, namely the CA1, CA3 and DG separately and

not all three simultaneously (nor combinations of pairs of them).

Our rationale in doing so is to begin by investigating whether

there is an systematic association between the seizure onset at a

certain sub-region (CA1, CA3 and DG) and the type of seizure,

e.g., widespread vs localized. Figure 3 displays the time distance

from the initiation time of a seizure at a EZ node to reach different

brain areas in a template of a mice brain slice. Figure 3A shows

an example of a widespread seizure, starting in left-field CA1 and

spreading to almost all brain areas (nodes). Figure 3B shows an

example of a focal-localized seizure, starting in left-field CA3. Note

that in the latter case, the epileptiform activity remains confined in

the vicinity of the EZ. This preliminary finding provides a first hint

that an epileptic seizure occurring in CA1 or CA3may have a rather

different propagation in the other brain areas.

Next, we performed similar simulations by initiating seizures

at all available brain areas of the Allen atlas. Our motivation,

at this stage, was mainly computational, i.e., to identify other

brain areas where the onset of a seizure will result to either

a widespread or a localized one. Moreover, and for statistical

significance, we repeated the simulation for 20 additional different

(but similar) SC matrices that we generated as explained in the

Materials and Methods section. These SC matrices can be found

in the Supplementary Figures S1, S2. Note that, as the original

connectome has symmetrical connections between left and right

hemispheres, the simulations were only performed for EZ within

the left hemisphere and were duplicated for the right hemisphere

EZ. Regarding the randomly modified SC connectomes, we ran

simulations considering EZ regions in both hemispheres separately

as the matrix symmetry between the two hemispheres is lost.

Figure 4 shows the percentage of seizure-recruited brain areas

for each EZ brain area in the original mice brain connectome,

labelled as Allen SC in the first row of each panel, and in the 20

SC randomly generated, labelled by their cardinal number (20 rows

above the original Allen SC row separated by the while horizontal

line). The resulting epileptic seizures allow a clear binary distinction

between widespread and local seizures. Namely, our model and

the available SC mice connectomes resulted in generating either

localized seizures (no widespread propagation at all or limited up

to only two regions) or widespread seizures (reaching almost all

brain areas). Figures 4A, B summarize the simulations for left and

right brain hemispheres respectively. Mild modification in the SC

matrices can lead to different types of seizure propagation that are

initiated at different EZ areas. Some nodes generate exclusively

localized seizures (e.g., areas 1 or 45 in dark blue of the right

hemisphere) whereas others generate widespread ones (e.g., areas

7 or 13 in dark red of the right hemisphere). However, there are

also EZ regions where the type of the seizure depends on the

particular SC matrix (e.g., area 75 in the left hemisphere). The

hippocampus area is considered to be among the most common

source of epileptic seizures. The yellow frame indicates the three

nodes comprising the left hippocampus, namely left-field CA1

(l CA1, node 73), left-field CA3 (l CA3, node 74) and left Dentate

Gyrus (l DG, node 75). For all randomized connectomes, left-field

CA1 produces widespread seizures, while left-field CA3 produces

localized seizures with no propagation. left Dentate Gyrus can

either produce local or widespread seizures, depending on the SC

matrix.

Next, we sought to explore plausible associations between

a chosen EZ region’s influence in the network (quantified by

a graph connectivity measurement) and the resulted type of

seizure (localized vs widespread). Figure 5 shows different types

of seizure propagation using different SC matrices (initiated at

different EZ regions of the Allen atlas). Each panel depicts different

combinations of their respective graph connectivity measurements,

namely their normalized eigenvector centrality, out-degree, average

shortest path length, and the strongest outgoing connection

weights. Each point in these plots displays the connectivity

properties of a single EZ, and the percentage of brain areas affected

during the seizure propagation initiated at this particular EZ.

By means of these graph connectivity measurements, we were

able to identify three distinct regions delineated by the following

thresholds: all EZ whose strongest outgoing connection has a

weight value larger than wupper = 0.31 produced widespread

seizures, while all EZ whose strongest outgoing connection has a

weight value lower than wlower = 0.22 only produced localized

seizures. EZ nodes with values in-between these two values

resulted to either localized or widespread seizures (see Figures 5A–

D).

The eigenvector centrality, out-degree and average shortest

path length might also be relevant properties to infer on the

node’s (in-)ability to produce a widespread seizure. Clusters of

nodes with relatively low average shortest path length value and

high eigenvector centrality value (Li < 0.97, xi > 0.30) can

systematically produce widespread seizures. On the other hand EZ

areas with relatively high average shortest path length value and low

eigenvector centrality value result to localized seizures (see cluster

near the area with Li > 0.98, xi < 0.20 in Figure 5D).

