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pericytes stand (Jones, 1970), the latter contractile elements being 
likely involved in a localized control of capillary tone (Peppiatt 
et al., 2006). Additionally, it has been shown that the hemody-
namic response correlates with synchronized synaptic activity, a 
highly energy consuming process (Arthurs et al., 2000), and that it 
is controlled by signaling molecules released during increased syn-
aptic activity (Devor et al., 2007). Recently, using the neurovascular 
coupling response to various sensory stimuli (whisker, forepaw 
or hindpaw, visual), elegant experiments demonstrated that the 
spread of the hemodynamic activity accurately reflects the neural 
response (Berwick et al., 2008), that it is driven by synaptic activity 
generated by intracortical processing (Franceschini et al., 2008), 
and that the latter reflected the balance between excitatory and 
inhibitory signals (Devor et al., 2005, 2007; Shmuel et al., 2006). 
Particularly, suppressed neuronal activity or functional neuronal 
inhibition has been associated with decrease in blood oxygena-
tion and perfusion, which could explain the negative BOLD sig-
nals (Shmuel et al., 2002, 2006) as it occurred concurrently with 
arteriolar constriction (Devor et al., 2007).

IdentIfIcatIon of the underlyIng neuronal cIrcuItry
As an attempt to identify the underlying neuronal circuitry, an 
interesting study by Lu et al. (2004) showed that laminar BOLD 
and CBV responses to rat whisker stimulation spatially correlated 
with increased neuronal activity evaluated by c-Fos upregulation. 
In an unrelated study in rats treated with the serotonin releasing 
drug m-chlorophenylpiperazine, positive BOLD signals and c-Fos 
immunoreactivity correlated in areas of increased activity, but not 
in those that displayed diminished BOLD signals, presumably due 
to decreased neuronal signaling (Stark et al., 2006). Recently, it 
was shown that stimulation of corticocortical and thalamocorti-
cal inputs to the same area of the somatosensory cortex induced 
completely distinct frequency-dependent changes in CBF and oxy-
gen consumption, and evoked activity in different  populations of 

actIvIty In neuronal networks underlIes actIvIty-
dependent changes In hemodynamIc sIgnals
The temporal and spatial coupling between increased neuronal 
activity and cerebral blood flow (CBF), known as functional hyper-
emia or neurovascular coupling, is a highly regulated phenomenon 
that ensures adequate supply of oxygen and glucose to the neurons 
at work during a given task. Although intuitively appealing, a direct 
link between energy state and blood flow is not universally accepted, 
and the physiological basis of neurovascular coupling still remains 
uncertain. Indeed, neither the lack of glucose or oxygen appears to 
fully justify the hemodynamic response (Powers et al., 1996; Wolf 
et al., 1997; Lindauer et al., 2010), which may serve as a safety meas-
ure for substrate delivery during functional activation (Leithner 
et al., 2010). Despite these limitations, the changes in hemodynamic 
signals (BOLD response, CBF or cerebral blood volume, CBV) are 
commonly used as surrogate markers to map changes in neural 
activity in brain imaging procedures, such as functional magnetic 
resonance (fMRI), positron emission tomography (PET), or diffuse 
optical imaging (DOI) under both physiological and pathological 
conditions. Accordingly, an adequate interpretation of imaging 
data imperatively requires understanding of the cellular basis of 
the activated neurocircuitry and its interaction with astrocytic and 
vascular targets. In contrast to the innervation of large cerebral 
arteries by ganglia from the peripheral nervous system, which is 
mainly involved in autoregulation (for a review, Hamel, 2006), the 
neuronal circuitry at play here refers to pathways of the central 
nervous system that interact with the brain microcirculation.

