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is counteracted by the increase in O
2
 supply when CBF increases 

(Ances et al., 2001a; Thompson et al., 2003; Offenhauser et al., 
2005; Enager et al., 2009).

Oxidative metabolism and CBF exert not only counteracting 
effects on tissue oxygenation but also on hemoglobin oxygenation. 
On one hand, increased oxygen metabolism drives conversion of 
oxygenated (oxy-Hb) to deoxygenated hemoglobin (deoxy-Hb). 
On the other hand, a disproportionately large increase in regional 
CBF leads to a washout of deoxy-Hb from the activation area, 
resulting in a decrease of deoxy-Hb and an increase of oxy-Hb 
(Obrig et al., 1996; Lindauer et al., 2001). CBF increases exceed 
CMRO

2
 increases by a factor of 2-10 (Fox et al., 1988; Lin et al., 2008 

and references therein). The exact value is still intensely debated. 
Methodological issues regarding CMRO

2
 measurement might play 

a relevant role, especially in fMRI (Lin et al., 2008) and the factor 
likely varies with stimulation parameters and between brain regions 
and species. However, consensus exists that the increase in CBF is 
mostly accompanied by tissue hyperoxygenation. The washout and 
decrease of deoxy-Hb provides the basis for functional neuroimag-
ing with BOLD-fMRI. The relation of metabolic and vascular events 
during functional activation is illustrated in Figure 1.

Physiology of the hemodynamic resPonse during 
increased neuronal activity
In the brain, coupling of neuronal activity and metabolism with 
regional cerebral blood flow (rCBF), and cerebral blood oxy-
genation (rCBO) is tight (“neurovascular coupling”), so rCBF 
or rCBO changes can be used to map brain activity with high 
spatial resolution (“functional neuroimaging”). Considerable 
progress has been made over the past decades in understanding 
the physiological mechanisms of neurovascular coupling, but key 
mechanisms underlying the regulation of brain blood flow and 
metabolism remain elusive. Tissue factors such as K+, H+, NO, 
or adenosine (Iadecola, 2004) have been center stage ever since 
1890, when Roy and Sherrington (1890) first proposed that rCBF 
is regulated by local metabolites. It has long been suggested that 
the increase in CBF during neural activation is driven by a need 
for increased delivery of oxygen or glucose. During functional 
activation, oxygen metabolism (cerebral metabolic rate of oxygen, 
CMRO

2
) increases substantially (Ances et al., 2001b; Gjedde et al., 

2002; Dunn et al., 2005), and a regional and transient change in 
tissue oxygenation occurs. Increased oxygen consumption during 
neuronal activity results in a decrease in tissue oxygenation which 
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In BOLD-fMRI, the signal transduction of neuronal activ-
ity is even more complex and influenced by methodological 
aspects (e.g., spin echo vs. gradient echo sequences) and field 
strength (Uludag et al., 2009). However, a close relation between 
the fMRI-BOLD signal and the deoxy-Hb signal measured with 
optical imaging has been demonstrated repeatedly, e.g., in a recent 
study with concurrent measurements by Kennerley et al. (2009). 
Furthermore, a close correlation has been shown recently between 
fMRI signal changes and synaptic activity, whereas the correlation 
with cellular action potentials appears to be weaker (Mathiesen 
et al., 1998, 2000; Logothetis et al., 2001; Rauch et al., 2008). 
These findings are congruent with the very recent finding that 
action potentials are highly energy-efficient, which means that 
their contribution to activity-dependent metabolism is minimal 
(Alle et al., 2009).

As described, assessing neuronal activity by non-invasive func-
tional brain imaging techniques which are based on the hemody-
namic response depends totally on the physiological cascade of 
metabolism and blood flow. At present, functional brain imaging 
with near infrared spectroscopy (fNIRS) or by BOLD-fMRI is 
widely used in cognitive neuroscience in healthy subjects where 
neurovascular coupling and cerebrovascular reactivity can be 
assumed to be intact. Local activation studies as well as studies 
investigating functional connectivity between brain regions of 
the resting brain provide a rapidly increasing body of knowledge 
on brain function in humans and animals (for recent reviews 
see Obrig and Villringer, 2003; Auer, 2008; Logothetis, 2008; He 
and Raichle, 2009; Lu et al., 2010). However, more and more 

