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Cerebral metabolism is compartmentalized between neurons and glia. Although glial
glycolysis is thought to largely sustain the energetic requirements of neurotransmission
while oxidative metabolism takes place mainly in neurons, this hypothesis is matter of
debate. The compartmentalization of cerebral metabolic fluxes can be determined by '3C
nuclear magnetic resonance (NMR) spectroscopy upon infusion of 3C-enriched com-
pounds, especially glucose. Rats under light a-chloralose anesthesia were infused with
[1,6-"3Clglucose and '3C enrichment in the brain metabolites was measured by '*C NMR
spectroscopy with high sensitivity and spectral resolution at 14.1 T. This allowed deter
mining '3C enrichment curves of amino acid carbons with high reproducibility and to
reliably estimate cerebral metabolic fluxes (mean error of 8%). We further found that TCA
cycle intermediates are not required for flux determination in mathematical models of
brain metabolism. Neuronal tricarboxylic acid cycle rate (V1ca) and neurotransmission rate
(VnT) were 0.45+0.01 and 0.11 £0.01 wmol/g/min, respectively. Glial V1ca was found to
be 38 +3% of total cerebral oxidative metabolism, accounting for more than half of neu-
ronal oxidative metabolism. Furthermore, glial anaplerotic pyruvate carboxylation rate (Vpc)
was 0.069 £ 0.004 wmol/g/min, i.e., 25+ 1% of the glial TCA cycle rate. These results sup-
port a role of glial cells as active partners of neurons during synaptic transmission beyond
glycolytic metabolism.

Keywords: glucose metabolism, neurotransmission, mathematical modeling, NMR spectroscopy, neurotransmitter

metabolism

INTRODUCTION
Cerebral function depends on coordinated interaction of distinct
cell types, namely neurons and glial cells, and relies on high meta-
bolic activity that is supported by continuous and adequate supply
of glucose and oxygen from the blood stream (Siesjo, 1978). Reg-
ulation of neuronal-glial cooperation at metabolic level involves
the mechanism of deactivation of the major excitatory neuro-
transmitter, glutamate, through glial uptake and conversion to
electrophysiologically inactive glutamine, which is then trans-
ported back to the neuron to replenish the neurotransmitter pool
of glutamate (see revision by Zwingmann and Leibfritz, 2003). The
maintenance of this exchange of glutamate and glutamine between
neurons and glia requires energy provided by glucose oxidation in
glycolysis and tricarboxylic acid (TCA) cycle (e.g., Sibson et al,,
1998).

Although brain activity relies on blood glucose, it is not
excluded the possibility of lactate exchange between metabolic

Abbreviations: ATP, Adenosine-5'-triphosphate; FE, fractional enrichment; NMR,
nuclear magnetic resonance; PCA, perchloric acid; TCA, tricarboxylic acid.

compartments. In fact, a putative lactate shuttle is thought to exist
from astrocytes to neurons (Magistretti et al., 1999). According to
this hypothesis, most glucose is oxidized to lactate in astrocytes and
the resulting adenosine-5'-triphosphate (ATP) suffices to main-
tain glutamate clearance from the synaptic cleft and conversion
to glutamine. The produced lactate is transferred to neurons for
oxidative degradation (Pellerin and Magistretti, 1994; Magistretti
et al.,, 1999). Based on this hypothesis, glial metabolism has been
thought to be mostly glycolytic (Sibson et al., 1998; Shulman et al.,
2003), which is controversial (e.g., Dienel and Hertz, 2001; Gjedde
and Marrett, 2001; Simpson et al., 2007; Mangia et al., 2009). Fur-
thermore, astrocytic uptake of glutamate could also be fueled by
ATP of mitochondrial origin (Dienel and Hertz, 2001) and, in fact,
the glial TCA cycle was found to account for 30% of total TCA cycle
activity in the conscious rat brain (Oz et al., 2004). A substantial
fraction of mitochondrial oxidation in astrocytes occurs through
pyruvate carboxylase and was suggested to increase with cerebral
activity (Sibson et al., 1998; Choi et al., 2002; Oz et al., 2004).
The compartmentalization of these metabolic pathways and
inter-compartmental interactions have been studied by non-
invasive '°C nuclear magnetic resonance (NMR). Dynamic
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in vivo 1*C NMR spectroscopy combined with the infusion of
13C-enriched substrates and followed by appropriate mathemat-
ical modeling was proved to be a powerful tool for studying
the compartmentalized cerebral metabolism. Although brain cells
have the ability of using several substrates, glucose is well estab-
lished as the main fuel for cerebral metabolism (Siesjo, 1978).
The most determined metabolic rates upon infusion of '*C-
enriched glucose include glucose utilization (CMRgy.), neuronal,
and glial TCA cycles (V'tca), the malate—aspartate shuttle activity
(Vx), apparent neurotransmission flux (Vnr), i.e., glutamate—
glutamine cycle, and glial anaplerotic pyruvate carboxylation
(Vpc) (e.g., Sibson et al., 1998; Gruetter et al., 2001; Oz et al.,
2004; Patel et al., 2005). However, strong debate is continuously
generated on the relative values for these metabolic fluxes and
how should they be properly determined (Shestov et al., 2007;
Uffmann and Gruetter, 2007; Shen et al., 2009). Many assump-
tions are generally used for in vivo determination of metabolic
fluxes and concern has been raised on the reliability of estimated
fluxes from experiments using >C-enriched glucose as metabolic
tracer (Shestov et al., 2007; Shen et al., 2009).

We tested the hypothesis that high sensitivity and resolution
achieved in 13C NMR spectra at 14.1 T leads to increased reliabil-
ity in detected >C enrichment time courses and thus allows us to
determine accurate metabolic fluxes. In fact, the present data was
acquired with high temporal resolution, during approximately 6 h
and with low noise level, which are conditions required for accurate
flux estimation (Shestov et al., 2007). In addition, although most
mathematical models were designed with many unknown meta-
bolic pools, namely for TCA cycle intermediates, a simplification
has been proposed and resulted in a mathematical model where
flux estimation is mostly dependent on 'C enrichment of mea-
sured metabolites (Uffmann and Gruetter, 2007). The comparison
between these two approaches was now performed. For the first
time we show experimental evidence supporting that TCA cycle
intermediates are not required in mathematical models of cerebral
metabolism, as previously suggested by mathematical simulations
(Uffmann and Gruetter, 2007).