As such, it is known that the changes in activity are triggered by 
the incoming afferents, but that it is their local processing by the 
targeted cells that drives the perfusion changes (Logothetis et al., 
2001; Lauritzen and Gold, 2003; Lauritzen, 2005). These hemody-
namic changes are mainly, if not exclusively, achieved by the con-
trol of the vasculature at the arteriolar level (Hillman et al., 2007), 
from the pial surface down to the precapillary level where vascular 
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 cortical excitatory pyramidal cells and inhibitory GABA interneu-
rons (Enager et al., 2009). Stimulation intensity increases occurred 
with the silencing or recruitment of distinct inhibitory interneu-
rons, indicating that neural network activation is both stimulus- 
and frequency-dependent. Particularly, the hemodynamic responses 
were attributed to activation of cyclooxygenase-2 (COX-2) pyram-
idal cells and somatostatin (SOM)/nitric oxide synthase (NOS) 
inhibitory interneurons, consistent with pharmacological studies 
that implicated COX-2- and NOS-derived vasodilator messen-
gers in these neurovascular pathways (Niwa et al., 2000; Gotoh 
et al., 2001; Hoffmeyer et al., 2007). Moreover, increased activity 
in inhibitory interneurons has been associated with the initiation 
of the hemodynamic response triggered by synchronized cortical 
activity, as induced by activation of the basal forebrain (Niessing 
et al., 2005). Stimulation of this basalocortical afferent input fur-
ther indicated selective activation of cholinoceptive layers II to VI 
SOM and neuropeptide Y (NPY) interneurons, as well as layer I 
GABA interneurons, with widespread activation of pyramidal cells, 
including those that contain COX-2 (Kocharyan et al., 2008; Lecrux 
et al., 2009). Although it was demonstrated that the CBF response 
was triggered by cholinergic afferents, its full expression required 
GABA

A
-mediated transmission on neuronal, vascular and/or astro-

cytic targets (Kocharyan et al., 2008). Together these anatomical, 
neurochemical and functional studies demonstrate the importance 
of identifying the cellular ensemble that underlies hemodynamic 

signals, highlighting that specific subsets of neurons are activated 
by a given stimulus, depending on the afferent input they receive 
and integrate.

perIvascular astrocytes as IntermedIarIes to both 
glutamate and gaba pathways
In addition to the difficulty in identifying the exact contribution 
of excitatory and inhibitory neurotransmissions in the evoked 
hemodynamic response, the effect of these neurotransmitter 
systems on perivascular astrocytes needs to be considered (for 
a detailed review, Carmignoto and Gomez-Gonzalo, 2009). The 
enwrapping of synapses and blood vessels (Kacem et al., 1998) 
by glial processes and, particularly, their intervening endfeet in 
multiple neurovascular appositions identified at the ultrastruc-
tural level led to the concept of a neuronal-astrocytic-vascular 
tripartite functional unit (Vaucher and Hamel, 1995; Cohen et al., 
1996; Paspalas and Papadopoulos, 1996; Vaucher et al., 2000). The 
significance of these interactions in the regulation of CBF was first 
substantiated by the demonstration that astrocytes could syn-
thesize vasodilatory messengers (Table 1), particularly epoxyei-
cosatrienoic acids (EETs) generated from P450 arachidonic acid 
epoxygenase activity (Alkayed et al., 1996) that were involved in 
the CBF response to glutamate (Alkayed et al., 1997; Harder et al., 
1998). Soon after came the first in vitro (in cortical slices) and 
in vivo demonstrations for a role of astrocytes, through metabo-

Only cortical mediators identified in vivo are listed. Neuronal and glial metabolism by-products (e.g., CO2, H
+, adenosine…) are not included. NO, nitric oxide; VIP, 

vasoactive intestinal polypeptide; PgE2, prostaglandin E2; EETs, epoxyeicosatrienoic acids; NOS, nitric oxide synthase; NPY, neuropeptide Y; COX, cyclooxygenase, 
NMDA-R, N-methyl d aspartate receptors, iGluRs; ionotropic glutamate receptors, mGluR, metabotropic glutamate receptors; VSMC, vascular smooth muscle cell, 
sGC, soluble guanylate cyclase, VPAC1, VIP/PACAP receptor type 1; EP, prostaglandin E2 receptors; GPCR, G protein coupled receptor. KCa, Ca2+-activated K+ channels; 
Kir, inward rectifier K+ channels; g, conductance. References can be found in the main list.