3.2 Prevention of widespread seizure in
Temporal Lobe Epilepsy

3.2.1 Connectivity of the hippocampal
subnetwork

The hippocampus is a well-known EZ in Temporal Lobe

Epilepsy (Toyoda et al., 2013; Buckmaster et al., 2022). In this

study, we investigate seizure propagation and confinement when

seizure initiation occurs in the different areas of the hippocampus.

In the Allen mice brain atlas, the hippocampal subnetwork is

composed of three nodes, namely the CA1, CA3 and Dentate

Gyrus areas (see Figure 2 and the discussion earlier of Figure 4).

In Figure 6A, we show the hippocampal subgraph. The color of

each connection indicates its weight. The hippocampal subnetwork

exhibits strong connections within left (resp. right) hippocampus

itself, and between left and right hippocampus. The weights of

the strong outgoing connection of the left-field CA1 (wl CA1 =

0.36), left-field CA3 (wl CA3 = 0.18) and left Dentate Gyrus

(wl DG = 0.25) strongest outgoing connection are such that

wl CA1 > wupper > wl DG > wlower > wl CA3. More precisely,

the left-field CA1 lies within the connectivity area of widespread

seizure production as presented in Figure 5. Left DG also lies within
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FIGURE 3

Simulating widespread and localized epileptic seizures on the mouse brain. (A) A widespread (generalized) seizure that starts in left-field CA1. (B) A

local seizure that starts in left-field CA3. The colorbar indicates the time-distance from seizure initiation in each respective brain area during its

propagation.

the region of potential widespread seizure production, while left-

field CA3 is in the region of local seizure production. Note that

moreover, CA3 has no strong outgoing connection (with weight

higher than 0.1) outside the hippocampus, contrary to left-field

CA1 and left Dentate Gyrus. In particular, both left-field CA1 and

left Dentate Gyrus present edges leading to left Entorhinal Cortex,

lateral part (l ENTl) and left Subiculum (l SUB).

3.2.2 Structural connectome interventions
In order to control wide spread brain seizure propagation, we

experimented with two different interventions on the structural

connectome to computationally simulate the effects of two clinical

approaches for epilepsy. First, we applied graph edge removal

from relevant EZ nodes to (loosely) simulate a resection-like

surgery intervention. Our ultimate goal here is to suppress the

communication pathways between certain brain areas which are

involved in a widespread seizure by blocking the minimum amount

of edges potentially relevant to the propagation. When we remove a

given connection from node i to node j, we set its new weight value

in the adjacency matrix to zero and we re-normalize all weights’

values to one (Melozzi et al., 2017; Jehi, 2018; Rubio et al., 2019;

Alexandratou et al., 2021). We use the notation i9 j.

In addition, we also focused on an EZ node and we perform a

global outgoing weight reduction (by some percentage of the initial

weight). This (rather simple) approach aims at loosely modeling

a suppression of the hyperexcitability of the diseased brain area

using for example neuromodulation techniques (Heck et al., 2014;

Toffa et al., 2020; Tsuboyama et al., 2020) or the local effect a drug

administered in the vicinity of the EZ area (Kanner and Bicchi,

2022). To this end, we decreased the weight values of all outgoing

connections from the EZ. Hence, the new weights c′ji = (1 − p)cji,

where p denotes the percentage of reduction applied. After each of

such weight modification, the structural connectivity is re-scaled

to preserve its initial total connective strength. We restricted our

analysis to the sole EZs left-field CA1 and left Dentate Gyrus

regions as the left-field CA3 does not produces widespread seizures

(see Figure 4B). Drugs and stimulation techniques are currently

used (see the discussion in the Introduction section) to suppress

neural hyperexcitability (locally or globally). Such interventions

can alter the (short-term) synaptic and (long-term) structural

connectivity and hence the weights in a given SC matrix which in

turn affects functional activity, i.e., the FC matrix. Recently, a new

hybrid connectome has been introduced (Ajilore et al., 2013), the

so-called “resting-state informed structural connectome” (rsSC).

These connectomes encode the standard SC (weight) matrices and

the BOLD signal, i.e., the SC is “informed” by its respective FC. This

approach implements an optimization algorithm whose maximum

pseudolikelihood is constrained (via a penalty function) by the

weight values of the SC matrix. The resulting rsSC incorporates

co-activation (excitatory) or silencing (inhibitory) effects that

ultimately allow to infer the excitation-inhibition between brain

areas, see Fortel et al. (2019, 2020, 2022, 2023), and Manos et al.

(2023). Hence, a modification in (outgoing) weights in the SC is

expected to affect the resting-state FC and therefore the rsSC, i.e.,

the excitability between certain brain regions (more details can be

found in the Discussion section).

