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Introduction: The blood oxygen level-dependent (BOLD) signal derived from

functional neuroimaging is commonly used in brain network analysis and

dementia diagnosis. Missing the BOLD signal may lead to bad performance and

misinterpretation of findings when analyzing neurological disease. Few studies

have focused on the restoration of brain functional time-series data.

Methods: In this paper, a novel U-shaped convolutional transformer GAN

(UCT-GAN) model is proposed to restore the missing brain functional time-

series data. The proposed model leverages the power of generative adversarial

networks (GANs) while incorporating a U-shaped architecture to e�ectively

capture hierarchical features in the restoration process. Besides, the multi-

level temporal-correlated attention and the convolutional sampling in the

transformer-based generator are devised to capture the global and local

temporal features for the missing time series and associate their long-range

relationship with the other brain regions. Furthermore, by introducing multi-

resolution consistency loss, the proposed model can promote the learning of

diverse temporal patterns and maintain consistency across di�erent temporal

resolutions, thus e�ectively restoring complex brain functional dynamics.

Results: We theoretically tested our model on the public Alzheimer’s Disease

Neuroimaging Initiative (ADNI) dataset, and our experiments demonstrate

that the proposed model outperforms existing methods in terms of both

quantitative metrics and qualitative assessments. The model’s ability to preserve

the underlying topological structure of the brain functional networks during

restoration is a particularly notable achievement.

Conclusion: Overall, the proposed model o�ers a promising solution for

restoring brain functional time-series and contributes to the advancement of

neuroscience research by providing enhanced tools for disease analysis and

interpretation.

KEYWORDS

hierarchical topological transformer, multi-level temporal-correlated attention,

central connectivity perception, time-series restoration, multi-head attention, brain

neurological disease
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1 Introduction

The blood oxygen level-dependent (BOLD) signal derived from

functional neuroimaging is commonly used in brain disorder

analysis. As a common brain disorder, Alzheimer’s disease (AD)

is a progressive neurodegenerative condition characterized by

cognitive decline, memory impairment, and changes in behavior

(Knopman et al., 2021). The exact cause of AD is not fully

understood, but it involves the accumulation of abnormal proteins

in the brain, particularly beta-amyloid plaques and tau tangles. To

treat brain disorders (e.g., AD, Parkinson’s disease), deep brain

stimulation (DBS) is a possible way to solve the problem of

movement disorders (Limousin and Foltynie, 2019; Ríos et al.,

2022). It is a neurosurgical procedure that involves the implantation

of electrodes into specific regions of the brain to modulate

its electrical activity (Leoutsakos et al., 2018). DBS has been

investigated as a potential treatment for AD because it offers a

way to modulate brain activity in specific areas that are associated

with memory and cognition. The electrodes play a critical role

in the DBS procedure. These thin, insulated wires are surgically

implanted into the brain region of interest. Once in place, they are

connected to an implanted pulse generator, which delivers electrical

impulses to the brain. These electrical pulses can help regulate

the abnormal brain activity associated with certain neurological

disorders, potentially improving symptoms (Medtronic, 2020;

Alajangi et al., 2022). When it comes to AD, researchers can explore

the use of DBS to target brain regions such as the fornix, which is

involved in memory and learning. By stimulating these areas, the

DBS is able to help improve cognitive function in cognitive patients

(Neumann et al., 2023; Siddiqi et al., 2023; Vogel et al., 2023).

Functional Magnetic Resonance Imaging (fMRI) has

revolutionized the field of neuroscience, particularly in the study of

brain diseases such as Alzheimer’s disease (Forouzannezhad et al.,

2019; Yin et al., 2022; Zuo et al., 2023). fMRI is a non-invasive

neuroimaging technique that provides valuable insights into the

functioning of the human brain by measuring blood oxygenation

level-dependent (BOLD) signals. fMRI has been confirmed as a

reliable instrument to investigate the brain’s functional aspects

and explore the brain’s mechanisms, enabling early detection,

understanding cognitive disease progression, and assessing the

impact of interventions (Warren and Moustafa, 2023; Yen et al.,

2023). Many studies (Wang et al., 2018; Ibrahim et al., 2021; Sendi

et al., 2023) have constructed connectivity-based features and

analyzed cognitive disease from fMRI. The constructed features

in non-Euclidean space can establish relations between distant

brain regions, which is superior than the image-based features

in Euclidean space (Chen et al., 2023; Wan et al., 2023d). When

evaluating the treatment’s performance, fMRI allows researchers to

monitor and assess changes in brain activity before and after DBS

treatment (Boutet et al., 2021; Soleimani et al., 2023). However,

fMRI can sometimes be impacted by the presence of implanted

electrodes. The metallic components of these electrodes can create

artifacts in the MRI images, which may lead to signal loss or

distortion in the region of interest (ROI) (Nimbalkar et al., 2019;

Luo et al., 2022; Wang X. et al., 2022). These artifacts include

signal intensity changes and temporal and spatial variability.