Table 1 | Summary of neuronal and gial mediators of functional hyperemia.
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tropic glutamate receptor (mGluRs)-induced Ca2+ transients, in 
microarteriolar dilation and the increase blood flow to forepaw 
stimulation, a response mediated by arachidonic acid products, 
possibly prostaglandin E

2
 (PGE

2
) (Zonta et al., 2003). Since this 

pioneer study, a role for astrocytes in neurovascular coupling has 
been reaffirmed in various paradigms (Carmignoto and Gomez-
Gonzalo, 2009).

Another pathway activated in astrocytic endfeet following Ca2+ 
increases is the large-conductance, calcium-sensitive potassium 
(BK) channels that induce K+ release (Table 1), activation of 
smooth muscle Kir channels and relaxation (Filosa et al., 2006). 
Recently, it was shown that the extent of the Ca2+ increases in 
astrocytic endfeet determined the dilatory or contractile nature 
of the vascular response, both mediated by extracellular K+ 
(Girouard et al., 2010). This novel mechanism would reunify 
previous “apparently” contradictory findings, in brain slices or 
in retina, of dilation and constriction being induced by increased 
Ca2+ signaling in astrocytes, and explained by the levels of NO 
(Mulligan and MacVicar, 2004; Metea and Newman, 2006), oxy-
gen (Gordon et al., 2008), or the pre-existing tone of the vessels 
(Blanco et al., 2008). Further, the study by Girouard et al. (2010) 
showed that neuronal activation in vitro (electrical field stimu-
lation) similarly acted through serial activation of astrocytic 
BK and smooth muscle Kir channels. Considering that GABA 
(Nilsson et al., 1993; Serrano et al., 2006; Meier et al., 2008) 
and peptides such as SOM that colocalize with GABA (Somogyi 
et al., 1984; Cauli et al., 2000) in interneurons also increase Ca2+ 
signaling in astrocytes, (Straub et al., 2006), the latter could act 
as intermediaries to GABA in neurovascular coupling (Table 1). 
Whether or not the astrocytic/smooth muscle BK and Kir chan-
nel activation cascade is involved still remains to be determined. 
Similarly, it would be interesting to evaluate if the latter, or other 
contractile mechanisms of neuronal (Cauli et al., 2004; Rancillac 
et al., 2006) or vascular origins (Mulligan and MacVicar, 2004) 
could explain the dilatory and constrictive phases seen in the 
central core of neuronal depolarization and surround region 
of hyperpolarization, respectively, after somatosensory stimu-
lation (Devor et al., 2007). To date the cellular and molecular 
mechanisms or even the functional significance of this response 
remains unknown.

neurally-derIved vasoactIve messengers
In addition to the astrocyte-derived vasodilatory messengers PGE

2
 

(Zonta et al., 2003), EETs (Alkayed et al., 1996), or K+ ions (Filosa 
et al., 2006), some vasodilators are chiefly synthesized by distinct 
neuronal populations (Table 1). These include COX-2-derived pros-
tanoids (Niwa et al., 2000) produced by some Layer II–III pyrami-
dal cells (Yamagata et al., 1993; Breder et al., 1995), nitric oxide 
(NO) (Gotoh et al., 2001) whose synthetic enzyme is expressed by 
discrete subpopulations of cortical GABA interneurones (Kubota 
et al., 1994), VIP (Yaksh et al., 1987), acetylcholine (Scremin et al., 
1973) and corticotropin-releasing factor (De Michele et al., 2005) 
synthesized by bipolar/bitufted GABA interneurones (Morrison 
et al., 1984; Chédotal et al., 1994a; Cauli et al., 1997; Gallopin et al., 
2006). As for astrocyte-derived messengers, their release is stimu-
lated by glutamatergic neurotransmission (Wang et al., 1986; Faraci 
and Breese, 1993; Pepicelli et al., 2005). For instance the highly 