In this study, metabolic fluxes were determined with higher pre-
cision than in previous '*C NMR studies in the brain of rodents
(e.g., Choi et al., 2002; Patel et al., 2005) or humans (e.g., Gruetter
etal., 2001), as depicted by an average associated error of 8%. We
identified substantial pyruvate carboxylation and glial TCA cycle
rates that together accounted for more than half of neuronal Vrca,
suggesting high glial oxidative metabolism.

MATERIALS AND METHODS

ANIMALS

All experimental procedures involving animals were approved by
the local ethics committee. Male Sprague-Dawley rats (276 £ 11 g,
n =5, obtained from Charles River Laboratoires, France) were pre-
pared as previously described (Duarte et al., 2009a). Briefly, after
fasting for 6 h, rats were anesthetized using 2% isoflurane (Attane,
Minrad, NY, USA) in 30% oxygen in air, and then intubated with
an endotracheal catheter and ventilated with a pressure-driven
ventilator (MRI-1, CWE incorporated, PA, USA). Catheters were
inserted into a femoral artery for monitoring blood gases, glucose,
lactate, and arterial blood pressure, and into a femoral vein for

infusion of saline solutions containing a-chloralose (Acros Organ-
ics, Geel, Belgium) or [1,6-13C]glucose (Isotec, Sigma-Aldrich,
Basel, Switzerland).

Animals were immobilized in a homebuilt holder with a bite bar
and two ear inserts to minimize potential motion. Body tempera-
ture was maintained between 37.0 and 37.5°C with a warm water
circulation system based on the feedback obtained from a home-
built rectal temperature probe. Arterial blood pressure, heart rate,
and respiratory rate were continuously monitored with an animal
monitoring system (SA Instruments, NY, USA). Before inserting
the animal in the bore of the magnet, anesthesia was switched
to a-chloralose (intravenous bolus of 80 mg/kg and continuous
infusion rate of 28 mg/kg/h). Arterial pH and pressures of O, and
CO;, were measured using a blood gas analyzer (AVL Compact
3, Diamond Diagnostics, MA, USA). Plasma glucose and lactate
concentrations were quantified with the glucose or lactate oxi-
dase methods, respectively, using two multi-assay analyzers (GW7
Micro-Stat, Analox Instruments, London, UK).

The glucose infusion procedure was adapted from the proto-
col described by Henry et al. (2003a). Briefly, a bolus of 99.9%
enriched [1,6-13C]glucose (1.1 M in saline solution) was given at
a 5-min exponential decay based on the measured basal glycemia
and aiming at 70% plasma fractional enrichment (FE). After the
bolus, 70% enriched [1,6-13 Clglucose (1.1 M in saline solution)
was infused at a rate equivalent to the whole body glucose disposal
rate of 33.2 mg/kg/min (Jucker et al., 2002) and adjusted based on
concomitantly measured arterial plasma glucose concentrations.
Plasma samples were stored at —80°C for determination of sub-
strate FE. Arterial pH and blood gases were maintained within
the normal physiological range by adjusting respiratory rate and
volume.

IN VIVO NMR SPECTROSCOPY

All in vivo NMR experiments were carried out in a DirectDrive
spectrometer (Varian, Palo Alto, CA, USA) interfaced toa 14.1 T
magnet with a 26-cm horizontal bore (Magnex Scientific, Abing-
don, UK), using a homebuilt coil consisting of a 'H quadrature
surface coil and a >C linearly polarized surface coil. The rat brain
was positioned in the isocenter of the magnet and fast-spin-echo
images with repetition time of 55, echo time of 52 ms and echo
train length of eight allowed to identify anatomical landmarks,
which were used to place the volume of interest (VOI) of 320 L
in the brain. Shimming was performed with FAST(EST)MAP
(Gruetter and Tkac, 2000). Localized 'H NMR spectra were
acquired using SPECIAL (Mlyndrik et al., 2006) with echo time of
2.8 ms and repetition time of 4 s. 1>*C NMR spectra were acquired
using semi-adiabatic distortionless enhancement by polarization
transfer (DEPT) combined with 3D-ISIS 'H localization (Henry
et al., 2003a).

Spectral analysis was carried out using LCModel (Stephen
Provencher Inc., Oakville, ON, Canada) for both 'H (Mlynérik
et al., 2006) and *C NMR spectra (Henry et al., 2003b). Simula-
tion of basis spectra for the observable isotopomers was performed
in Matlab (The MathWorks, Natick, MA, USA) as described by
Henry et al. (2003b). The scaling of dynamically measured '3C
concentrations was based on the FE of glutamate C3, which was
determined through the multiplicity of glutamate C4, and the total
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glutamate concentration obtained from 'H NMR spectra. In other
words, FE of glutamate C3 was determined from the C4 reso-
nance in 13C spectra from the last 20 min, assuming steady-state
for C4 enrichment and FE(C3) = C4D34/(C4S + C4D34). Then,
relative intensities in '>*C NMR spectra were used to scale 13C
concentration for all carbon resonances through all time courses.
Additionally, in vitro 1>C NMR spectra from brain extracts and
standard solutions including the metabolites of interest allowed
correcting for the relative differences in signal enhancement by
polarization transfer in DEPT.

IN VITRO NMR SPECTROSCOPY

After each experiment, rats were sacrificed using a focused
microwave fixation device (Gerling Applied Engineering, Inc.,
Modesto, CA, USA) at 4kW for 2s. Brain tissue excluding cere-
bellum was immediately stored at —80°C until extraction. Water-
soluble metabolites from brain and plasma samples were extracted
with 7% (v/v) perchloric acid (PCA) as previously described
(Duarte etal.,2007) and dried with a sample concentrator (Speed-
Vac DNA 120, Thermo Fisher Scientific, Wohlen, Switzerland). The
dried extracts were dissolved in 2H,0O (99.9% 2H, Sigma-Aldrich)
and 1.2 mmol sodium fumarate (Sigma-Aldrich) was added as
internal standard for quantification by 'H NMR spectroscopy.
'H and '*C NMR spectra were acquired on a 14.1 T DRX-600
spectrometer equipped with a 5-mm cryoprobe (Bruker BioSpin
SA, Fallanden, Switzerland) as previously described (Duarte et al.,
2007). Peak areas were quantified by curve fitting.

DETERMINATION OF METABOLIC FLUXES

Kinetic modeling of [1,6-'3C]glucose metabolism was performed
with basis on the mathematical model of compartmentalized cere-
bral metabolism described by Gruetter et al. (2001). Figure 1
depicts metabolic pools and fluxes defined in our model, which is
detailed in Section “Appendix.” An alternative model was designed
to eliminate the non-measurable '*C enrichment of TCA cycle
intermediates (Uffmann and Gruetter, 2007).