3.2.3 Seizure widespread prevention by edge
removal

We use the latter analysis to computationally test the effect of

different edge resection options in the original mice brain network

on seizure propagation.
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FIGURE 4

Localized and widespread epileptic seizure for di�erent structural connectomes. We simulated epileptic seizures for the original mice brain

connectome (Allen SC, first row of each panel) and for di�erent randomly generated SC matrices (separated by the white horizontal line). (A) Right

hemisphere and (B) left hemisphere. Certain nodes generate exclusively localized or widespread while for some EZ areas the type of the seizure

depends on the SC matrix. The yellow frame in (B) highlights the three nodes comprising the left hippocampal network. Note that our simulations

generated either localized seizures (no widespread propagation at all or limited up to only two regions) or widespread seizures (reaching almost all

brain areas).

3.2.3.1 Left-field CA1 edges removal

Figure 6 shows the impact of several connections’ removal on

the propagation (widespread vs localized) of focal seizures starting

in left-field CA1 area. Each upper left panel depicts the modified

brain network and the hippocampal subnetwork, with crosses

(when present) indicating the removed connections between two

or more nodes. Note that for better visualization, we only show

connections of weight higher than 0.1. The color of the connections

indicates their respective weight values (see also the SC matrix

in Figure 2). Each lower left panel in Figure 6A, illustrates the

hippocampus subnetwork and more particularly the left extra-

hippocampal connections and their weights values are given in the

left colorbar. Each right panel shows the time distance from seizure

initiation in each node of the brain network on the Allenmice brain

template. The seizure onset takes place at the dark red region while

the end of its propagation at the regions in dark blue.

Figure 6A shows the reference focal seizure initiated in the

left hippocampal region and its propagation in the original Allen

mice brain connectome. After initiating in left-field CA1, the

seizure reaches left-field CA3, then right-field CA3, and propagates

rapidly (almost simultaneously) in both hemispheres. The seizure

spreads in the left and right hemispheres due to the strong

inter-hemispheric hippocampal connections. In Figure 6B, we

remove the strongest connection leading from the EZ to the right

hemisphere, that is l CA1 9 r CA3. Hence, we prevent direct

seizure propagation from left to right hippocampus. However,

even by doing so, the seizure still spreads eventually into the

entire brain network via the left hemisphere following a different

evolutionary path and brain areas recruitment sequence. Next,

we proceed by following an alternative approach, i.e. we remove

a strong connection leading from the EZ to another area of

the left hippocampus, namely left Dentate Gyrus. This approach

results to a seizure which resembles the activity observed in

Figure 6A, namely it reaches both hemispheres. However the

propagation turns out to be relatively delayed, longer localized

within the left hemisphere before spreading to the right one. In

Figure 6D, we present a resection strategy (Case I) where we block

both inter-hemispheric and intra-hemispheric communication

pathways, namely l CA1 9 r CA3 and l CA1 9 l DG. This

approach results to a localized seizure in the vicinity of the EZ

area. In Figure 6E, we remove the left intra-hippocampal pathway

l CA1 9 l DG and search for removal options within the right
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FIGURE 5

Widespread vs localized epileptic seizures and EZ graph network connectivity measurements. We calculated the normalized average shortest path

length, eigenvector centrality and out-degree for each node of the original Allen SC and the 20 additional randomized connectomes (98 nodes per

SC matrix). The colormap indicates the fraction of brain areas recruited in the seizure when it is initiated at the respective EZ region (i.e., the points

depicted in the plots). Each panel depicts di�erent combinations of their respective graph connectivity measurements, namely the normalized

average shortest path length vs the strongest outgoing connection weights (A) the eigenvector centrality vs the strongest outgoing connection

weight (B), the out-degree vs he strongest outgoing connection weight (C) and the normalized eigenvector centrality vs the average shortest path

length (D). The upper (resp. lower) horizontal dashed line shows the aforementioned thresholds wupper (resp. wlower) of the larger outgoing edge

weight (see text for more details).

hippocampus instead of removing inter-hemispheric edges. We

find one candidate connection that prevents widespread seizure

propagation when being removed, namely the r CA3 9 r CA1

(Case II). In Figure 6F, we show that the resection of the strongest

connection l CA1 9 l CA3 (Case III) is sufficient to prevent the

seizure from spreading to any other area. Note that this is the single

EZ outgoing connection with weight higher than the threshold

wupper identified in Figure 5.

3.2.3.2 Left Dentate Gyrus edges removal

Next, we conduct a similar analysis with epileptogenic left

Dentate Gyrus and show the results in Figure 7. After initiating a

seizure in left Dentate Gyrus, it spreads to the left hemisphere via

left-field CA3 then left-field CA1, and to the right hemisphere via

right-field CA3 (see Figure 7A).

In Figure 7B, we show that the removal of a strong

pathway between the EZ and the right hemisphere hippocampus

l DG 9 r DG has a weak impact on the seizure widespread

propagation. In Figure 7C, we show that the removal of a

strong connection leading from the EZ to other within the left-

hippocampal areas l DG 9 l CA1 results in a delayed widespread

seizure propagation indicated by the blue color on the template.