Presently, there are no post-processing MRI techniques available

to effectively mitigate these artifacts. Therefore, identifying these

specific characteristics is essential for restoring neural activity

from artifacts and ensuring the accuracy and validity of fMRI

findings in clinical and research settings. Researchers need to

address issues related to side effects and fMRI signal loss to further

our understanding of the technique’s effectiveness in treating this

complex and devastating neurodegenerative disease. The possible

way to solve this issue is to construct a deep learning model to

recover missing signals, as it has achieved complex tasks in medical

image analysis (Wang S. et al., 2022; You et al., 2022; Hu et al.,

2023; Wan et al., 2023e). As shown in Figure 1, when patients are

treated by electrode stimulation, the brain fMRI suffers from signal

loss in the stimulated brain regions.

Generative adversarial networks (GANs) have gained

prominence in the fields of medical image analysis (Hong et al.,

2022) and functional time series reconstruction as a powerful tool

for generating synthetic data that closely resemble real-world time

series data (Luo et al., 2018, 2019). In addition, Transformer’s

self-attention mechanism has been successfully applied in medical

data analysis (Li et al., 2023; Wan et al., 2023a,b,c). The parallel

processing capability and adaptability to various data types make

it a versatile tool for time series generation (Tang and Matteson,

2021; Zerveas et al., 2021). Therefore, combining the GAN and

transformer can enable the reconstruction of missing time series.

Transformer GANs (Generative Adversarial Networks with

a Transformer architecture) have been applied to time series

reconstruction, offering innovative solutions to various data

reconstruction tasks (Wu et al., 2020; Li et al., 2021; Li X. et al.,

2022). In many domains, time series data may have missing or

incomplete observations. Transformer GANs can be trained to

impute the missing data by learning the underlying patterns and

relationships in the time series. The generator network creates

synthetic data points to fill in the gaps, while the discriminator

evaluates the realism of the imputed values. Transformer GANs

offer advantages for time series reconstruction due to their ability

to capture long-range dependencies and complex patterns and

their interpretability through attention mechanisms (Jiang et al.,

2021; Zhao et al., 2021). However, these models cannot capture

topological relationships at different temporal resolutions, which

may degrade the reconstruction performance and the ability to

analyze the brain network.

The DBS has emerged as a promising therapeutic approach for

Alzheimer’s disease (AD), offering potential benefits in alleviating

symptoms and modifying disease progression. Although still in

the investigational stage, DBS for AD holds promise as a novel

intervention aimed at improving cognitive function and quality of

life for individuals affected by this devastating neurodegenerative

disorder. Among the publicly available datasets, the representative

dataset containing brain imaging data for all stages of AD is the

Alzheimer’s Disease Neuroimaging Initiative (ADNI). Currently,

there are no patients implanted with intracortical electrodes for

DBS treatment. Our study is the first to theoretically remove some

ROI’s signals and then utilize our model to recover the removed

signals. In this study, we propose a novel U-shaped convolutional

transformer GAN (UCT-GAN) model to restore the missing brain

functional time-series. First, the fMRI is preprocessed to obtain the

ROI-based functional time series. Then, we exclude some ROIs’
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FIGURE 1

The problem definition. Patients with brain disorders are inserted with the electrodes, which can cause the signal loss when scanning function MRI.

time-series and treat them as a missing signal. The rest of the ROI-

based time-series are sent to the U-shaped topological transformer

generator to recover the missing time-series by capturing complex

temporal patterns and relationships. Next, the recovered time-

series from the generator is sent to the discriminator, consisting

of multi-head attention and central connectivity perception, to

evaluate the realism of the generated data compared with real

fMRI data at different scales. Both spatiotemporal and connectivity

features are utilized to constrain the generated missing signals.

Finally, we implement a loss function that enforces consistency

across different temporal resolutions. This loss encourages the

generator to capture diverse temporal scales in the data. When

the training reaches Nash equilibrium, the model can recover the

missing time-series signal. The main works of this study are as

follows:

• The proposed model leverages the power of generative

adversarial networks (GANs) while incorporating a U-

shaped architecture to effectively capture both global and

local features in the restoration process. The temporal

characteristics of missing time series can be highly recovered

for downstream brain network analysis.

• The multi-level temporal-correlated attention in the

transformer-based generator is devised to model the temporal

relationship between the missing ROI and other normal ROIs.

The topological properties of the missing time-series can be

well explored.

• By introducing multi-resolution consistency loss, the

proposed model can promote the learning of diverse

temporal patterns and maintain consistency across different

temporal resolutions, thus effectively restoring complex brain

functional dynamics.

2 Related work

Reconstructing time-series data using generative adversarial

networks (GANs) is a burgeoning field of research with several

related studies. GANs offer the potential to generate synthetic time-

series by capturing statistical and temporal characteristics. The

main advantage of GANs is that they can be used to augment

existing time-series datasets by generating additional synthetic

data. Increasing the data size is particularly valuable when training

machine learning models in medical image analysis. Considering

the architecture of the generator, we divide the GAN-based

models into two groups: recurrent neural network (RNN)-based

approaches and transformer-based approaches.

Mogren (2016) combined RNN and GAN to synthesize more

realistic continuous sequential from random noise. Similarly,

Esteban et al. (2017) embedded the RNN into both the generator

and discriminator to synthesize realistic medical time-series signals

by introducing label constraints. Meanwhile, Donahue et al.

(2018) introduced the WaveGAN model to generate time-series

waveforms by applying one-dimensional convolution kernels.