Ca2+ permeable NMDA receptors, expressed by cortical neurons 
(Monyer et al., 1994; Cauli et al., 2000), promote the release of PGE

2
 

(Pepicelli et al., 2005) and NO (Faraci and Breese, 1993).
Alike astrocytes, some GABA interneurons produce substances 

with vasocontractile properties, namely NPY (Abounader et al., 
1995; Cauli et al., 2004) and SOM (Long et al., 1992; Cauli et al., 
2004). Cortical neurons producing these vasoactive peptides are 
intimately associated with blood vessels through neuronal-as-
trocytic-vascular appositions described above (Chédotal et al., 
1994b; Abounader and Hamel, 1997; Estrada and DeFelipe, 1998; 
Vaucher et al., 2000; Wang et al., 2005), and their receptors are 
expressed by smooth muscle cells and astrocytes (Chalmers 
et al., 1995; Bao et al., 1997; Abounader et al., 1999; Fahrenkrug 
et al., 2000; Cauli et al., 2004; Straub et al., 2006; Cahoy et al., 
2008). This raises the intriguing question of whether or not 
astrocytes are intermediaries for neuron-derived vasoactive 
messengers or, alternatively, if the latter exert direct effects on 
the microcirculation.

temporal sequences In the recruItment of neurons 
and astrocytes
It is widely admitted that an increase in intracellular Ca2+ (Table 1) is 
a required early event for the production and/or release of vasoactive 
messengers from neurons (Lauritzen, 2005) and astrocytes (Straub 
and Nelson, 2007). Examination of Ca2+ dynamics in these cell types 
could provide a clue to decipher their relative and temporal contri-
bution to functional hyperemia. The general view is that rapid Ca2+ 
events reflect an entry following fast (10–12 ms) spiking response of 
neurons (Petersen et al., 2003) and/or activation of Ca2+ permeable 
ionotropic receptors, whereas slower dynamics are mainly driven 
by activation of metabotropic receptors leading to the release of 
Ca2+ from intracellular stores (Perea and Araque, 2005). Hence, 
cortical neurons, which express more frequently and abundantly 
ionotropic glutamate receptors (Monyer et al., 1994; Cauli et al., 
2000) than astrocytes (Conti et al., 1997; Cahoy et al., 2008), are 
likely to be responsible for the majority of fast Ca2+ responses. In 
contrast, group I mGluRs ubiquitously expressed by cortical neu-
rons (Baude et al., 1993; Cauli et al., 2000) and astrocytes (Porter 
and McCarthy, 1996) would be responsible for slower Ca2+ dynam-
ics in both cell types. Consistent with this, in somatosensory or 
visual cortex, evoked Ca2+ events in neurons are virtually locked 
with sensory stimulations and precede those in astrocytes by a few 
seconds (Stosiek et al., 2003; Ohki et al., 2005; Wang et al., 2006; 
Schummers et al., 2008; Murayama et al., 2009), although a small 
proportion (∼5%) of astrocytes can exhibit Ca2+ responses as fast 
as neurons (Winship et al., 2007).