Then, we present three examples that yield to seizure localization.

Namely, in Figure 7D we removed strong connections between the

EZ and another left-hippocampus area, and between left and right

hippocampus. l DG 9 l CA1 and l DG 9 r DG (Case I’). In

Figure 7E we removed strong connections leading from the EZ to

other parts of the left hippocampus and from right-field CA3 to

other parts of the right hippocampus l DG 9 l CA1 and either

r CA3 9 r DG or r CA3 9 r CA1 (Case II’). And finally in
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FIGURE 6

Widespread seizure prevention by edge removal in the left-field CA1. The upper left panels show the whole brain network. The lower left panels

illustrate the hippocampal subnetwork, including left extra-hippocampal connections in panel (A). Crosses indicate the removed connections, and

the edges’ color shows their respective weight. The weights values are given in the left colorbar. The right panels show the time distance between

seizure initiation in the EZ (left-field CA1) and its onset in each brain area. (A) shows an example of a widespread focal seizure propagation in the

original Allen connectome, then after removing the inter-hemisphere strong connection (B) l CA1 9 r CA3, a strong connection within the left

hippocampus (C) l CA1 9 l DG, the inter-hemisphere strong connection and within the left hippocampus (D) l CA1 9 r CA3 and l CA1 9 l DG,

allowing inter-hemisphere communication but blocking a strong within the left and right hippocampus (E) l CA1 9 l DG and r CA3 9 r CA1 and

blocking the strongest connection and within the left hippocampus (F) l CA1 9 l CA3.
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FIGURE 7

Widespread seizure prevention by edge removal in the left DG. The upper left panels show the whole brain network. The lower left panels illustrate

the hippocampal subnetwork, including left extra-hippocampal connections in panel (A). Crosses indicate the removed connections, and the edges’

color shows their respective weight. The weights values are given in the left colorbar. The right panels show the time distance between seizure

initiation in the EZ (left-field CA1) and its onset in each brain area. (A) shows an seizure propagation in the original Allen connectome. Following a

similar approach in removing graph edges (inter-hemisphere and/or within the left/right hippocampus) we gradually proceed by removing (B)

l DG 9 r DG, (C) l DG 9 l CA1, (D) l DG 9 r DG and l DG 9 l CA1, (E) l DG 9 l CA1 and r CA3 9 l DG and (F) l DG 9 l CA3.

Figure 7F we removed the strongest connection l DG 9 l CA3

(Case III’). We have also experimented with other similar effective

strategies for focal epilepsy localization that can be found in the

Supplementary Figure S3.

In Figures 6, 7, we illustrated the result of the aforementioned

edge removal approaches using the original Allen mouse brain

connectome. In order to further validate our findings, we also

ran simulations with the additional SC matrices generated by
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FIGURE 8

Percentage of recruited areas after edge removal for di�erent mice connectomes. (A) Simulations of a focal epileptic seizure initiated in the left-field

CA1 area for the original SC Allen weight matrix (first row) and 20 additional SC ones (see text for more details). The first column (dark red) shows the

robustness of the finding presented in Figure 6A, i.e. that the left-field CA1 area generates systematically widespread seizures. Removal edge Case I

and III approaches both systematically yield seizure localization (dark blue) while in Case II two connectomes (red color) yield to widespread seizure

propagation and the rest to localized (blue color). (B) Simulations of a focal epileptic seizure initiated in the left DG area for the original SC Allen

weight matrix and 20 additional SC ones and the edge removal Case I’, II’ and III’ approaches (see Figure 7).

the original Allen SC matrix as describe on the Materials and

Methods section. By doing this, we aimed to improve the statistical

significance of our results. Figure 8 shows the percentage of

recruited areas when applying the latter resection options to the

different connectomes, where the left-field CA1 (Figure 8A) and

left DG (Figure 8B) is the EZ respectively. In both cases, the single

resection of EZ 9 l CA3 (Case III and III’) is sufficient to achieve

seizure confinement in the EZ in all connectomes.

Starting with the left-field CA1 as an EZ, in Figure 8A, we

show that removal edge Case I (second column, l CA1 9 r CA3

and l CA1 9 l DG, see Figure 6D) and Case III (forth column,

l CA1 9 r CA3 and l CA1 9 l DG, see Figure 6F) approaches

systematically prevent seizure widespread propagation for all SC

matrices. Removal edge Case II (third column, l CA1 9 l DG and

r CA3 9 r CA1, see Figure 6E) effectively prevents widespread

seizure propagation for 18 out of the 20 SC matrices. In Figure 8B,

we present a similar analysis when the EZ is now the left Dentate

Gyrus area and when implementing the edge removal Case I’

(Figure 6D), Case II’ (Figure 6E) and Case III’ (Figure 6F). The

first two resulted in widespread seizure propagation for 18 out of

the 20 SC matrices while the latter one to localized seizure for all

connectomes.