experimental evidence shows that changes in baseline physiologi-
cal parameters, pharmacological interventions, or disease-related 
vascular changes may significantly alter the normal response of 
blood flow and blood oxygenation in amplitude as well as time 
course dynamics and thus may lead to misinterpretation of neu-
ronal activity. Functional MRI techniques are increasingly being 
used in patients with severe brain diseases, even in patients with 
vegetative or minimally conscious state (Monti et al., 2010) and 
this use might increase substantially in the future. To exactly 
understand the effect of pathophysiology on the mechanisms 
of neurovascular coupling we need systematic basic research on 
these interferences. Animal studies on neurovascular coupling 
are different from human functional activation studies in many 
aspects. Among others, anesthesia, surgery, small brain size, lack 
of gyration in rodent brain, and different functional activation 
systems produce uncertainties when translating the results to the 
human brain. However, despite this limitation, animal studies 
deliver important complementary information on blood flow 
and blood oxygenation changes for human NIRS and fMRI 
since they allow invasive procedures and multimodal imaging 
with high signal-to-noise ratio to systematically investigate these 
pathophysiological influences.

In the following we will therefore summarize examples of 
recent experimental findings on pathophysiological changes 
of neurovascular coupling parameters in animals from our 
group and from others and discuss potential implications for 
functional imaging based on hemodynamic signals such as NIRS 
and BOLD-fMRI.

FIguRe 1 | Physiology of the hemodynamic response during increased neuronal activity.
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tumor did not cause a significant change. In a recent study, we 
found that the amplitude of the functional deoxy-Hb decrease in 
rat somatosensory cortex was reduced when ICP was elevated to 
7 mmHg. At an ICP of 14 mmHg the deoxy-Hb response was close 
to 0 and even reversed at an ICP of 28 mmHg (Figure 4). Deoxy-Hb 
amplitude and ICP were significantly correlated (r = 0.64). Time 
matched control animals without ICP elevation did not show rel-
evant changes in stimulus-induced responses of CBF, CBV, and 
deoxy-Hb. This data suggests that BOLD-fMRI can be seriously 
impaired by ICP, e.g., in a patient with a brain tumor and mildly 
elevated ICP, pre-surgical BOLD-fMRI might not reliably detect 
functionally eloquent brain areas (Füchtemeier et al., 2010).

altered vascular reactivity: effects of reduced cBf resPonse 
on deoxy-hb changes during functional activation
During aging or vascular dementia and Alzheimer’s disease, 
impaired vascular reactivity may not only reduce the CBF responses 
during preserved neuronal activation, but may also significantly 
alter blood oxygenation changes. In a recently published study, 
we reduced the CBF responses in anesthetized rats by pharma-
cologically blocking well-known mechanisms of neurovascular 
coupling. While the CBF response to functional activation was 
reduced by approximately 70%, the deoxy-Hb response was abol-
ished (Figure 5) or even reversed into an increase of deoxy-Hb 
[see Supplementary Figure 3 in Leithner et al. (2010)] instead of 
the normal outwash response (Leithner et al., 2010). Importantly, 
COX-2 inhibitors, a common medication in patients, were part of 
the pharmacological cocktail used to block the CBF response.

Comparable results of inverted BOLD and tissue oxygenation 
responses were shown by another group using severe systemic 
hypotension to abolish the CBF response during functional acti-
vation (Nagaoka et al., 2006; Masamoto et al., 2008).

To further address this issue, we are currently investigating 
whether the well-known impairment of vascular reactivity com-
bined with moderate hypoperfusion within the first 2 h after corti-
cal spreading depression has any impact on blood flow and blood 
oxygenation responses to somatosensory stimulation in anesthe-
tized rats (Offenhauser et al., 2007). Preliminary and unpublished 
data from a small pilot study show that within the first 30 min after 
CSD, the CBF response to whisker hair deflection in anesthetized 
rats (n = 5) was significantly reduced despite restored neuronal 
responses. In separate animals we found that under these conditions 
the deoxy-Hb response is considerably altered (n = 3) (Figure 6). 
Animals were prepared and CBF and CBO changes assessed as 
described in Lindauer et al. (2001).