Calcium uncaging in astrocytic endfeet in vivo showed that 
arterioles start to dilate ∼500 ms after the onset of Ca2+ increase 
(Takano et al., 2006) indicating that synthesis, release and effects of 
vasodilatory messengers must be achieved within this time window. 
Since hemodynamic responses initiate ∼600 ms after the onset of 
sensory stimulations (Kleinfeld et al., 1998; Devor et al., 2003), it 
appears that only cell types exhibiting fast evoked Ca2+ events (i.e., 
less than 100 ms) can account for the early phase of the hemo-
dynamic response. Therefore, vasoactive messengers produced by 
neurons and, possibly, also by astrocytes with fast Ca2+ events, could 
explain this response (Figure 1).
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et al., 2007). In contrast, others only found a permissive role for 
NO when long (1 min) stimulations were used (Lindauer et al., 
1999; Liu et al., 2008). These differences likely reflect the fact that 
NO release is transient (Buerk et al., 2003) which can be explained 
by the NO scavenging effect of hemoglobin and/or by the adapta-
tion of NO producing interneurons (Karagiannis et al., 2009). In 
contrast, vasodilatory prostanoids produced by COX-2, which is 
chiefly expressed by pyramidal cells (Yamagata et al., 1993; Breder 
et al., 1995), account for ∼50% of the CBF response evoked by both 
sustained (Niwa et al., 2000) and brief stimulations (Kitaura et al., 
2007). Consistent with an involvement of neuron-derived mes-
sengers in the early phase of neurovascular coupling, blockade of 
prostanoids and NO synthesis almost completely abolished hemo-
dynamic responses evoked by brief sensory stimulations (Kitaura 
et al., 2007). During long lasting sensory stimulation, blockade of 
EETs synthesis (Peng et al., 2002) or their receptors (Liu et al., 2008) 
blocked about 50% of the blood flow response, demonstrating that 
EETs produced by astrocytes (Alkayed et al., 1996) are released 
during sustained neuronal activity.

Similarly, the local release of K+ from astrocytic endfeet (Filosa 
et al., 2006) accounts for up to 50% of the CBF increase evoked by 
long lasting sensory stimulations (Girouard et al., 2010; Leithner 
et al., 2010) Surprisingly, combined blockade of NOS, COXs, p450 
epoxygenase, BK channels and adenosine receptors (Leithner 

multIplIcIty of vasoactIve messengers: are they  
all requIred?
In the cerebral cortex, none of the vasoactive messengers implicated 
in neurovascular coupling (Girouard and Iadecola, 2006), whether 
of neuronal or astroglial origin, can individually account for the 
hemodynamic response, as demonstrated by genetic invalidation 
(Ma et al., 1996; Niwa et al., 2000, 2001; Kitaura et al., 2007) or syn-
thesis inhibition (Lindauer et al., 1999; Peng et al., 2002; Hoffmeyer 
et al., 2007; Leithner et al., 2010). When individually summed the 
inhibition of these messengers largely exceeds the expected value of 
100% (Iadecola, 2004), which suggests that their kinetics of action, 
temporal and spatial recruitment must be carefully considered to 
elucidate their relative contributions. Alternatively, this may sug-
gest that the activated pathways do not obligatorily operate inde-
pendently from each other, and that, under certain circumstances, 
some may act like modulator rather than mediator of the perfusion 
responses, as documented for NO in the somatosensory cortex 
(Lindauer et al., 1999).

NO, one of the fastest diffusible (Wood and Garthwaite, 1994) 
vasodilator produced by a subset NPY-expressing interneurons 
(Dawson et al., 1991) is likely to represent an immediate early 
messenger of neurovascular coupling. Correspondingly, Shibuki’s 
group showed that neuronal NO can account for up to 50% of the 
CBF response evoked by a brief (1 s) sensory stimulation (Kitaura 

Figure 1 | Summary of the proposed regulation of cortical microvessels 
by pyramidal cells, gABA interneurons and astrocytes (A), and how their 
respective effects can temporally regulate CBF changes (B). (A) Subcortical 
afferents from a variety of brain areas target distinct populations of neurons in 
the cerebral cortex. These activated neuronal networks can either directly act 
on local microvessels, which are endowed with receptors (geometric forms on 
the vessel wall) for most neurotransmitters/neuromediators, or indirectly via 
astrocytes that act as intermediaries to both pyramidal cells and interneurons. 
Known direct vasoactive mediators released from pyramidal cells and 
interneurons correspond respectively to COX-2 derivatives like prostaglandin 
E2 (PGE2) and NO and, possibly, GABA, whereas astrocytes act chiefly by 
releasing dilatory EETs, an effect comparatively slow as opposed to that of NO 