3.2.4 Seizure widespread prevention by outgoing
edge weight reduction

We introduce an alternative procedure to prevent widespread

seizure propagation. Instead of removing network connections,

we mimic the reduction of EZ hyperexitability with a global

decrease of its outgoing weight, the extreme case of which would

be the suppression of any EZ output. In terms of connectivity

measurements, outgoing weight reduction has a direct impact

on the EZ’s out-degree and the weight of its strongest outgoing

edge, and by extension on its eigenvector centrality. To identify

a minimal level of reduction one should apply to prevent seizure

propagation, we perform simulations of an epileptic seizure starting

in left-field CA1, then in left Dentate Gyrus, before any reduction

and after the reduction of 10%, 20%, 30%, 40% and 50% of the EZ’s

outgoing edges weights.

Figure 9 shows the percentage of recruited areas when applying

the latter reductions on the different randomized connectomes. For

a seizure starting in left-field CA1, the control gets efficient in most

of the cases when reducing the EZ’s outgoing weights of 30%. We

achieve seizure confinement in all connectomes by reducing the

EZ’s outgoing weights of at least 40%. For a seizure starting in left

Dentate Gyrus, confinement is achieved in all connectomes with a

reduction of 10%.

Finally, we show the effect of the latter resection and outgoing

weight reduction strategies on the EZ’s connectivity. Figure 10

shows the eigenvector centrality and larger outgoing weight value

of Figure 10A) left-field CA1 and Figure 10B) left Dentate Gyrus

in the Allen connectome, before and after performing structural

modifications. The horizontal dashed lines indicate the upper and

lower threshold values for the larger outgoing weight ωupper and

ωlower defining regions of widespread and local seizure production

(see Figure 5). The color of the nodes indicate the percentage of

seizure-recruited areas in each scenario. Along the long diagonal

arrow, we show from top to bottom the effect of the EZ outgoing
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FIGURE 9

Percentage of recruited areas for di�erent levels of outgoing weight reduction. Simulations of a focal epileptic seizure initiated in (A) the left-field

CA1 area for the original SC Allen weight matrix (first row) and 20 additional SC ones (see text for more details). Outgoing weight reduction of at least

40% systematically yields seizure localization (dark blue). (B) Simulations of a focal epileptic seizure initiated in the left DG area for the original SC

Allen weight matrix and 20 additional SC ones. Outgoing weight reduction of at least 20% systematically yields seizure localization.

FIGURE 10

EZ connectivity and percentage of seizure-recruited areas after outgoing weight reduction and edge resection. Each point shows the eigenvector

centrality and the largest outgoing weight value in the Allen connectivity of (A) left-field CA1 and (B) left Dentate Gyrus, before and after applying

outgoing weight reduction and edge removal strategies Case I, II and III (resp. Case I’, II’ and III’) as labelled in Figures 6, 7. The points aligned on the

diagonal arrow represent, from top to bottom, an outgoing weight reduction of 0% (Original SC), 10%, 20%, 30%, 40% and 50%. The color of each

point shows the percentage of recruited brain areas when the seizure starts in the corresponding node. The two dashed lines show the upper (resp.

lower) threshold of the largest outgoing weight from separating the widespread from localized seizures.

weight reduction of: 0% (Original SC), 10%, 20%, 30%, 40% and

50%.

In Figure 10A, we present the effects of edge removal

approaches Case I (l CA1 9 r CA3 and l CA1 9 l DG),

Case II (l CA1 9 l DG and r CA3 9 r CA1) and Case III

(l CA19 l CA3) for the left-field CA1 area and only for the original

Allen SC Matrix. When applying outgoing weight reduction, the

progressive decrease of the EZ’s outgoing connective strength leads

its connectivity towards lower eigenvector centrality values, and

especially lower strongest outgoing weight values. The approach

Case III also results in reducing the EZ’s strongest outgoing weight

to value below ωlower threshold. Note that EZ nodes with outgoing

weight values lower than ωlower yield to seizure localization. The

edge removal approaches Case I and II also mildly reduce the EZ’s

eigenvector centrality, and lead to seizure localization without any

modification of its strongest outgoing connection. In Figure 10B,

we present the effects of the edge removal approaches Case I’

(l DG 9 r DG and l DG 9 l CA1), Case II’ (l DG 9 l CA1 and

r CA3 9 r DG) and Case III’ (l DG 9 l CA3) for the left Dentate

Gyrus and same connectome. The overall trend is again similar,

namely focal seizures remain localized as the outgoing weight value

of the node decreases after our intervention and crosses the lower
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threshold (lower dashed line). Note that Case III’ has a strong

impact in reducing the strongest outgoing connection weight in left

Dentate Gyrus while resections Cases I’ and II’ cause an eigenvector

centrality value reduction. A similar Figure with all SCmatrices and

analysis can be found in the Supplementary Figure S4.