Each model was fitted to the '3C enrichment curves over time
using the Levenberg—Marquardt algorithm for non-linear regres-
sion, coupled to a Runge—Kutta method for non-stiff systems to
obtain numerical solutions of the ordinary differential equations
(see Appendix). Significance of the fitted parameters (fluxes) was
inferred from t-statistics. F-statistics was used for assessment of fit
quality and for inter-model comparison. Reliability of determined
fluxes was evaluated by Monte-Carlo analysis, in which Gaussian
noise with the same variance of fit residuals was added to the best
fit and initial conditions were randomly generated within con-
fidence interval of the obtained value. Typically, 500 simulated
datasets were created for each individual analysis. All numerical
procedures were performed in Matlab.

The estimated metabolic fluxes are shown as mean =+ SD, being
the SD resulting from Monte-Carlo simulations. Other results are
shown as mean & SEM of n =5 experiments.

RESULTS

The specific protocol of '3C-enriched glucose infusion raised
plasma glucose from 100 to 350 mg/dL in 5 min and then remained
constant (Figure 2A), leading to a step function in plasma glu-
cose FE of ~70% (Figure 2B). Concentration of lactate in

plasma varied during the experiment as consequence of the vari-
able glucose infusion rate that aimed at a stable plasma glucose
level (Figure 2A). FE of lactate increased at the onset of [1,6-
13C]glucose and was maintained constant over time (Figure 2B),
and may contribute to brain metabolism. For example, at the
end of the experiment, the FE of plasma glucose and lactate were
0.67 £0.01 and 0.50 = 0.01, respectively. FE in plasma alanine and
acetate increased over the experimental time course and seemed
to reach a steady-state after 300 min, respectively achieving a FE of
0.4540.02 and 0.33 £ 0.01 (Figure 2C). Therefore, the influx of
13C labeling from extra-cerebral lactate and acetate was included
in the model (see Appendix). Plasma alanine was considered to
have minor contribution to brain metabolism since it exists at only
11.2 +3.2% of lactate concentration (quantified in PCA extracts
of plasma samples by in vitro NMR spectroscopy). This is further
supported by the relative low rate of alanine transport into the
brain and contribution to metabolism (Broer et al., 2007).

The in vivo spectral quality achieved at 14.1 T can be appreci-
ated from Figure 3. A major improvement was the increased sen-
sitivity relative to lower fields and the full separation of the carbon
positions of glutamate and glutamine C3 which was not possible
at, for example, 9.4 T (Henry et al., 2003b). The 13C resonances
of glucose, glutamate, glutamine, and aspartate were determined
with a temporal resolution of 5.3 min (Figures 3 and 4). Total
concentration of these amino acids was determined in vivo and
found to be 8.5+ 0.4 pmol/g for glutamate, 5.1 0.5 wmol/g for
glutamine, and 2.4 & 0.3 pmol/g for aspartate.

In brain extracts, prepared at the end of the experiment, FE was
0.70 £ 0.02 for glucose, 0.53 & 0.02 for lactate, and 0.54 £ 0.01 for
alanine. Therefore, a significant dilution flux V4, must occur,
leading to different FE in brain glucose and the end products of
glycolysis, namely lactate. Lactate homeostasis resides in a balance
between production, consumption and exchange between brain
parenchyma, and extra-cerebral lactate equivalents. Plasma lac-
tate was labeled at a different enrichment than that of plasma
glucose (Figure 2), thus contributing to brain lactate through
Vin. However, the redundancy between contributions of [1,6-
3Clglucose and [3-'3C]lactate enriched at different levels to
metabolism in mitochondria leads to a high correlation between
Vout, glucose transport (Tmax), and consumption (CMRg)
(Figure 5). Therefore, glucose transport was determined from
the experimental data with a dynamic version of the reversible
Michaelis-Menten model described by Duarte et al. (2009b)
and transport parameters used to simulate glucose transport
that feeds the pyruvate pool: T =0.91=£ 0.03 pmol/g/min,
CMRg =0.50 £ 0.02 pmol/g/min, and K;=0.3240.10mM.
The constraint of parameters directly involved in glucose home-
ostasis was devoid of significant effects on the remaining metabolic
fluxes, with the obvious exception of V gyt.

The compartmentalized model of brain metabolism previously
proposed (Gruetter et al., 2001) was adapted to include a non-
zero concentration of aspartate in the glial compartment and a
dilution factor at the level of glial acetyl-CoA (see Appendix).
Non-linear regression of the model to the determined '*C enrich-
ment curves is shown in Figure 4. Following the suggestion that
TCA cycle intermediates can be excluded from the mathematical
model, at least for the non-compartmentalized case (Uffmann and
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FIGURE 1 | Model of compartmentalized brain metabolism adapted
from Gruetter et al. (2001). Glucose transport is here represented by T ..
CMRy is the cerebral metabolic rate of glucose. Pyruvate (Pyr) originated
from glucose consumption is in fast equilibrium with lactate (Lac) that is
exchanged between neurons and glia and is diluted with extra-cerebral
lactate through Vo, /Vi,. Vi, is the neuronal TCA cycle, V, + Ve is the
total glial TCA cycle, V¢ is the rate of pyruvate carboxylase. In the glial
compartment, the dilution of label at the level of acetyl-CoA (AcCoA)

by glial specific substrates is accounted by V. TCA cycle intermediates
oxaloacetate (OAA) and 2-oxoglutarate (OG) exchange with aminoacids
through the exchange flux V. The apparent glutamatergic neurotransmission
(i.e., glutamate—glutamine cycle) is Vr and glutamine synthetase rate

is Vs. Finally, efflux of labeling from the metabolic system occurs through the
rate of glial glutamine loss V... The superscripts g and n distinguish
metabolic pools or fluxes in the glial and neuronal compartments,
respectively.

Gruetter, 2007), we further tested the fit of such model (derived
in Appendix) with successful results. In any of the cases, the
non-linear regressions were performed without imposing any con-
straint to the eight fluxes of intermediary metabolism that were
estimated. Precision of the estimated fluxes was determined by
Monte-Carlo simulations and the resulting probability was fitted
with a gamma function that, for all estimated fluxes, approached
a Gaussian distribution. For the sake of comparison, estimated
fluxes with both models are shown in Table 1. As the increas-
ing number of experimental '3C enrichment time courses used in
the fitting process may increase the accuracy of estimated fluxes,
as suggested by numerical simulations (Shestov et al., 2007), we
fitted both models providing or not the aspartate C2 and C3
turnover curves (Table 1). Although increased precision was found
to be associated with the number of fitted 1*C enrichment curves,
estimated fluxes did not diverge significantly.