Increased baseline CMRO
2
 in parallel with reduced CBF during 

resting and stimulated conditions (transcallosal stimulation) after 
CSD was recently demonstrated by Piilgaard and Lauritzen (2009), 
and can be considered as a possible cause for the altered deoxy-Hb 
response shown in our experiments.

synoPsis of exPerimental data
The examples presented show that whereas some changes in 
baseline conditions such as hypothermia do not alter neurovas-
cular coupling, other alterations in baseline conditions as well as 
an impairment of vascular function may have a serious impact 

examPles of recent exPerimental findings
altered Baseline conditions: effects of changes in Baseline 
Blood flow, Blood oxygenation, Body temPerature, and 
intracranial Pressure on hemodynamic signals
In studies mapping brain activity, baseline blood flow and baseline 
blood oxygenation may differ between subjects and between ses-
sions within the same subject. In addition, factors like premedica-
tion or anxiety may influence the baseline conditions in patients. 
Several studies therefore investigated whether baseline cerebral per-
fusion and oxygenation significantly influence activation induced 
deoxy-Hb changes and thus the BOLD signal. When modeling the 
hemodynamic response to brain activation Buxton et al. (2004) 
predicted a significant reduction of the BOLD response during 
increased baseline CBF. Their prediction has been confirmed by 
several experimental studies within the last years. In two recent 
elegant studies by Jones et al. (2005) and Huppert et al. (2009) using 
anesthetized animals, hypercapnia was induced to increase baseline 
perfusion while blood oxygenation and blood flow changes during 
functional activation were being measured. A perfusion elevation 
of ∼20% during mild hypercapnia (with no change in neuronal 
activity or CMRO

2
) resulted in a significantly diminished deoxy-Hb 

response, whereas the absolute CBF (but not the relative) responses 
remained constant. When baseline perfusion was increased by up to 
100% (stronger hypercapnia), the deoxy-Hb response almost disap-
peared (Jones et al., 2005). However the notion that CMRO

2
 and 

neuronal activity do not change during hypercapnia has recently 
been questioned (Zappe et al., 2008) and is still matter of a con-
troversial debate (Chen and Pike, 2010).

As long as neuronal activity and CMRO
2
 remain constant, an 

increase in baseline blood flow results in blood hyperoxygenation. In 
our own studies, we therefore addressed the effect of manipulations of 
baseline blood oxygenation on deoxy-Hb responses. During hyperoxia 
the deoxy-Hb outwash was significantly reduced under normobaric 
conditions (Lindauer et al., 2003) or even abolished under hyperbaric 
conditions of 3 or 4 ATA (Lindauer et al., 2010), while neuronal activ-
ity and CBF responses remained unaltered (Figure 2).

Induced hypothermia is a routine therapeutic intervention in 
patients after cardiac arrest (Geocadin et al., 2006) and is cur-
rently being investigated as a potential neuroprotective treatment 
in ischemic stroke (Sacco et al., 2007). It is not clear whether fMRI 
or fNIRS work under these circumstances. In a recent study we have 
investigated the effect of hypothermia on neurovascular coupling 
(Royl et al., 2008). Although hypothermia reduced baseline CBF 
by almost 50%, neurovascular coupling was preserved. Reduction 
of functional changes in CBF, deoxy-Hb and CMRO

2
 followed 

reductions in neuronal activity during hypothermia (Figure 3). 
Hypothermia therefore seems to be a condition in which functional 
changes in rCBF and rCBO can still provide a reliable correlate of 
changes in neuronal activity.

It has long been known that ICP has a strong influence on cer-
ebrovascular dynamics (Kety et al., 1948). The influence of ICP on 
BOLD-fMRI has not been studied so far. Indirect conclusions can 
be drawn from studies that report an alteration of BOLD-fMRI in 
patients with an intracranial tumor, which is often accompanied 
by an increased ICP. Schreiber et al. (2000) have shown that a glial 
tumor reduced the ipsilateral BOLD-activity, whereas a non-glial 
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FIguRe 3 | During hypothermia, functional changes in rCBF and rCBO (Hbt and deoxy-Hb) still provide a reliable estimate of neuronal activity and oxygen 
metabolism (SeP and CMRO2) (from Royl et al., 2008).

FIguRe 2 | During increased baseline blood oxygenation by hyperbaric hyperoxia, the deoxy-Hb response is abolished (from Lindauer et al., 2010), while 
the CBF response is unaltered.

on the hemoglobin derived response. In particular, our finding 
of significantly changed patterns of deoxy-Hb responses to func-
tional activation during pharmacologically or pathophysiologically 
reduced CBF responses clearly points toward the need for a careful 
interpretation of neuronal function assessed by methods based on 

vascular parameters like NIRS and BOLD-fMRI whenever vascular 
reactivity may be impaired. In conclusion, the neurovascular unit 
can be seriously disturbed by a variety of interferences, and detailed 
knowledge of the relationship between oxygen metabolism, blood 
flow, and blood oxygenation will help us to better understand func-
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than optical imaging, uncritical application of fMRI in situations of 
 disturbed neurovascular coupling might be somewhat more likely and 
vulnerability for potential confounders is therefore more important 
for this technique. Notwithstanding the implications equally apply to 
optical methods that also play an important role in human studies. 
Particularly fNIRS is suited for investigating psychiatric patients and 
children since it does not require as much cooperation.