3.2.5 Brain functionality after edge resection and
reduction

Modifying the brain network structure induces changes in

functional connectivity, leading to either enhanced or reduced

functional couplings between different brain areas. The objective is

to minimize connectome interventions to avoid drastic alterations

in brain functionality. For each approach involving the removal of

edges and weight reduction, we computed the modified simulated

Functional Connectivity (FC) matrix using the Epileptor model.

This matrix was then compared to the FC matrix generated by the

original Allen Structural Connectivity (SC) matrix for the healthy

mouse. The corresponding figures illustrating these comparisons

can be found in the Supplementary Figure S5, where we present

SC and FC matrices of the brain network in various states: before

modifications, after Case III edge resection, following a 40%

reduction in outgoing weights from the l CA1 region, and post-

resection of the left and right hippocampal areas l CA1, l DG, r CA1,

r DG. Our approaches aim to minimize structural modifications

compared to standard (also clinical) procedures in the literature,

which involve the removal of the entire left and right hippocampus.

4 Discussion

In this study we employed the Epileptor model to simulate

widespread and localized epileptic seizures (Figures 1, 3) and

investigate the relationship between the location of an EZ, its

connectivity graph significance in the network (Figures 4, 5), and

the widespread propagation of such seizures in a mouse brain

structural connectome (Figure 2). When initiating focal seizures

within the three hippocampal sub-regions (from the Allen atlas)

we observed that the left-field CA1 area systematically generates

widespread seizures, the left-field CA3 systematically generates

localized seizures, and left Dentate Gyrus can generate both

widespread and localized seizures, depending on the SC weight

matrix (Figures 4).

Our next objective was to identify plausible and effective

strategies that are able to prevent widespread seizures. To achieve

that, our first approach (Figures 6, 8) was to selectively remove

a minimal amount of EZ node edges (targeted disruption of

specific network connections). Instead of adopting the approach

of computationally “resecting’ the entire EZ tissue from both

brain hemispheres and as performed in surgical settings (see

e.g., Jirsa et al., 2016; Melozzi et al., 2017; An et al., 2019;

Olmi et al., 2019; Nissen et al., 2021), here we aimed to

systematically identify and eliminate (or block) the minimal set

of connections necessary to prevent generalised seizures. In our

second approach (Figures 7, 9), we attempted to computationally

(and somewhat loosely) model the impact of a drug (Kanner

and Bicchi, 2022) or a neuromodulation approach (suppression

of network hyperexcitability) in the vicinity of an EZ region

(see e.g., Tsuboyama et al., 2020). Therefore, we adjusted the

outgoing weight connections of an EZ node in our structural

connectome to emulate the inhibitory effect of such a drug or

external stimulation in the proximity of the targeted area around

the EZ. In both approaches, our ultimate goal is to minimize

the surgical or medical intervention while preserving as much

as possible the pre-surgical original structural connectivity and

brain functionality. Our findings indicate that strong inter and

intra-hippocampal nodes’ communication is important for the

widespread seizure propagation. The successful (or not) outcome in

preventing widespread seizure propagation can be computationally

associated with a threshold value crossing of the larger weight

outgoing of the EZ (left-field CA1 or left Dentate Gyrus) area

caused by our interventions (in silico) as shown in Figure 10 (see

also Supplementary Figure S4 in the Supplementary material where

we show the results from SC matrices used for each approach).

The research into the structural organization of the brain has

enhanced our understanding of the processing and integration

of information through specialized neural circuits distributed

across the brain. The application of current network theory to

brain connectomes has played a crucial role in this advancement,

revealing a set of universal organizational principles that govern

brain connectivity. These principles seem to be consistent across

different species and scales (see e.g., van den Heuvel and Sporns,

2019). In Coletta et al. (2020), the authors used high-resolution

mapping of the mouse axonal connectome to uncover novel

foundational wiring principles in the mammalian brain, providing

a detailed understanding of how neural information is processed

and transmitted across different spatial scales. They employed a

voxel-level description which revealed organizational principles

such as the directional separation of hub regions into neural sink

and sources. In a next step, these findings could be taken into

account for the graph analysis.

Computational studies have emerged as a powerful approach to

advancing our understanding of seizure suppression mechanisms

(Taylor et al., 2014), offering insights that bridge the gap between

theoretical modeling and clinical intervention. A multitude of

recent scientific articles have contributed to this burgeoning

field. For instance, researchers have explored the potential of

robust control strategies for deep brain stimulation in childhood

absence epilepsy, as demonstrated in the work by Rouhani et al.