For the most complete model, i.e., including TCA cycle interme-
diates and fitted to 1>C enrichment curves of glutamate, glutamine,
and aspartate, the TCA cycle Vrca was 0.45 £ 0.01 pmol/g/min
and 0.28 £0.02 pmol/g/min the neuronal and glial compart-
ments, respectively. Notably, the flux though the malate—aspartate
shuttle V was in the same order of Vrca. Pyruvate carboxylation
Vpc was 0.069 = 0.004 pumol/g/min, accounting for specific label-
ing of glutamate and glutamine C2. The neurotransmission flux
VNt of 0.11 £ 0.01 pmol/g/min is, in our model, the responsible

for labeling exchange between the two compartments. These
fluxes were not statistically different between the different analyses
(Table 1).

DISCUSSION

Compartmentalized brain energy metabolism was determined fol-
lowing infusion of [1,6-'3C]glucose and direct detection of *C
enrichment of brain metabolites by high resolution '*C NMR
spectroscopy at 14.1 T. High sensitivity was achieved in this
study and permitted to quantify '3C enrichment curves of brain
amino acid carbons with high reproducibility and to reliably
determine cerebral metabolic fluxes, as indicated by the mean
error of 8% associated to the determined fluxes (Table 1). For
the first time to our knowledge, we used '*C turnover curves
determined in vivo in the rat brain for all aliphatic carbons of
glutamate, glutamine, and aspartate for metabolic modeling, sim-
ilarly to what was performed for the human brain (Gruetter
et al., 2001). This, together with the high temporal resolution
and long time course of the detected 1>C enrichment, increased
the level of precision of the measured metabolic fluxes (Shestov
et al., 2007). For the determined metabolic fluxes, although simi-
lar results were obtained in the absence or inclusion of aspartate
13C enrichment curves in the fitting process, precision generally
increased with the number of used turnover curves, especially
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FIGURE 2 | Concentration and fractional enrichment (FE) of plasma glucose, lactate, alanine, and acetate upon infusion of [1,6-"*C]glucose. (A) Shows
glucose (filled symbols) and lactate (open symbols) concentration determined during the entire time course. (B) Depicts FE of glucose and lactate determined
by in vitro "H NMR spectroscopy. FE of alternative brain substrates alanine and acetate were determined in "H NMR spectra of plasma samples (C).

when TCA cycle intermediates are absent from the model (see
Table 1).

Uffmann and Gruetter (2007) previously demonstrated by
means of numerical simulations that the unknown in vivo >C
enrichment time courses of TCA cycle intermediates can be
neglected using a single compartment model of brain metab-
olism. We now extended that model to include the two main
cerebral metabolic compartments (glial and neuronal compart-
ments) and found similar results in the absence or presence of
TCA cycle intermediates in the mathematical model. In fact, sim-
ilar metabolic fluxes were estimated with the two approaches and
identical best fit curves were obtained. However, without the inter-
mediates, increased correlation between the estimated fluxes was
observed (Figure 5). This is caused by the fact that metabolic fluxes
are directly combined in products and quotients in the derived
equations.

Recent publications restricted the analysis of cerebral interme-
diary metabolism by in vivo '3>C NMR spectroscopy to resonances
C4 and C3 and disregarded the C2 of glutamate and glutamine,
which may be principally due to low resolution of acquired *C
NMR spectra or to the use of indirect detection of '*C enrichment
in '"H NMR spectra (de Graaf et al., 2003; Patel et al., 2010; van
Eijsden et al., 2010; Xin et al., 2010). Indirect '3C detection has the
great advantage of higher sensitivity but the drawback of lower
spectral resolution characteristic of 'H NMR spectroscopy even at
14.1 T (Xin etal.,2010). Our results show that, with increased sen-
sitivity at high magnetic field strengths, direct 1*C detection may be
preferred. We achieved good time resolution for aliphatic carbons
of glutamate and glutamine (the most concentrated metabolites
appearing in the '3C spectra of the brain) with high reproducibil-
ity between all animals studied. The data further suggested that

we could reduce the time span of C4 enrichment curves of these
amino acids to 3 min without losing the consistency of the *C
time course measurement (data not shown). Conversely, the 3¢
enrichment curves could be acquired from a volume of interest
smaller than 320 wL (used in this study). In our experimental con-
ditions, we determined the turnover curves for all aliphatic carbons
of glutamate, glutamine, and aspartate and provided them for the
non-linear fit of the mathematical model (Figure 4).

The simultaneous determination of '*C-enriched glucose con-
centrations in plasma and brain allows measuring glucose trans-
port. Notably, high correlation was found between glucose trans-
port (Tmax), consumption (CMRg.), and label exchange before
mitochondrial oxidation (V oy¢). Therefore, glucose transport was
analyzed as described by Duarte et al. (2009b) and the obtained
parameters were used to simulate brain glucose enrichment and
concentration as input for the metabolic model. However, by simu-
lating T max and CMRgy, correlation between V ot and other fluxes
increased. V oy, along with Vi, represent metabolic exchange with
other metabolites fueling brain metabolism, such as free amino
acids (e.g., Broer et al., 2007; Boumezbeur et al., 2010), and inter-
action of glycolysis with other brain pathways like the pentose
phosphate shunt (e.g., Dusick et al., 2007). In fact, the brain is
capable of lactate uptake and metabolism (e.g., Dienel and Cruz,
2009; Gallagher et al., 2009; Boumezbeur et al., 2010). Exchange
between extra-cerebral lactate with pyruvate is modeled by Vi,
and V oy and a net gain or loss of lactate concentration is taken
into account by the ratio of Vi, to Voy. FE of brain lactate was
significantly lower than that of the precursor glucose. Assuming
that lactate is in fast exchange with the direct end product of gly-
colysis, pyruvate, and thus achieves similar FE, there would be a
significant diversion of labeling between glucose entry in the brain
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metabolites from plasma [1,6-Clglucose, with a temporal resolution of Lorentzian-Gaussian apodization was applied before Fourrier transformation
5.3 min (128 scans with TR of 2.5s). The spectrum in (B) was acquired [lb=7 sb=0.12, and sbs =0.02 for (A); sb =0.12 and sbs =0.02
for 1.8 h, starting 3.5 h after the onset of [1,6-"*Clglucose infusion. for (B,C)I.