Several studies have been performed so far to better understand 
the influence of baseline CBF and of drug effects on functional 
activation induced NIRS and BOLD signal changes in humans. 
Beside the use of hypercapnia, the influence of caffeine has been 
investigated in multimodal approaches. A reduction in baseline 
CBF and baseline BOLD signal accompanied by an increase in the 
evoked CBF and BOLD response (Chen and Parrish, 2009) as well as 
reduced measures of resting state BOLD connectivity in the motor 
cortex (Rack-Gomer et al., 2009) have been described after caf-
feine intake. For indomethacin, a reduction of the baseline BOLD 
signal and of stimulation induced BOLD and CBF responses dur-
ing preserved CMRO

2
 has been reported, whereas acetylsalicylate, 

another drug regularly used in patients, had no effect on the BOLD 
signal (Bruhn et al., 2001; St Lawrence et al., 2003). Furthermore, 
combined approaches of BOLD signal and CBF measurement are 
gaining importance to achieve a quantitative interpretation of the 
magnitude of the BOLD effect in relation to oxygen metabolism 
under normal conditions (Davis et al., 1998; Leontiev and Buxton, 
2007) or to investigate whether the coupling relationship between 

tional brain imaging performed on the basis of vascular changes. 
Further systematic research is needed to achieve this knowledge. 
Whenever alterations in baseline parameters or vascular reactiv-
ity are suspected, it is mandatory that physiological parameters 
and baseline perfusion be monitored and vascular reactivity tested 
while using the NIRS or BOLD signal to image brain activation in 
experimental setups.

PossiBle imPlications for non-invasive functional 
Brain imaging of the diseased Brain
Our current knowledge of the complex interaction between meta-
bolic and vascular events during neurovascular coupling leads 
us to anticipate challenges in the quest for a correct interpreta-
tion of data by fNIRS or BOLD-fMRI obtained from the diseased 
brain. Possible pathophysiological effects on the mechanisms or 
mediators of neurovascular coupling and/or the impairment of the 
vascular system’s ability to react to released mediators are hitherto 
largely unknown. Pathophysiological events have the potential to 
interfere with the signal transduction between neural activity and 
brain hemoglobin oxygenation (i.e., fNIRS and BOLD-fMRI) at 
many levels.

In the following paragraphs we will discuss potential implications 
of these studies. We will specifically focus on BOLD-fMRI because it 
is the most widely used neuroimaging method and the most likely 
to be applied in patients due to its non-invasiveness and availabil-
ity. Furthermore, as implementation of fMRI is more standardized 

FIguRe 4 | When elevating ICP, functional deoxy-Hb changes can be reduced, leveled out, or reversed, although neuronal activity (SeP) is unchanged and 
neurovascular coupling persists for CBF and CBV (from Füchtemeier et al., 2010).
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also in their time course dynamics. For example, a study on stroke 
patients did show a longer time to peak in the BOLD activation 
time course, presumably reflecting a disturbed cerebral autoregula-
tion (Altamura et al., 2009). Other fMRI studies on human subjects 
found a prolonged BOLD response in patients with hemodynami-
cally significant stenoses (Roc et al., 2006) or a changed temporal 
dynamic of the BOLD response under caffeine (Liau et al., 2008). 
An fNIRS study on patients with cerebral microangiopathy reports 
a reduced amplitude of the hemodynamic response in tight correla-
tion with behavioral deficits. In addition, an early deoxygenation of 
hemoglobin right after stimulation onset as well as a delay of the 
hemodynamic response is described, indicating not only frontal 
dysfunction but also an impairment of neurovascular coupling in 
cerebral microangiopathy (Schroeter et al., 2007). Functional MRI-
guided neurosurgery is another field of application for BOLD-fMRI 