(2023). Utilizing real-world data, Brogin et al. (2023) presented

a computational framework for the identification and control of

epileptic seizures, showcasing the applicability of computational

methodologies to real-life scenarios. Furthermore, the prediction

of seizure suppression effects through computational modeling has

been exemplified by Ahn et al. (2017), underlining the potential of

simulation-based approaches in assessing treatment outcomes. Our

work is a step forward into the understanding on how to optimize

the impact of such stimulation.

Intricate dynamics of seizure termination and postictal

EEG suppression have been uncovered through computational

investigations, as highlighted by Bauer et al. (2017), shedding

light on the mechanisms governing convulsive seizures. The

design of patient-specific neurostimulation patterns for seizure

suppression has also been a subject of study, as evidenced by
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Sandler et al. (2018), offering tailored solutions to individual

patients. Additionally, the interplay between neural activity and ion

concentration changes in localized seizures has been elucidated by

Gentiletti et al. (2022), stressing the critical role of computational

methods in deciphering complex neurophysiological processes.

Nowadays there are already several devices (approved by the U.S.

Food and Drug Administration) aiming to reduce the frequency

of seizures, namely Vagus Nerve Stimulation (VNS), Responsive

Neurostimulation (RNS), and Deep Brain Stimulation (DBS) (see

Skrehot et al., 2023 and references therein for a recent review). Here

again the weight decrease may give a hint on the location of the

stimulation efficiency.

The clinical significance of epileptic seizure propagation lies

primarily in the fact that the epileptic manifestations cannot be

solely attributed to the activity within the seizure focus itself; rather,

they result from the spread of epileptic activity to other brain

structures. Propagation, particularly when leading to secondary

generalizations, poses a significant risk to patients, including

recurrent falls, traumatic injuries, and unfavorable neurological

outcomes. Anti-seizure medications (ASMs) exert diverse effects

on propagation with varying potencies. Notably, for individuals

resistant to drugs, targeting seizure propagation may enhance

quality of life even without a substantial reduction in simple focal

events (see e.g., (Brodie et al., 2016; Khateb et al., 2021).

Network hyperexcitability is a potential contributor to

cognitive dysfunction in individuals also with Alzheimer’s disease

(AD). In AD patients, hyperexcitability and epileptiform activity

are frequently observed and have been linked to impaired cognitive

function. Studies conducted on transgenic mouse models of AD

in preclinical settings have shown that suppressing epileptiform

activity with anti-seizure drugs is associated with improved

behavior and a reduction in histopathological indicators of

chronic network hyperexcitability in the hippocampus. Drugs

such as Levetiracetam (LEV) are commonly used as anti-

seizure medication and have been reported to effectively suppress

epileptiform spikes and enhance synaptic and cognitive function

in mouse models of AD. Moreover, LEV is currently undergoing

human trials (in both adults and children) for the treatment of

seizures and long-term epilepsy, as indicated by research studies

such as Vossel et al. (2021) and Onos et al. (2022).

The intricate interplay between excitation and inhibition is

fundamental to the proper functioning of neural circuits within

the brain. The excitation-inhibition balance, characterized by

the equilibrium between excitatory and inhibitory inputs onto

neurons, plays a crucial role in shaping the structural connectivity

between different brain areas (Bergoin et al., 2023). Changes in this

balance have been linked to alterations in the strength of synaptic

connections affecting the synaptic and structural plasticity, thereby

influencing the overall network architecture and information

processing capabilities of the brain. For instance, studies have

demonstrated that an excessive excitation-inhibition ratio can lead

to aberrant plasticity and altered synaptic weights, potentially

contributing to conditions such as epilepsy (see e.g., Huberfeld

et al., 2007). Conversely, a decrease in excitation-inhibition

balance has been associated with disrupted neural synchrony and

impaired cognitive functions, highlighting the delicate nature of

this equilibrium (Roopun, 2008; Yizhar et al., 2011).

Recent research has focused extensively on understanding

brain activity at a large scale using resting-state functional

MRI (rs-fMRI). The conventional approach typically considers

SC and FC separately. However, this oversimplification ignores

the dynamic engagement of white matter tracts during specific

tasks. A more refined concept, termed “resting-state informed

structural connectivity” (rsSC), has been introduced to incorporate

information from rs-fMRI and infer the dynamic white matter

engagement specific to the brain’s state. The resulting rsSC, or

resting-state informed structural connectome, reveals the structural

network underlying observed rs-fMRI correlations. This approach

detects alterations in rsSC community structure in diseased subjects

compared to controls. Notably, the original setup does not infer

the “directionality” of white matter tracts as either “excitatory" or

“inhibitory.” The incorporation of the co-activation (excitatory)

or silencing (inhibitory) effects into a hybrid rsSC framework

that can allow to infer the brain”s E-I balance can be found in

Ajilore et al. (2013) and Fortel et al. (2019, 2020, 2022, 2023)

(see also Manos et al., 2023 for a recent study demonstrating

the advantages of using rsSC in modeling time series in whole

brain dynamics).