and oxidation in the mitochondrial TCA cycle. In fact, a significant  glucose phosphorylation is oxidized in the TCA cycle, which is
Vout was determined and, additionally, it was different from Vi, comparable to previous findings (discussed in Siesjo, 1978; Dienel
that represents lactate utilization from extra-cerebral sources (note  and Hertz, 2001).

that plasma lactate was also enriched). Since V oyt > Vi, not all Different relative FE was observed in carbons of glutamate
glucose consumption rate (CMRg ) follows complete oxidation, relative to glutamine. For example, at the end of the experi-
i.e. CMRyjc(ox)- Our results indicate that only 78 & 4% of the total ~ ment, while glutamate C2 enrichment approaches that of C3
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FIGURE 4 | Concentration of enriched glutamate (A), glutamine (B), and
aspartate (C) carbons detected in vivo during infusion of
[1,6-"*Clglucose. For glutamate and glutamine, blue, green, and red lines
represent best fit to the *C enrichment curves for C4, C3, and C2,
respectively. For aspartate, green and red lines depict C2 and C3. Exact
overlap was observed for the best fit curves with both metabolic models, i.e.,
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with and without the inclusion of TCA cycle intermediates. This particular fits
were performed with the inclusion of aspartate resonances. Although some
experiments were conducted over a longer period (Figure 2), the data used
for flux estimation was averaged for 280 min. (D) Shows the concentration of
glucose C6 determined in vivo and the fit result of the dynamic reversible
Michaelis—-Menten model described in Duarte et al. (2009b).

Model dependent on Model independent on
TCAcycle intermediates TCAcycle intermediates 1.0
Tmax
iy M.
VOI.I(
Vec o4
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FIGURE 5 | Correlation matrices showing the covariances between
estimated metabolic fluxes. Metabolic modeling was performed with all
measurable *C enrichment curves for glutamate, glutamine, and aspartate
either including (left plots) or excluding (right plots) TCA cycle intermediate
pools. Due to high correlation found between T .., CMRy., and Vo,
glucose transport kinetics was then determined as described in Duarte
et al. (2009b) and simulated in the present model (bottom matrices).

(Figure 4A), glutamine C2 is close to C4 and different from that
of C3 (Figure 4B). This would only be possible if, in addition to
the glial Vpc labeling C2 of glutamate and glutamine, the TCA

cycle precursor pools in glial and neuronal compartments display
different FE. This is consistent with alternative glial specific sub-
strates fueling brain metabolism, namely acetate (Badar-Goffer
et al., 1990; Cerdan et al., 1990), fatty acids (Ebert et al., 2003),
and ketone bodies (Kunnecke et al., 1993), which are oxidized
to glial acetyl-CoA. Therefore, a dilution factor was introduced
at the level of glial acetyl-CoA (V 4;). V4; not only acts as dilu-
tion factor for glial acetyl-CoA but can also incorporate '3C label
from blood-born acetate (Figure 2C, which was considerable at
the end of the experiment (FE =0.33 £ 0.01). This dilution factor
also accounts for eventual glial specific metabolic processes that
deviate 1*Clabeling from oxidation in the TCA cycle, such as glyco-
gen synthesis (Gruetter, 2003). V g was thus found to be slightly
higher but not substantially different from the acetate consump-
tion rate determined in the rat brain upon with infusions of *C
enriched acetate (Deelchand et al., 2009). This glial labeling dilu-
tion of the acetyl-CoA pool through V g was positively correlated
to the apparent neurotransmission Vr as they are both respon-
sible for the observed difference in C4 labeling between glutamate
and glutamine.

One should note that, since glutamine and glutamate are mostly
located in glial cells and neurons, respectively, Vg also accounts
for the '3Clabeling dilution between the two amino acids. Because
part of glutamine may be undetected in in vivo '"H NMR spectra
(e.g., Hancu and Port, 2011), we determined total glutamine rela-
tive to that of glutamate using resonance intensities and FEs from
the 3C NMR spectra. Therefore, a total glutamine concentration
different from 5.1 & 0.5 pmol/g (measured in this study), may lead
to a modification of V g;.
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Table 1| Cerebral metabolic fluxes (in pmol/g/min) determined either including or excluding TCA cycle intermediates.

Curves fitted With TCA cycle intermediates Without TCA cycle intermediates
Glu +GIn Glu + GIn +Asp Glu+GiIn Glu + GIn +Asp

DETERMINED FLUXES
Vout 0.36+0.05 0.42+0.04 0.37+0.06 0.41+0.05
Ve 0.070+0.004 0.069+£0.004 0.069 +0.005 0.067 +0.004
Viou 0.44+0.01 0.45+0.01 0.46+0.02 0.46 +0.01
Vy 0.23+0.02 0.21+0.02 0.23+0.03 0.214+0.02
Ve 0.76 +£0.07 0.91+0.09 0.83+0.11 0.99+0.12
Vf‘ 0.17+0.06 0.16+0.05 0.23+0.12 0.25+0.16
VNT 0.12+0.01 0.11+£0.01 0.11+£0.01 0.10+0.01
Vil 0.76+0.15 0.66+0.10 0.64+0.13 0.55+0.08
CALCULATED FLUXES

\/T%A 0.30+0.02 0.28+0.02 0.30+0.03 0.27+£0.02
Vin 0.19+0.05 0.224+0.05 0.214+0.07 0.244+0.05
Vs 0.19+0.01 0.18+£0.01 0.18£0.01 0.17+0.01
CMRygic(ox) 0.41+0.02 0.39+0.02 0.42+0.04 0.40+0.02

Determinations were made with '*C enrichment curves from glutamine (Gin), glutamate (Glu), and eventually aspartate (Asp). Estimated values are presented with
two significant digits and the associated SD was determined by Monte-Carlo analysis with at least 500 simulations. Calculated fluxes are defined in the Section

"Appendix.”