CBF and oxygen metabolism may be altered under conditions of 
anesthesia, drug intake or disease (calibrated BOLD-fMRI). Only 
recently, it has been shown that under sevoflurane anesthesia, base-
line CBF and the task-induced changes in CBF decreased, whereas a 
larger change in BOLD was observed (Qiu et al., 2008). While com-
paring functional activation induced BOLD responses in younger 
and older subjects, Ances et al. (2009) found a significantly smaller 
BOLD response for the older age group despite similar fractional 
CBF and CMRO

2
 changes and showed that the weaker BOLD 

response for the older is explained by a reduction in baseline CBF. 
In another study reduced activation of the frontal cortex has been 
shown in patients with bipolar disorders performing a cognitive 
task despite normal vascular responses to hypercapnia (calibrated 
fNIRS) (Matsuo et al., 2007). In addition, blood flow and blood oxy-
genation responses may not only be affected in their amplitude but 

FIguRe 5 | When the CBF response is pharmacologically reduced, the deoxy-Hb response is abolished (from Leithner et al., 2010).

FIguRe 6 | Altered neurovascular coupling within the first hour following CSD in anesthetized rats.
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summary and outlook
Functional MRI may not be reliable in pathological states, as neuronal 
activity may be preserved but deoxy-Hb changes absent. Alterations 
in rCBF or arterial blood oxygenation, hyper- or hypocapnia, changes 
in intracranial pressure, severe decreases of systemic blood pressure, 
cortical spreading depressions, medication or brain or vascular 
diseases may alter the relationship between neuronal activity and 
BOLD-signals, with the risk of false negative findings in brain acti-
vation studies. To guarantee correct interpretation of these studies, 
future research needs to deepen our understanding of the basic mech-
anisms of neurovascular coupling and the specific characteristics of 
disturbed neurovascular coupling in the diseased brain.
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as a non-invasive imaging technique. Despite its attractiveness for 
presurgical mapping to localize cerebral function in areas within 
or near tissue intended for neurosurgical resection (for review see 
Matthews et al., 2006), its reliability and thus applicability in brain 
tumor patients has been questioned (Fujiwara et al., 2004; Bartoš 
et al., 2009). In accordance with this critique, a very recent study 
using a multimodal approach in patients with primary brain tumors 
shows strong evidence for an impairment of vascular reactivity near 
meningiomas and high grade gliomas (Jiang et al., 2010). In addi-
tion, several studies on patients suffering from cerebrovascular dis-
eases such as stroke or carotid artery stenosis explicitly used BOLD 
imaging to investigate impaired vascular function during preserved 
neuronal activity (Hamzei et al., 2003; Rossini et al., 2004; Krainik 
et al., 2005; Roc et al., 2006). In line with the above mentioned results 
from animal studies, these examples from human studies provide 
additional evidence that the deoxy-Hb and the BOLD response alone 
can result in a misleading interpretation of underlying physiological 
changes. Therefore they further support the need of knowledge on 
pathophysiological interferences and the use of controlled methods 
like calibrated BOLD-fMRI or fNIRS in situations where the nor-
mal coupling between CBF and oxygen metabolism in respect to 
amplitude and time course might be altered.

Despite the numerous studies with data from experimental and 
clinical studies in animals and humans that critically assess the 
reliability of vascular parameters to measure neuronal function 
under altered coupling conditions (Matthews et al., 2006; Iannetti 
and Wise, 2007; Wierenga and Bondi, 2007; Fleisher et al., 2009), 
the implementation of this knowledge in clinical studies in patients 
is still far from being established. Not only prior but also very 
recent studies on patients with ischemic stroke (Loubinoux et al., 
2003; Enzinger et al., 2008), multiple sclerosis (Reddy et al., 2000; 
White et al., 2009), Parkinson’s disease (Schonberg et al., 2010), 
Alzheimer’s disease and dementia (Sauer et al., 2006; Thiyagesh 
et al., 2009) and schizophrenia (Huang et al., 2010) still do not con-
trol for impaired coupling, disturbed vascular reactivity or altered 
resting levels of blood volume, CBF, CBO, or metabolism as possible 
confounders to their findings. Therefore, some of these studies 
may bear the risk of generating a false negative (or false positive) 
conclusion. Further experimental and clinical studies will help us 
to identify any involvement of the vascular system, particularly in 
diseases putatively based on parenchymal alterations.

A number of suggestions for a general improvement of BOLD-
fMRI studies during possibly impaired neurovascular coupling have 
been published by Iannetti and Wise (2007). As more experimental 
evidence from experimental (animal) studies becomes available, 
anticipation of changes in amplitude or dynamics of BOLD, CBF, 
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