The insights accumulated from computational studies

pave the way for more targeted and effective approaches

to managing epilepsy. From investigating the impact of

spiking timing stimulation on frequency-specific oscillations

(Quinarez et al., 2023) to exploring the potential of linear

delayed feedback control in thalamocortical models (Zhou et al.,

2020), these studies collectively contribute to an expanding

body of knowledge that spans from the cellular level (Lu

et al., 2017) to network dynamics (Depannemaecker et al.,

2021). Moreover, the translation of computational findings into

clinical practice has been deliberated upon by Brinkmann et al.

(2021), emphasizing the promising trajectory of computational

seizure forecasting. As the field continues to grow, collaboration

between computational neuroscientists and medical practitioners

holds the potential to revolutionize our ability to suppress

seizures and improve the quality of life for individuals living

with epilepsy.

Moreover, similar simulations are already being used

in computational studies as a tool during pre-surgical

stages in the identification of epileptic zones for patients

who undergo surgery, In Makhalova et al. (2022) and Jirsa

et al. (2023), the authors employed a computational brain

modeling method, the so-called Virtual Epileptic Patient

(VEP), informed by stereoelectroencephalography (SEEG),

and anatomical personalized data to simulate seizures in drug-

resistant epilepsy patients. The retrospective analysis of 53

patients revealed that VEP demonstrated higher precision

in detecting the EZ compared to clinical analysis and

the overall prediction of seizure-free outcomes. However,

these procedures are still in the early stages of clinical

studies, have certain limitations and therefore require further

follow-up investigation.

Our study has of course some limitations: First, our analysis

was based on the Epileptor model and the Allen mouse atlas

with a fixed granularity. To partially mitigate this we incorporated

the generation of additional SC matrices to account for some
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variability and to enhance the statistical significance of our

results. Moreover, we did not consider delays in our simulations

and we kept all the model parameters and the external noise

term fixed throughout our study. However, before choosing

the epileptogenicity parameter value x0 for the EZ regions, we

carried out several simulations with other values relatively close

to the chosen value and we found rather similar global seizure

(widespread or localized) propagation effects to those reported in

our manuscript. Nonetheless, in general, time delays can play a

crucial role in the overall dynamics of the brain and its synchronous

activity, as reported in the literature. For example, in Petkoski and

Jirsa (2019), the authors demonstrated that spatial heterogeneity of

time delays is a crucial mechanism shaping the functional brain

architecture. A similar analysis can be extended for a human

connectome in the future. That is to investigate whether similar

seizure onset conditions lead to similar types of seizure evolution

and whether the intervention approaches we tested here are also

effective to a human connectome (network). In this work we aimed

to investigate how certain network graph properties (e.g. degree,

eigenvector centrality and average shortest path length) were

associated with a fixed brain structural connectome and different

types of seizure propagation (focal versus generalized). We focused

on computationally controlling the widespread propagation of

seizures to improve the management of severe generalized epileptic

seizures which affect both hemispheres and cause symptoms on

both sides of the body. However, focal seizures are also important

as they may cause motor, sensory and cognitive problems for

the patient (see e.g. the recent review articles by Novak et al.

(2022) and Ghulaxe et al. (2023) and their study still requires

further investigation.

Let us also stress that in this study we employed the

phenomenological Epileptor model with a sole purpose to generate

local seizure signals rather than to investigate detailed plausible

physiological mechanisms related to seizure onset. We used these

epileptic signals to computationally study their propagation in the

other brain areas. There is currently an ongoing research activity in

the improvement of such dynamical models. For example, recently

in Depannemaecker et al. (2022) the authors introduced a new

model for epileptic seizures whose parameters can be associated

with detailed cellular electrophysiological dynamics. The type of

seizure propagation (local versus generalized) is mainly defined

by the tractography, e.g. the weight connections between nodes

and tract lengths associated with the delays in communication

between nodes. Mild changes in the graph of the structural

connectome can explain the differences in seizure type propagation

(using the exact same model and parameters) or they can alter

the overall dynamical activity and synchronization properties

(see e.g., Courson et al., 2023). It is important to highlight

that, at this point, our objective did not include comparing

our simulated time series (or FC matrices) with experimental

neuroimaging mouse signals. A relevant study addressing this

aspect can be found in Courtiol et al. (2020), where the authors

employed the Epileptor model and appropriate parameters (such

as global coupling and the bifurcation parameter) to characterize

the resting state activity in both healthy and epileptic human

subjects. Our work is largely computationally driven and, at this

stage at least, may not immediately provide a direct therapeutic

protocol for clinical implementations. However, we believe that

it can shed some light on the subject and with follow-up

studies help in gaining a better understanding of the underlying

mechanisms leading to the onset of different types of seizures and

their prevention.
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