The neuronal and glial Vpcpa were 0.45+0.01 and
0.28 £ 0.02 pmol/g/min, respectively. This means that glial V'rca
accounts for 38 &= 3% of total mitochondrial oxidative metabolism,
from which 25 &+ 1% is Vpc. Vpc is further increased upon higher
cerebral activity in the conscious rat (Oz et al., 2004) and reduced
under isoelectricity (Sibson et al., 1998; Choi et al., 2002). This
substantial pyruvate carboxylation flux supports the active role of
glial cells in their metabolic relationship with neurons, especially
during synaptic transmission. In fact, in cultured astrocytes, extra-
cellular potassium was suggested to stimulate bicarbonate influx
(Brookes and Turner, 1994), which can induce anaplerosis (Gam-
berino et al., 1997), and to increase glutamine content (Brookes
and Turner, 1993). In our model, Vs results from the addition
of Vpc to VNt and thus depicts this coupling of anaplerosis to
glutamine synthesis, both occurring in the glial compartment.
To maintain mass balance in the glutamine—glutamate cycle, exit
of labeling from the cycle was modeled as V., representing
other fates of glutamate and glutamine (McKenna, 2007). It is
proposed that astrocytic glycolysis sustains glutamatergic neuro-
transmission and the resulting lactate is shuttled to neurons for
oxidative metabolism (Pellerin and Magistretti, 1994; Magistretti
et al., 1999). This hypothesis considers that astrocytic metabo-
lism is mainly glycolytic, which would be sufficient to meet the
energetic requirements of glutamate uptake and glutamine syn-
thesis in the neurotransmission process (Magistretti et al., 1999).
However, clearance of glutamate could be fueled by mitochondrial
oxidative phosphorylation in astrocytes (Dienel and Hertz, 2001).
In accordance, the present results suggest that a substantial part
of mitochondrial oxidation of glycolytic pyruvate takes place in
the glial compartment, as observed in the conscious rat (Oz et al.,
2004).

The exchange between amino acids in the cytosol and the mito-
chondrial matrix, where the TCA cycle takes place, is mediated

by the malate—aspartate shuttle and responsible for most labeling
exchange between glutamate or aspartate and their oxo-acids 2-
oxoglutarate and oxaloacetate, represented by Vy (Gruetter et al.,
2001). Vx has frequently been assumed to be much larger than
Vrca (e.g., Hyder et al, 1996, 1997; Sibson et al., 1998), i.e.,
Vrcal/Vx =0, which allows simplification of the mathematical
models but may lead to underestimation of TCA cycle fluxes (see
Uffmann and Gruetter, 2007). This assumption implies that 1>C
enrichment of glutamate and aspartate resembles that of OG and
OAA, respectively, which may not be accurate (Gruetter et al,
2001). Experimental evidence shows that this flux could be either
in the range of the TCA cycle flux (e.g., Gruetter et al., 2001; Oz
et al., 2004) or effectively larger (e.g., de Graaf et al., 2004; Yang
et al., 2009). In the rat brain under a-chloralose, we determined
13C enrichment curves with increased sensitivity and estimated a
finite V that is on the same order of Vca in both neurons and
glia. Although from all estimated fluxes, glial V' was the poorest
estimated, i.e., with larger relative SD, all numerical simulations
resulted in a V§ on the order of Vlgc 4+ To our knowledge this is
the first time that V is simultaneously determined in neurons and
glia. Half of the total Vrca, that represents oxidative glucose con-
sumption CMRgc(ox), was found to be 0.39 £0.02 jumol/g/min
(see Table 1), in agreement to other determinations by '*C NMR
(Henry et al., 2002), or to measurements of CMRp; by 70 NMR
spectroscopy (Zhu et al., 2002) and CMRgc by autoradiography
(Ueki et al., 19925 Nakao et al., 2001) in rats under a-chloralose
anesthesia.

The neurotransmission flux VNt represents the flow of 3¢
labeling in the glutamate—glutamine cycle and was now deter-
mined to be 0.11+0.01 pmol/g/min (see Table 1) that is sim-
ilar to that reported by (Sibson et al., 1998) for the rat brain
under a-chloralose anesthesia. It should however be noted that
in the present work, Vnyt was determined with higher precision
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as suggested by an SD below 10%. The use of the C2 turnover
curves of both glutamate and glutamine greatly contributed to
the precision in the estimation of Vnr by receiving direct *C
labeling input through pyruvate carboxylation that occurs in the
glial compartment. A positive correlation was observed between
Vnt and the dilution of glial acetyl-CoA V43 (Shen et al., 2009),
which resides in the fact that V g;) creates a difference between the
FEs of glutamine and glutamate while Vit is responsible for its
dissipation.

In vitro studies suggest the existence of high fumarase activ-
ity randomizing !*C labeling from oxaloacetate (Sonnewald et al.,
1993; Merle et al., 1996). Direct injection of [1—14C]pyruvate in
the neocortex of mice labels glutamate and glutamine, which
would only occur with pyruvate carboxylation and a notable rate
through fumarase (Nguyen et al., 2007). In an alternative model,
flux through fumarase (Vg ) allowing labeling exchange between
OAA C3 and C2 was included. Vg, was detected but poorly
determined, i.e., presented high relative SD, and was not signif-
icantly different from zero, as in a previous in vivo study (Oz et al.,
2004). This is likely due to the high correlation of Vg, to Vpc
that alone accounts for the difference in C2 and C3 enrichment
of glutamate and glutamine. The fact that aspartate, which is in
exchange with OAA, is mostly located in neurons (discussed in
Gruetter et al., 2001), makes it insensitive to this flux. In accor-
dance to the primary location of aspartate to neurons, NMR spec-
troscopy of brain extracts at the end of the experiment revealed
similar FE for C3 and C2 of aspartate in our study (0.52 £ 0.02
and 0.52 £ 0.01, respectively). However, the significant difference
between '3C enrichment of carbons C2 and C3 of glutamate and
glutamine at steady-state is in agreement with low Vg, compared
to Vpc.

Pyruvate recycling was suggested to occur in the brain (e.g.,
Cerdan et al., 1990; Sonnewald et al., 1996; Waagepetersen et al.,
2002; Serres et al., 2007; Scafidi et al., 2010). This process would
lead to enrichment of pyruvate C2 and consequently lactate C2
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APPENDIX

KINETIC MODEL OF [1,6-'*C]GLUCOSE METABOLISM

The mathematical model of compartmentalized cerebral metabolism was adapted from Gruetter et al. (2001) and this publication
should be consulted for an exhaustive description of the model. In Figure 1 are depicted the metabolic pools and fluxes in glia and
neurons used to define the model.

Metabolic but not isotopic steady-state was assumed over the time course of [1,6-'>C]glucose infusion. Metabolite concentrations
determined in vivo (all in wmol/g) were 8.5 £ 0.4 for glutamate, 5.1 + 0.5 for glutamine, and 2.4 & 0.3 for aspartate. The remaining
concentrations required for the model were assumed. Acetyl-CoA and TCA cycle intermediates were considered to be 0.1 pmol/g in
both compartments. Pyruvate was assumed to occur at 10% of lactate concentration (e.g., Mintun et al., 2004) that was measured
as 0.7 £ 0.1 pmol/g. Neurons were assumed to retain 90% of total glutamate and aspartate pools, while glial cells contain 90% of
total observed glutamine concentration. Due to fast exchange between the two compartments, a single virtual pool of pyruvate was
considered to be shared by neurons and glia. This also implies that isotopic enrichment in pyruvate is equivalent to lactate, which is
detectable.