To preserve temporal dynamics, Yoon et al. (2019) proposed

the TimeGAN framework to project temporal features onto

embedded space through supervisory and antagonistic learning

and generate realistic time-series signals to preserve temporal

correlation between different variables. In addition, Ni et al. (2020)

proposed the SigCWGAN to capture the temporal dependencies

inherent in joint probability distributions within time-series

signals. Nonetheless, RNN-based approaches are challenging for

generating long synthetic sequences. This stems from the sequential

processing of time steps in time-series data, where recent time

steps exert a stronger influence on the generation of subsequent

time steps. Therefore, RNNs fail to establish relationships between

distant time steps in lengthy sequences.

Reconstructing time-series signals using transformer GANs,

which combine the transformer architecture with GAN, has

the potential to capture complex temporal relations of long

sequencial time-series. Li X. et al. (2022) successfully designed

the generator and discriminator with transformer to synthesize

long-sequence time-series signals. Srinivasan and Knottenbelt

(2022) proposed the TST-GAN to solve the problem of errors

accumulating over time when synthesizing temporal features. This

model can accurately simulate the joint distribution of the entire

time-series, and the generated time-series can be used instead
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FIGURE 2

Framework of the proposed model. It consists of one generator and one discriminator. The input is a multi-ROI time-series with missing time-series,

and the output of the generator is the reconstructed multi-ROI time-series. The discriminator distinguishes whether the multi-ROI time-series is

generated or empirical.

of real data. To synthesize multivariate time-series within the

overall distribution, Madane et al. (2022) introduced different

conditions into the transformer-based GAN to approximate the

joint distribution of multiple time-series. Li Y. et al. (2022) pointed

out the weakness of short-term dependencies in transformers and

proposed adversarial convolutional transformers (ACTs) to pay

attention to local information of time series. They greatly improved

the forecasting accuracy of time-series datasets. Xia et al. (2023)

also combined the convolutional networks and transformer in the

adversarial training to preserve both global and local temporal

features in the time-series generation. However, these models fail to

capture the hierarchical temporal features and ignore the temporal

characteristics of different frequencies, which may hinder synthesis

performance during the time-series generation.

Considering the shortcomings of related methods, we

incorporated transformer-based networks into a U-shaped

architecture to model temporal relationships on both global and

local scales. In addition, the restoration process of time-series is

to learn complex distribution, where the generative adversarial

networks (GANs) show great ability in learning the underlying

patterns and relationships in the time series. Therefore, we try

to combine the U-shaped convolutional transformer and GANs

to restore the missing brain functional time series for dementia

diagnosis.

3 Materials and methods

3.1 Data description

The Alzheimer’s Disease Neuroimaging Initiative (ADNI)

dataset1 is a comprehensive and widely used resource for studying

Alzheimer’s disease and related neurological conditions. It includes

a variety of data types, including structural and functional MRI

(fMRI) data. In this study, we successfully downloaded about

311 subjects from the ADNI website. The patients scanned with

fMRI are distributed among the normal controls (NC), early mild

cognitive impairment (EMCI), and late mild cognitive impairment

1 http://adni.loni.usc.edu/
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(LMCI). The numbers for the three categories are 105, 110, and 96,

respectively. The time of repetition (TR) is 3.0 s. The scanning time

for each subject is∼10 min.

Preprocessing fMRI data typically involve several steps to

ensure data quality and prepare it for analysis. We use the routine

GRETNA (Wang et al., 2015) software to preprocess the fMRI to

construct multi-ROI time-series. The general preprocessing steps

(Zuo et al., 2022, 2024) are as follows: convert the DICOM files into

NIfTI format for easier handling and compatibility, remove the first

10 volumes, correct for differences in acquisition times between

slices to ensure temporal alignment, correct for headmotion during

scanning, register the fMRI data to a standard anatomical template

(e.g., MNI152) to ensure spatial consistency across subjects, apply

spatial smoothing to the data to improve the signal-to-noise ratio

and compensate for small anatomical differences between subjects,

apply temporal filters to remove low-frequency drifts (e.g., high-

pass filtering) and to attenuate high-frequency noise (e.g., Gaussian

or bandpass filtering), register the fMRI data to the structural

MRI data for each subject, and wrap the fMRI volumes into the

automated anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al.,

2002) to obtain the time-series of 90 ROIs. At last, the output is the

multi-ROI time-series Se with the size N × 187. In the following

experiments, we remove one or more ROI time-series from Se and

recover the removed time-series through the proposed model.

3.2 Architecture

The main framework of this study is shown in Figure 2.

The proposed UCT-GAN model consists of a hierarchical

topological transformer generator and a multi-resolution relational

discriminator. Given fMRI withmissing signals on some brain area,

after preprocessing, we can obtain the input data of the proposed

model. We denoted it as the incomplete multi-ROI time-series

signal Sm ∈ R
N×T , where N is the ROI number and T is the

scanning functional signal length. The transformer-based generator

aims to extract hierarchical features to recover the missing ROI-

based signal. The multi-resolution discriminator is utilized to

constrain the generated time-series (Sg ∈ R
N×T) as close as the

impirical time-series (Se ∈ R
N×T). To ensure the generation’s good

performance, we design three loss functions to optimize themodel’s

parameters, including the generative loss, the discriminative loss,

and the multi-resolution consistency loss.

3.2.1 Hierarchical topological transformer
generator

The generator is a neural network architecture that combines

the principles of hierarchical attention mechanisms from

transformers with one-dimensional convolutional layers.