and PGE2 (or other neurally released vasoactive molecules or peptides). The 
possibility that sub-cortical afferents directly contact and act upon cortical 
astrocytes or microvessels also has to be taken into consideration. Modified 
from Figure 3 in Hamel (2006). (B) Schematic representation of the relative 
and temporal contributions of selected vasoactive mediators produced by 
pyramidal cells (PGE2), interneurons (NO) and astrocytes (EETs), to the CBF 
response evoked by sensory stimulation (see Table 1 for a more complete 
list). Brief stimulations (1 s) are more likely to involve neurally-derived 
mediators whereas sustained stimulation (1 min) are more susceptible to 
recruit astrocyte-derived messengers. NO being transiently released its 
contribution to CBF response during sustained stimulation is minor and could 
account for its permissive role.
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ing systems (Bouchard et al., 2009) that allow simultaneous moni-
toring of Ca2+ events and hemodynamics should help evaluate the 
contribution of specific neuronal types in neurovascular coupling. 
This should provide decisive conclusions on the temporal, spatial 
and extent of the neurally-driven hemodynamic alterations and 
how the latter can be interpreted in the context of brain imaging 
of normal or pathological physiology.

Indeed, since astrocytes appear as intermediary effectors in 
conveying signals for sustained hemodynamic responses, their 
alteration – primarily expressed by a state of chronic activation 
– in several chronic diseases of the central nervous system such 
as Alzheimer’s disease or epilepsy, has to be seriously consid-
ered. Altered perfusion signals detected by fMRI, PET or DOI 
may represent astroglial dysfunction and not necessary impaired 
neuronal activity. Extending such thinking to the microcircula-
tion itself, the functional endpoint in the intricate cascade of 
neuronal-astrocytic-vascular events evoked by increased brain 
activity, any diseases of the blood vessels themselves or alterations 
in their physical capacity to dilate or constrict, as seen in patholo-
gies such as hypertension, diabetes, hypercholesterolemia and, 
even Alzheimer’s disease (Iadecola, 2004; Zlokovic, 2008) would 
hinder the correct vascular response to totally normal neuronal 
activities. This further highlights that extreme caution should 
be applied to perfusion signals when making direct inference 
to altered neural activity (Schleim and Roiser, 2009; Ekstrom, 
2010). Hence, a careful understanding of the neuronal circuitry 
at work will need to be interpreted in the context of a healthy 
or sick brain taking neuroinflammation and vascular diseases as 
possible confound factors.
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et al., 2010) did not reach a total inhibition of the late phase of 
the hemodynamic response as expected from individual block-
ades (see above). This suggests that either multiple inhibition was 
incomplete or that other long lasting vasodilatory messengers are 
involved (Cauli et al., 2004), possibly VIP, which is contained within 
GABA interneurons targeted by thalamocortical afferents (Staiger 
et al., 1996) and released during sensory stimulation (Wang et al., 
1985). Similarly vasodilatory messengers derived from the endothe-
lium (Rosenblum, 1986) such as NO, prostacyclin (Faraci and 
Heistad, 1998) but also EETs (Campbell and Fleming, 2010), might 
be recruited under certain circumstances as it was reported for 
endothelial NO after muscarinic m5 receptor activation (Elhusseiny 
and Hamel, 2000; Yamada et al., 2001).

current understandIng, future dIrectIons and 
clInIcal ImplIcatIons
Current evidence suggests that neuronal and astroglial signals that 
transduce changes in neuronal activity into an integrated vascular 
response are highly dependent upon the neurotransmitter released 
by the incoming afferents, and strictly determined by the target neu-
rons within the activated area. Particularly, depending on the nature 
of the afferent input (i) different neuronal or astroglial messengers, 
likely acting in sequence, mediate the hemodynamic changes, (ii) 
some recruited neurons release messengers that can directly alter 
blood vessel tone, (iii) others act by modulating neuronal and astro-
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