At metabolic steady-state, the fraction of glucose oxidation entering the TCA cycle is (V- + Vfc AT Vpc) /2 that we call CMRgj¢(ox) -
Similarly, total glucose consumption (CMRgc) is CMRgic(ox) + (Vout — Vin)/2. When the outflow (V out) of labeling at the level of lactate
equals the inflow (V,) from extra-cerebral lactate, the total glucose consumption is used for oxidation in the TCA cycle.

The TCA cycle was considered equivalent to the flux through pyruvate dehydrogenase. While in the neuron V-, equals Vppy, in
the glia V_EC 4 18 Vg + Vpc, corresponding to the total oxidation of one molecule of pyruvate.

The flux through neuronal glutaminase is Vnr. In the glia, glutaminase was neglected because the net flux of '3C follows the
direction of the apparent neurotransmission cycle Vnt. The net loss of 13C labeling was modeled as Vg, and mass conservation sets
it equivalent to the anaplerotic flux through pyruvate carboxylase Vpc. Thus Vgs = VNt + Vpc.

Glucose transport across the BBB was defined using a reversible Michaelis—Menten kinetics as previously described for the rat brain
(Duarte et al., 2009b). Therefore, brain glucose (Gpyain) is given by the following expression:

dGprain =T Gplasma(t) — Gprain(t)/ Va
dt e K + Gbrain(t)/Vd + Gplasma(t)

— CMRyc

where Tay is the apparent maximal transport rate, K is the apparent Michaelis constant for glucose transport, CMRy. is the cerebral
metabolic rate of glucose consumption, and V4 is the physical volume for glucose distribution in the brain (0.77 mL/g, as in Duarte
et al., 2009b). Similarly, for 1*C-enriched carbons of glucose, transport is defined by

dlaGbrain _ 13Gplasma(t) - 13Gbrain(t)/vd — CMRy 13Gbrain(t)
dt e K + Gbrain(t)/vd + Gplasma(t) g Gbrain(t)

Although brain glucose can divert to other pathways, it is consumed mainly through glycolysis and the '*C enrichment in C1 and C6
originates the C3 of pyruvate. Pyruvate was considered to be in fast equilibrium with lactate that is exchanged between compartments
and thus a single pyruvate pool was assumed in the model (Figure 1). Brain pyruvate enrichment is defined as follows:

dPyr,
dt

13 Pyr;(t)
Pyr

BGle, (t) + 13G1C6(t)> : BLac,(1)

= CMRge ( Gle(1) Lac()

— (Vour + Viica + Viea + Vic)

Note that, in the model, total concentration of extra-cerebral lactate (Lac) may vary over time in accordance to the observed plasma
lactate levels (Figure 2). Transport of lactate into the brain was simulated with a reversible Michaelis—Menten kinetics as described by
Boumezbeur et al. (2010) leading to enrichment of '*Lac from plasma lactate. Therefore, alteration of plasma lactate levels is reflected in
brain lactate concentration. However, total concentration of pyruvate remains invariable because Vi, is constant under the assumption
of metabolic steady-state.

In peripheral tissues, metabolism of [1,6-'3C]glucose produces [3-!*Cllactate that is released to the blood stream. Incorporation of
13C from blood-born lactate (Lacs) into brain metabolism may occur (e.g., Dienel and Cruz, 2009; Gallagher et al., 2009; Boumezbeur
et al., 2010) and is accounted by Vi, in the equations of brain pyruvate. In addition, V oy represents '3C labeling dilution from the
glycolysis, either by lactate release from brain parenchyma or by glucose utilization in alternative pathways.

Since scrambling of blood !*C glucose and lactate enrichment may occur during peripheral metabolism and enrich carbons other
than glucose C1 and C6 and lactate C3. These carbons are metabolized and lead to enrichment of pyruvate C2 that, by pyruvate
carboxylation, contributes to direct enrichment of oxaloacetate C2. The following expression was defined but, in the absence of sub-
stantial enrichment of glucose C2 or C5 and lactate C2, it leads to simple dilution of oxaloacetate C2 while C3 is enriched in the glial
compartment.

dlsPyr2 — CMRy (13Glcz(t) + 13Glcs(t‘)) Blacy ()

13Pyr2(t)
dt Glc(r) .

Pyr

. g
D) (Vout + Vica + Vica + Vec)
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Neuronal compartment
In the neuronal compartment, the concentration of '*C-enriched TCA cycle intermediates is given by:

dP0oG} L BPyrs(1) BoGi(t)  _  BGluj(r)

a = Py~ (Bt V) g WG
dP0G} BOAAY (1) BOGE(1r) BGluj (1)
= Vb opan (VW) o WG
dPoG) - POAAR(1) va - BOGh(r) . BGlub(r)
= VP gpan — (Vbn V) o X Gl
dPOAAY Vi (POG)(r) + POG) (1) n ny DOAAZ(H) o PASP (1)
a2 oGn — (Vobu + V5) OAA™ X Asp?
dPOAAY Vi (POGH(H) +P0Gh(1) (Vi V) POAAL(t) - n PAsp3 (1)
a2 oG» PDH T "/ 0AAD X Asp®

In the neurons, '3C glutamate, glutamine, and aspartate concentrations are given by the following expressions, where i can refer to
any carbon position.

dPGlu? BOGM (1) BGlul (1) BGIn'(r)
— Vn 1 _ V Vn 1 1
dt X oG" ( NT + X ) Glu™ NT Gln®
d"Glnf' _ v BGInf(1)  PGlnf (1)
dt NT\ GIn8 Gln"

dAsp? _ o BOAAN(1) B B Asph(1)
dt x OAA™ Asp"

Glial compartment

The glia comprises the additional fluxes through pyruvate carboxylase (Vpc) and glutamine synthesis (Vgs) (see Gruetter et al., 2001).
In the glial compartment, a dilution factor was introduced at the level of acetyl-CoA (V 4;), accounting for possible 1>C label dilution
by in vivo metabolism of acetate (Badar-Goffer et al., 1990; Cerddn et al., 1990; Deelchand et al., 2009), fatty acids (Ebert et al., 2003),
or ketone bodies (Kiinnecke et al., 1993).