This architecture can capture both global and local temporal

information at different scales and is often used for processing

sequences or time series data efficiently and effectively. In the

generator, we designed multiple layers of multi-level temporal-

correlated attention (MT-Attention) and convolutional sampling

to explore hierarchical temporal features. The output is the

generated multi-ROI time-series Sg . Setting L convolutional down

sampling (CDS) layers, there are also L layers of convolutional

up sampling (CUS) and 2L + 1 layers of MT-Attention. The

computation process can be expressed by the following formula:

Sg = G(Sm) = f (MTA(Sm),CDS(Sm),CUS(Sm))

Here, the symbol f means the calculation processes in the

generator.

Multi-level temporal-correlated attention (MTA) is an

attention mechanism designed to capture dependencies and

patterns at multiple levels of the characteristics of temporal

sequences. This attention mechanism is especially useful for

modeling time-series relationships between different ROIs. As

shown in Figure 3, assuming the input of MT-Attention is the

multi-ROI temporal feature Fi with the size 2C×N×T/2. We first

split it into 2C slices, where each slice is sent to the level-topological

computing (LTC) network to learn temporal dependencies between

ROIs. For instance, some slices may represent lower levels and can

be used to capture short-term dependencies within the sequence,

while other slices may indicate higher levels and can be used to

capture long-term dependencies. This multi-level structure allows

MTA to consider different levels of temporal dynamics when

reconstructing missing signals. Each slice is passed through the

norm layer, linear projection (LP), splitting, attention map (AM),

merge, dropout, norm, LP, and dropout. The output is the updated

multi-ROI temporal feature F
i+1 with the size of Fi. The whole

computation can be determined by

F
i+1 = MTA(Fi) = LTC(Fi1)||LTC(F

i
2)||...||LTC(F

i
2C)

where Fi means the input of the i-th module in the generator.

|| indicates the concatenation operation. Fi+1 is the output of the

i-th module in the generator. After seperating the 2C channels of

F
i, each channel component is represented as Fij. Here, j is in the

range of 1− 2C. These components are computed by the attention

network and feedforward transform (FFT). The formula can be

expressed as follows:

LTC(Fij) = Attention(Fij)+ FFT(Fij), j = {1, 2, ..., 2C}

In the attention network, the norm is applied to the temporal

feature to stabilize the training process. The LP layer is used to

learn temporal attentionmatricesQ,K ,V .We applied l heads to the

attention matrices and computed an attention map for each head.

The attentioned heads are then merged by a LP layer and a dropout

layer. Here is the computing formula:

Attention(Fij) = Dropout(LP(Att(Q1,K1,V1)||Att(Q2,K2,V2)||...||

Att(Ql,K l,V l)))

Att(Ql,K l,V l) = softmax

(

QlK l
′

√

T/(2l)

)

V l

Q = (Q1||Q2||...||Ql)
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FIGURE 3

The detailed structure of the MT-Attention module in the generator. The input is a multi-channel ROI feature; by splitting along the channel

direction, the channel topological computing pays attention to the temporal relationship between any pair of ROIs to recover the missing

time-series. The output is the same size as the input.

K = (K1||K2||...||K l)

V = (V1||V2||...||V l)

Q = LP(Norm(Fij)),K = LP(Norm(Fij)),V = LP(Norm(Fij))

In the feedforward transform network, it consists of Norm,

LP, and dropout layers. They are used to provide a non-linear

transformation to the intermediate representation produced by the

self-attention mechanism. The LP layer projects the input temporal

features from a lower-dimensional space to a higher-dimensional

space, introducing some non-linearity in the process. The dropout

layer aims to make the mapping weights more sparse for robust

learning. The second linear layer then projects the result back to the

original dimension. The computation formula is defined as follows:

FFT(Fij) = Attention(Fij)+ LP(Dropout(LP(Norm(Attention(Fij)))))

Convolutional sampling is utilized to reduce or increase

temporal dimensions, including convolutional down (CD)

sampling and convolutional up (CU) sampling. In the generator,

the CD sampling halfs the dimension along the temporal

direction while doubles the channels. The CU sampling doubles

the dimension along the temporal direction while halving the

channels.

For the CD sampling, one-dimensional convolutional kernels

are applied to the multi-ROI temporal features. 1D convolution

is used to capture local patterns or features within the time series

data. By moving the filter across the sequence, it can detect changes,

peaks, valleys, and other patterns within the temporal features. To

reduce the dimensions, we set the stride step 2 and the doubled

channels. For example, the input incomplete multi-ROI time-series

signal Sm is sent to the generator. We treated it as the multi-ROI

temporal features F1 with the size C×N×T (C = 1). After passing

the MT-Attention module, the output F1 has the same size. Then,

going through the CD sampling, the output F2 changed the size

to 2C × N × T/2. For the CU sampling, we adopted transposed

convolution to increase temporal dimensions.

3.2.2 Multi-resolution discriminator
Themulti-resolution discriminator aims to distinguish between

generated multi-ROI time-series and empirical multi-ROI time-

series. The discriminator’s feedback can help optimize the

generator. When the discriminator can easily distinguish between

a true and false sample, it provides feedback to the generator
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to improve its generation capabilities. The generator then adjusts

its parameters to produce a sample that is more similar to the

true one.

The structure of the discriminator consists of three dimension

halfving (DH) modules, three multi-head attention (MHA)

modules, three header modules, and three central connectivity

perception (CCP) modules. The generated/empirical multi-ROI

time-series are first passed through the DH modules. For each

DH module, the time-series dimension is halved but the channels

are unchanged, which is different from the CD sampling in the

generator. Through the three DH modules, the input multi-ROI

time-series (e.g., Sg) are resampled into three samples:

R1 = DH(Sg)

R2 = DH(R1)

R3 = DH(R2)

where Ri, i = {1, 2, 3} represents the high frequency signals

(with the size N × T/2), middle frequency signals (with the size

N × T/4), and low frequency signals (with the size N × T/8),

respectively.

The resampled sample is sent to two branches: MHA and CCP.

The former is used to capture the temporal dynamics and learn

to measure temporal consistency; the latter is used to compute

the consistency of missing-signal ROI-related connections. Both of

them can contribute to the consistency measurement between the

generated and empirical samples. Combining them can make the

generated samples more realistic than the empirical samples. The

MHA is the same as the transformer network with l heads. The

header module transmits the attentioned temporal features into

one scalar (1 means true, 0 means false). The CCP module first

transforms the resampled sample into a connectivity matrix and

then selects the missing-signal ROI-related connections. A one-

layer LP is used to transmit the connectivity features into one scalar.

The detailed computing steps are defined as follows:

o1 = Header(MHA(R1))+ CCP(R1)

o2 = Header(MHA(R2))+ CCP(R2)

o3 = Header(MHA(R3))+ CCP(R3)

om =
o1 + o2 + o3

6

where oi, i = {1, 2, 3} is the scalar. om is the final output score.

After the model converges, the value of om approaches 0.5.

3.3 Hybrid loss functions

The adversarial loss, also known as the discriminator loss or the

GAN loss, is a key component of a generative adversarial network

(GAN). It quantifies how well the discriminator can distinguish

between real and generated data. The goal of the generator is to

minimize this loss, while the discriminator aims to maximize it.

The adversarial loss is typically defined as a binary cross-entropy

loss. The formulation of the adversarial loss is as follows:

LD = ||D(Se)− 1||2 + ||D(G(Sm))||
2

LG = ||D(G(Sm))− 1||2

In addition, to keep the generated time-series as precisely

similar as the empirical time-series, we introduced the multi-

resolution consistency loss LMRC. It contains the reconstruction

loss, the cross-correlation loss, and the topological loss at

different temporal resolutions. The reconstruction error is a metric

used to quantify the local dissimilarity between empirical time-

series and generated time-series, and the cross-correlation loss

can measure the overall temporal patterns between generated

and empirical time-series. The topological loss computes the

connectivity difference between the generated and empirical time-

series. Here, we use the temporal mean absolute error (TMAE)

and mean cross-correlation coefficient (MCC) to compute the

loss functions. The multi-resolution consistency loss is defined as

follows:

LMRC =

3
∑

k=0

TMAE(DHk(Sg),DH
k(Se))

+

3
∑

k=0

MCC(DHk(Sg),DH
k(Se))

+

3
∑

k=0

TMAE(PCC(Sg), PCC(Se))

TMAE(Sg , Se) =
1

NT

N
∑

i=1

T
∑

j=1

|Sg,ij − Se,ij|

MCC(Sg , Se) =
1

N

N
∑

i=1

∑T
j=1(Sg,ij − Sḡ,i)(Se,ij − Sē,i)

√

∑T
j=1(Sg,ij − Sḡ,i)2

√

∑T
j=1(Se,ij − Sē,i)2

where the DHk means stacking k DH layers. Sḡ,i means

averaging the i-th ROI time-series for Sg . In summary, the total loss

of the proposed UCT-GAN can be optimized by the following loss

functions:

Lall = LG + LD + αLMRC

The detailed training pseudo-code is shown in Algorithm 1.

4 Experiments and results

4.1 Model settings and evaluating metrics

The UCT-GAN model is trained on Windows 11 using the

pytorch deep learning framework to reconstruct the incomplete
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Input: Sm: incomplete multi-ROI time series;

O: the number of iteration steps for

updatating the generator;

T: the number of iteration steps for updating

the discriminator;

L: the number of convolutional down sampling

(CDS) layers.

Output: Sg: the reconstructed multi-ROI time-series

1: for i = 1, 2, ...,O do

2: for j = 1, 2, ...,T do

3: denote the input Sm as F
0.

4: for k = 1, 2, ..., L do

5: compute the attentioned feature: F
k =

MTA(Fk−1)

6: compute the down sampled feature: F
k =

CDS(Fk)

7: end for

8: compute the attentioned feature: F̂
k+1 =

MTA(Fk)

9: for k = L, L− 1, ..., 1 do

10: compute the up sampled feature: F̂
k =

CUS(F̂k+1)

11: compute the attentioned feature: F̂
k =

MTA(F̂k)+ F
k

12: end for

13: compute the reconstructed multi-ROI

time-series: Sg = F
0 + F̂

k

14: compute the loss function:LD = ||D (Se) − 1||2 +

||D(Sg )||
2

15: update the discriminator D by propagating

the gradient −∇L
j
D

16: end for

17: compute the combined loss function L =

LG + αLMRC

18: update the generator by back-propagating the

gradient -∇Li

19: end for

Algorithm 1. Optimizing the UCT-GAN model.

multi-ROI time-series. The parameter L is studied in the range of

1–10 to find the optimal value. In addition, the hyperparameter α in

the loss functions is investigated to determine the best weighting of

the multi-resolution consistency loss. During the training, we first

train the discriminator and then train the generator. The learning

rate for the generator and the discriminator is set at 3.e − 4 and

1.e − 4, respectively. The Adam was used to train the models with

a batch size of 16. Overall, 10-fold cross verification is adopted to

evaluate our model’s reconstruction performance.