3AcCoAS (1)
AcCoA®

d3AcCoAS BPyr, (1) BAc, (1)

SR = (Ve Vac) Vi) (Vo + Ve + Vac)

Extra-cerebral acetate may contribute to brain metabolism and therefore '3Ac represents blood-born '*C acetate (Figure 2C). Transport

of acetate into the brain was simulated as described by Deelchand et al. (2009) leading to enrichment of '3Ac from plasma acetate.
Concentration of 13C in carbons of glial TCA cycle intermediary metabolic pools is defined as follows:

dBoGE BAcCoAS(t) BGluf(r) BOGE(t)
S (v, ) 20 g (V VE+ Y, >74
= (Ve Vie) e+ g gt X+ Vee) oG
dBoG BoAAS(t) o B3Glus(1) g BoGi(t)
ad (Vg * VPC) OAA® TGt (Vg Y VPC) 0G#
dBoGS BoAAS(t) o B3Glud(1) g BOGS(t)
= (Ve Vo) —gape + g — (Ve Vo) =5
dPoAAT Vg (POGH( t) + 130Gg(t) N Vg13Asp§(t) v BPyry(1) (v vt Vg) BOAAS(1)
dt 2 ¥ Asp8 PC Ppyr g 1 TPCT X OAAS
dPoAA] Vg (POGi( t) + 13OGg(t) N Vg13Asp§(t) v PPyry(1) (v vt Vg) BOAAS(1)
dt 2 * Asp8 PC Pyr g 1 TPCT X OAAS
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Concentration of '>C in carbons of glial glutamate, glutamine, and aspartate is defined by the equations below, where i can refer to
any carbon position.

dBGlu? BOGE(t) BGlud(r) BGlul(t)
a (Vi) —oge — (Vs ) —gpe NG
d13Gln® BGlué(t) B3GInb(¢)
dt - = VGS Glulg - (VNT + Vefﬂux) Glnlg
dPAsp} Ve POAAf(1)  PAspi(1)
dt | 0AAs Asp®

REMOVING TCA CYCLE INTERMEDIATES FROM THE MODEL
Simplification of the mathematical model of cerebral metabolism was used to remove TCA cycle intermediates from mathematical
expressions, as previously suggested by simulations (Uffmann and Gruetter, 2007).

13 n 13 n
For the sake of example, the combination of equations for neuronal glutamate C4 (CI (ﬁlu“ ) and 2-oxoglutarate C4 (d CﬁG“ ) can be
13 n
used to eliminate terms with %((3;4“(:) , leading to the following expression:
dP¥Glu} vr  dPOGY  VPVELy PPy (n) VIV BGluj (1) v BGInj (1)
dt Vi + Ve dt T VR g+ VR Pyr Vibp+ve - N Gle® NI GIn®

Because the concentration of glutamate is much larger than that of the TCA cycle intermediates, the increase in concentration of

. . . . dPGlu} d0G}) .
glutamate enriched carbons is much larger at metabolic steady-state, i.e., —; e 3 Therefore, the expression can be

approximated to

d*Glu} VAVES PPyrs(t) VAV BGluj (1) BGInj (1)
= Tmn n - n n + VNT X n NT n
dt Vi + V2 Pyr Vi + Vi Glu Gln

Applying the same procedure to neuronal glutamate C3 (Glu3), we obtain the following expression:

dUGluy  VRVE,y POAARNY) VRV v X13Glur3‘(t)+ BGIn} (1)
dt Vi + VD OAA" Vi +va - ONT Glu" NI Gln™

From this expression, the term with oxaloacetate (OAA) can be removed by intermediary of the respective differential equation of
aspartate, originating the expression:

dPGluy Vg d3Asp} N Vn“Aspg(t) VAV v BGluj (1) BGInj (1)
dt Vi +ve\ dt X Asp® Vi +ve o N Gl NT GIn®
With the same treatment for Glu} originates the expression:
dPGlu} Vi, dAsp} - B Asph(t) VAV BGlud (1) BGInd (1)
dt VR g+ ve dt X Asp” Vibp+ve - N Gle® N Gln®

The same can be applied to equations of aspartate and we obtain the following expression where i can be any aliphatic carbon of
aspartate.

dPAsp? _ Viou dPGlu} N dGlu§ (Ve + VD) PGluj (1) + PGluj(r) v BGInj (1) + P Glnj (1)
dt 2(Vipg +va) U dt dt NET X Glu" Nt Gln"
 VViby B Asph(1)
Vepu + Vi Asp®
A similar approach in the glial compartment will originate the following equations for carbons of glutamate:
8 8 8
dBGlu§ (V& + Vi) (Vg + Vpc) 3AcCoAS (1) BGld(r)  Ves (Vg TV + Vpc) + V'V BGd(r)
dt Vg + VE 4+ Ve AcCoAs N Glu® Vy + VE + Voc Glu®
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8 g
st (2 Vi) (Y Vi) st (%) (1 V) b

dt ng (Vg + V)? + VPC) dt Vg =+ ng + VPC Aspg
g g
- Vs (Vg +Vx + VPC) + ViV BGlu§(t) BGluj (1)
Vo + V& + Ve Glu# N Glu®
g g
d13GIU§ . (Vx + VPC) (Vg + VPC) d13A5p§ n (VX + Vpc) (Vg + VPC) 13Asp§(t)
dt Vf (Vg + ng + VPC) dt Vg =+ ng + VPC Aspg
g g .
BE (Vg Vit Vpc) + Vi Ve BG1ud (1) BGluj(1)
Vo + V& + Ve Glu® NT Glg®

For the concentration of 1>C in carbons of glial aspartate, the following equation is obtained, where i can be either the position 2
or 3 in carbons of aspartate and pyruvate. Note that 1*Pyr, and '3Pyr; will respectively label '*OAA; and '*OAA;, and consequently
13Asp, and Asps.

dBAsp? v Ve dBGlef  dBGlud
a 8\ (/8 dt * dt
2 (Vg Voe + VE) (VE+ Vi)
ViV, BGlul (1) + PGlul (¢ BGlul(1) + PGluj(¢
+ - |:(VG5+ng)< il )—li—g us() —VNT< i )Il_n uS()>
2 (Vg Voe + VE) (VE+ Vi) Glu Glu
)
W (Vg + Vpc) BAspé(t) VEVee  BPyr(1)

Ve + Ve + VE  Asp® Ve + Vpc + V& Pyr
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