Measuring the similarity between generated and empirical

time-series data is a crucial step in evaluating the performance of

the proposed model. Three metrics can be used for this purpose,

including mean absolute error (MAE), root mean square error

(RMSE), coefficient of determination of the prediction (R2) (Ma

et al., 2021), and dynamic time warping (DTW) (Philips et al.,

2022). MAE measures the average absolute difference between the

values of the generated and empirical time-series. It is calculated by

taking the absolute difference between each corresponding pair of

points in the generated and empirical time-series, summing these

differences, and then dividing by the total number of data points.

MAE is sensitive to outliers and provides a straightforwardmeasure

of the magnitude of errors. The formula is defined as follows:

MAE =
1

Nm

Nm
∑

i=1

T
∑

j=1

|sgenerated(ij)− sempirical(ij)|

RMSE calculates the square root of the average of the squared

differences between the generated and empirical time-series. It

provides a measure of the magnitude of errors and gives higher

weight to larger errors because of the squaring operation. The

formula is defined as follows:

RMSE =
1

Nm

Nm
∑

i=1

√

√

√

√

√

1

T

T
∑

j=1

(sgenerated(ij), sempirical(ij))2

where the Nm means the number of missing time-series

ROIs. sgenerated(ij) is the i-th and j-th element in the Sg ,

and the sempirical(ij) is the i-th and j-th element in the Se.

The R2 measures how the reconstructed time-series linearly

regresses the empirical time-series, and large value indicates good

reconstruction performance. The DTW measures the distance

between reconstructed and empirical time-series, where small

values indicate good reconstruction performance.

4.2 Parameter analysis

The generator is important for reconstructing missing ROI

time-series. To explore the optimal MT-Attention layer number,

we studied 10 values of L to determine the best value. We treated

the left amygdala as the missing time-series ROI. The MAE is

calculated by measuring the difference between the reconstructed

time-series and the empirical time-series. As shown in Figure 4, the

MAE changes as the L increases. The best value of L is 5. The smaller

value of Lwith a largeMAEmay be the result of model underfitting,

while the larger value of L with a large MAE may be the result of

overfitting.

The proposed multi-resolution consistency loss can guarantee

the model’s good reconstruction performance. We investigated the

optimal imporantce of LMRC in the hybrid loss functions. As shown

in Figure 5, we chose the value of α from 0.0 to 1.0. The 0.0 means

the LMRC is removed from the total loss. As the value of α increases,

the MAE shows a downward trend. This indicates the importance

of the proposed multi-resolution consistency loss in reconstructing

the missing signals. The best value of α is achieved at 0.9. In the

downstream tasks, we will evaluate the model’s performance using

the optimal L and α.

4.3 Reconstruction performance

We adopted the above settings and continued to investigate the

time-series reconstruction performance of the left amygdala. We

presented the training details about the reconstructing processes.

Frontiers inComputationalNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fncom.2024.1387004
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Zuo et al. 10.3389/fncom.2024.1387004

FIGURE 4

The impact of layer number L on the generator.

FIGURE 5

The influence of parameter α on the hybrid loss functions.

As shown in Figure 6, we initialized the missing signal as Gaussian

noise at the 0 epoch, and then the Gaussian noise is getting

closer to the empirical signal as the epoch arrives at 500. The

right column shows the frequency spectrum of the left column.

The frequency spectrum is computed using the Fast Fourier

transform, which converts the left time-series into individual

spectral components and thereby provides frequency information

about the it. At 0 epoch, the frequency information between

empirical and reconstructed time-series is very different, and as

the epoch increases, the frequency information difference gradually

decreases; at the final epoch, the frequency information between

the two signals is almost the same, indicating good reconstruction

result. Furthermore, we quantitatively evaluate the functional

connectivity using the PCC computed by empirical and generated

time series. Figure 7 shows that the larger difference is the missing-

signal ROI-related connections in the right column. The maximum

PCC change is lower than 0.05, which has little influence on brain

network analysis.

To compare the reconstruction performance using different

models, we chose the six competing models: (1) C-RNN-GAN

(Mogren, 2016), (2) RCGAN (Esteban et al., 2017), (3) waveGAN

(Donahue et al., 2018), (4) TimeGAN (Yoon et al., 2019), (5)

SigCWGAN (Ni et al., 2020), and (6) TCGAN (Xia et al., 2023).

The input is the incomplete multi-ROI time-series with only

one ROI time-series removed. We compared the reconstructed

missing signal by computing the three metrics: MAE, RMSE, R2,

and DTW. We have randomly split the dataset into 10 folds 10

times. For each method, we calculate the mean and standard

deviation for the four metrics. As shown in Table 1, the GAN-

based models show inferior performance than the transformer-

based models. The possible reason is that the transformer benefits

from the relationship modeling ability. Among these methods, the

proposed model combining the transformer and GAN achieves

the best reconstruction performance in terms of MAE (0.010),

RMSE (0.015), R2(0.998), and DTW (1.872). To prove the

effectiveness of the reconstructed time-series, we constructed
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FIGURE 6

Training details of the di�erence between the empirical and reconstructed time-series in the time and frequency domains from 0 to 500 epochs.

FIGURE 7

Comparison of functional connectivity using di�erent methods.
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functional connectivity (FC) from empirical and reconstructed

time-series, respectively. The constructed FC was then sent to the

BrainNetCNN (Kawahara et al., 2017) classifier to compute four

metrics (i.e., ACC, SEN, SPE, and AUC) for NC versus LMCI.

The classification results are shown in Figure 8, and there is no

significant difference between the four metrics. The p-values of

ACC, SEN, SPE, and AUC between the two methods are 0.894,

0.756, 0.703, and 0.358, respectively. The p-values are larger than

TABLE 1 The reconstruction performance using di�erent models.

Method MAE ↓ RMSE ↓ R2 ↑ DTW ↓

C-RNN-

GAN

0.030±

0.017

0.036± 0.026 0.960± 0.014 5.642± 0.513

RCGAN 0.026±

0.015

0.033± 0.023 0.966± 0.010 4.835± 0.449

waveGAN 0.022±

0.014

0.029± 0.021 0.971± 0.008 3.578± 0.416

TimeGAN 0.016±

0.012

0.023± 0.018 0.987± 0.006 3.043± 0.372

SigCWGAN 0.014±

0.011

0.020± 0.015 0.989± 0.005 2.644± 0.301

TCGAN 0.013±

0.010

0.019± 0.014 0.992± 0.003 2.302± 0.221

Proposed 0.010±

0.006

0.015± 0.011 0.998± 0.001 1.864± 0.247

The best results are in bold.

0.05, indicating that the proposed method can achieve the same

classification performance as the empirical method. Furthermore,

we investigated different methods’ robustness to the noise, and we

added Gaussian noise (1 or 5%) to the training and testing data.

Then, we calculated the mean and standard deviation values for the

seven methods. As shown in Table 2, our model achieves the best

classification performance among the seven methods with a small

deviation error, indicating ourmodel’s effectiveness and robustness.

To assess the reconstruction performance of other ROIs, we

iteratively removed one ROI time-series from the preprocessed

empirical multi-ROI time-series and trained them with our model.

The reconstructed ROI time-series is compared with the empirical

ROI time-series by computing the MAE value. The results are

shown in Figure 9. For each ROI, we displayed the MAE. The

mean MAE value of all ROIs is 0.010, with an averaged standard

error of 0.003. A large MAE of ROI may indicate that this

ROI has high degrees. The removal of this ROI fails to model

long-range relationships in the generator. To display all the

ROI reconstruction performance, Figure 10 shows the correlation

between empirical and generated time-series. The left sub-figure

displays the correlation between empirical and generated time-

series. We remove one ROI time-series and reconstruct it using

other ROIs’ time-series. For the convenience of display, we utilize

the time-series of all ROIs from one subject to plot correlation

between reconstructed and empirical BOLD signal. The right sub-

figure shows the correlation between empirical and removed ROI-

related connections. After reconstructing the removed ROI time-

series, we compute the Pearson correlation coefficient between the

FIGURE 8

The classification comparison of functional connectivity constructed by empirical and reconstructed time-series, respectively.
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TABLE 2 The reconstruction performance using di�erent models for di�erent noise levels.

Noise level Method MAE ↓ RMSE ↓ R2 ↑ DTW ↓

1%

C-RNN-GAN 0.032± 0.018 0.038± 0.027 0.951± 0.014 5.813± 0.503

RCGAN 0.029± 0.014 0.036± 0.022 0.954± 0.011 4.911± 0.432

waveGAN 0.023± 0.013 0.030± 0.022 0.970± 0.009 3.415± 0.413

TimeGAN 0.017± 0.012 0.025± 0.019 0.976± 0.007 3.112± 0.367

SigCWGAN 0.015± 0.012 0.021± 0.016 0.978± 0.006 2.697± 0.304

TCGAN 0.013± 0.011 0.019± 0.016 0.991± 0.005 2.303± 0.231

Proposed 0.010± 0.007 0.015± 0.012 0.998± 0.001 1.867± 0.249

5%

C-RNN-GAN 0.037± 0.021 0.041± 0.029 0.941± 0.028 6.219± 0.627

RCGAN 0.032± 0.019 0.039± 0.027 0.948± 0.014 5.237± 0.507

waveGAN 0.027± 0.016 0.033± 0.025 0.964± 0.010 3.772± 0.486

TimeGAN 0.019± 0.014 0.028± 0.021 0.971± 0.008 3.348± 0.371

SigCWGAN 0.017± 0.013 0.024± 0.018 0.970± 0.008 2.713± 0.319

TCGAN 0.015± 0.012 0.021± 0.017 0.985± 0.007 2.516± 0.229

Proposed 0.011± 0.006 0.016± 0.012 0.996± 0.002 1.896± 0.252

The best results are in bold.

FIGURE 9

The reconstruction performance of di�erent ROIs.

removed ROI and other ROIs. All the computed connections from

the corresponding subject are denoted as reconstructed functional

connectivity (FC), which is compared with empirical FC. The two

subfigures demonstrate our model’s reconstruction ability. The

reconstructed signals can be applied to the downstream brain

network analysis.

4.4 Ablation study

To investigate the influence of the generator and the loss

function on the reconstruction performance, we design four

variants of the proposed model. (1) UCT by removing the

discriminator from the UCT-GAN model. (2) UCT-GAN without

hierarchical topological transformer (MSETD w/o HTT). In the

generator, we removed the CD sampling and CU sampling and

only kept one MT-attention block. (3) UCT-GAN without the

multi-resolution consistency loss (MSETD w/o MRC). In the

discriminator, we removed two DH modules and (4) the proposed

UCT-GAN model. For each variant, we compute the mean value

of MAE, RMSE, R2, and DTW. The results are shown in Table 3.

Removing the hierarchical structure or the discriminator greatly

reduces the time-series reconstruction performance, which shows

the effectiveness and necessity of the proposed model in time-

series restoration. The multi-resolution consistency also lowers
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FIGURE 10

The relationship between empirical and generated results for all the ROIs.

TABLE 3 Influence of di�erent model’s module on the reconstruction

performance.

Method MAE RMSE R2 DTW

UCT 0.025 0.031 0.952 3.981

UCT-GAN w/o HTT 0.021 0.028 0.968 3.415

UCT-GAN w/o MRC 0.018 0.025 0.974 3.153

UCT-GAN 0.010 0.015 0.998 1.864

The best results are in bold.

the model’s reconstruction performance to some extent. All of

them contribute a lot to time-series reconstruction performance.

It indicates that the U-shaped generative architecture and multi-

resolution consistency loss capture the spatial and temporal

characteristics, thus effectively restoring complex brain functional

dynamics.

5 Discussion

In deep learning, neural networks are often non-convex and

have multiple local minima. The choice of initial values can

influence whether the optimization algorithm gets stuck in a poor

local minimum or finds a more optimal solution. We investigate

the iterative initial values during the training. As we know, the

proper initial iterative values tend to find the optimal solution of

the model. There are many strategies that are used to initialize

the model’s parameters’ weights. We still study the condition when

one ROI signal is missing. The missing signal is replaced by (1)

zero values, (2) random noise, (3) Gaussian noise, and (4) prior

values, which represent the averaged values of other ROI time

series. All the initial values are forced into the range of 0 − 1. The

MAE is used to evaluate the reconstruction performance. Figure 11

gives the best initial strategy of using the prior values. The prior

value strategy can mitigate the risk of convergence to suboptimal

solutions.

The medical treatment using the DBS usually involves

implanting a device into the brain to alleviate symptoms of various

neurological disorders. The intersection of the fornix and stria

terminalis in the brain may be the optimal area for DBS treatment.

The stria terminalis serves as a major output pathway of the

amygdala. Therefore, we investigated the amygdala for potential

clinical applications. The damaged signals in the amygdala may

also influence the adjacent ROIs, such as the up, down, left,

and right brain areas. We cumulatively removed one ROI

signal from the scanned fMRI and evaluated the reconstruction

performance. As shown in Figure 12, as the number of missing

brain regions increases, the MAE gradually increases and the ACC

correspondingly decreases. This shows that the reconstruction

ability is greatly reduced.

The proposed model combines the U-shaped convolutional

transformer and GANs to restore the missing brain functional

time series. By restoring complex brain functional dynamics, the

proposed model can achieve the same classification results as

the empirical method. More missing signals can greatly reduce

the reconstruction performance and disease prediction. No more

than two ROI missing signals probably have little influence on

the dementia diagnosis and brain network analysis. Though the

proposed model can achieve good restoration performance, there

are two limitations. One limitation is that the studied ROImay have

a larger volume than that of the real distortion brain region. In the

future, we will try more fined atlas to investigate the BOLD signal

distortion, since more fined ROIs can better describe the signal

distortion and help precisely reconstruct the missing signals for

improving disease analysis. Another one is that the proposedmodel

is tested theoretically with small subjects. In the next study, we will
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FIGURE 11

The impact of di�erent initial values on the model reconstruction performance. The vertical line segment represents the margin of error.

FIGURE 12

The e�ect of di�erent damaged ROIs on the reconstruction performance.

validate our model on a larger dataset, such as the UK Biobank

dataset (https://www.ukbiobank.ac.uk/).

6 Conclusion

This study proposes a novel U-shaped convolutional

transformer GAN (UCT-GAN) model to restore the missing brain

functional time-series data. By leveraging generative adversarial

networks (GANs) and the U-shaped transformer architecture, the

proposed UCT-GAN can effectively capture hierarchical features

in the restoration process. It should be stressed that the multi-level

temporal-correlated attention and the convolutional sampling in

the generator capture the long-range and local temporal features

of the missing signal and associate their relationship with the

effective signal. We also designed a multi-resolution consistency
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loss to learn diverse temporal patterns and maintain consistency

across different temporal resolutions. We theoretically tested our

model on the public Alzheimer’s Disease Neuroimaging Initiative

(ADNI) dataset, and our experiments demonstrate superior

reconstruction performance with other competing methods in

terms of quantitative metrics. The proposed model offers a new

solution for restoring brain functional time-series data, driving

forward the field of neuroscience research through the provision of

enhanced tools for data analysis and interpretation.
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