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Flickering light dilates retinal arterioles and increases retinal blood flow, a response termed
functional hyperemia. This response is diminished in diabetic patients even before the
appearance of overt clinical retinopathy. The loss of functional hyperemia could deprive
retinal neurons of oxygen and nutrients, possibly exacerbating the development of dia-
betic retinopathy. We have tested whether inhibiting inducible nitric oxide synthase (iNOS)
reverses the loss of functional hyperemia in diabetic rat retinas in vivo. Changes in retinal
arteriole diameter were measured following diffuse flickering light stimulation in control
rats, streptozotocin-induced type 1 diabetic rats and diabetic rats treated with aminoguani-
dine (AG; an iNOS inhibitor), either acutely via IV injection or chronically in drinking water.
Flickering light-evoked large arteriole dilations (10.8 ± 1.1%) in control rats. This response
was diminished by 61% in diabetic animals (4.2 ± 0.3%). Both acute and chronic treatment
with AG restored flicker-induced arteriole dilations in diabetic rats (8.8 ± 0.9 and 9.5 ± 1.3%,
respectively).The amplitude of the corneal electroretinogram b-wave was similar in control
and diabetic animals. These findings demonstrate that inhibiting iNOS with AG is effec-
tive in preventing the loss of, and restoring, normal functional hyperemia in the diabetic
rat retina. Previous work has demonstrated the efficacy of iNOS inhibitors in slowing the
progression of diabetic retinopathy. This effect could be due, in part, to a restoration of
functional hyperemia.
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INTRODUCTION
Diabetic retinopathy, a leading cause of blindness in the devel-
oped world, has a complex pathology that affects both neuronal
and vascular elements of the retina (Mizutani et al., 1996; Bar-
ber et al., 1998; Antonetti et al., 2006; Fletcher et al., 2007). In
the healthy retina, flickering light induces dilation of retinal ves-
sels and an increase in blood flow, a response termed functional
hyperemia. This response brings additional oxygen and nutrients
to meet the increased metabolic demands of active neurons (Polak
et al., 2002; Riva et al., 2005). A reduction in functional hyper-
emia is one of the earliest retinal changes observed in diabetic
patients (Garhofer et al., 2004; Mandecka et al., 2007; Bek et al.,
2008; Nguyen et al., 2009; Pemp et al., 2009). The cause and the
possible consequences of this reduction in flicker-induced vasodi-
lation are not known, although it could possibly contribute to the
development of diabetic retinopathy.

We have previously shown that nitric oxide (NO) modulates
neurovascular signaling pathways in the retina. Both light and
glial stimulation evoke retinal vasodilation when NO levels are
low, but vasodilation is reduced and vasoconstriction enhanced
when NO levels are raised (Metea and Newman, 2006). Inter-
estingly, several laboratories have shown an upregulation of the
inducible form of nitric oxide synthase (iNOS) in the diabetic
retina (Du et al., 2002; Mishra and Newman, 2010), leading to
high NO levels (Kowluru et al., 2000). This increase in tissue NO
concentration could alter neuron-to-vessel signaling, leading to
reduced functional hyperemia in diabetic patients.

A specific inhibitor of iNOS, aminoguanidine (AG), has indeed
been shown to slow the progression of diabetic retinopathy in
humans and in animal models of diabetes (Kern and Engerman,
2001; Bolton et al., 2004). These beneficial effects of AG have
largely been attributed to the inhibition of advanced glycation
end-product (AGE) formation (Brownlee et al., 1986). However,
findings from multiple studies suggest that AG could also be acting
by inhibiting iNOS (Kern et al., 2000; Kowluru et al., 2000; Kern
and Engerman, 2001; Mishra and Newman, 2010), especially in
early stages of the disease.

Using a streptozotocin-induced rat model of type 1 diabetes,
we have now examined whether AG can reverse the disruption of
functional hyperemia in the retinas of diabetic rats in vivo. We
find that flicker-induced arteriole dilation is substantially reduced
in diabetic rat retinas, as it is in patients with diabetic retinopathy.
This reduction can be reversed by administering AG to the dia-
betic rats, either acutely via IV injection or chronically in drinking
water.

MATERIALS AND METHODS
This study was approved by the University of Minnesota Institu-
tional Animal Care and Use Committee according to the National
Institutes of Health Guidelines for experimental animals.

INDUCTION OF DIABETES
Two month old male Long–Evans rats (Harlan) were made dia-
betic by injecting streptozotocin (STZ; 70 mg/kg in citrate buffer,
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IP; Sigma; Mishra and Newman, 2010). Successful induction
of diabetes (blood glucose > 250 mg/dl; OneTouch Ultra, Life-
Scan) was tested 3 days later. Animals were given supplemental
insulin (1.5 U Lantus insulin glargine subcutaneously, thrice a
week; sanofi-aventis U.S.) as previously described (Du et al., 2002).
Blood glucose during the course of diabetes, monitored biweekly,
averaged 535 ± 16 mg/dl (29.7 ± 0.9 mmol/l) for diabetic rats and
543 ± 12 mg/dl (30.2 ± 0.7 mmol/l) for diabetic rats treated with
aminoguanidine (Sigma) in drinking water.

IN VIVO RAT PREPARATION
The in vivo rat preparation has been described previously (Sri-
enc et al., 2010). Surgery was performed under 2% isoflurane
anesthesia. Core body temperature was continuously monitored
and maintained at 37˚C (TC-1000 Temperature Controller, CWE).
The left femoral vein and artery were cannulated for drug admin-
istration and monitoring of blood pressure, respectively, and a
tracheotomy performed for artificial ventilation. The animal was
placed in a modified stereotaxic holder and the right pupil dilated
with 1% atropine sulfate (Alcon Laboratories). Corneal refraction
was neutralized with gonioscopic prism solution and a contact lens
(5.4 mm fundus lens, Ocular Instruments). The holder containing
the rat was placed below an upright microscope.

Anesthesia was maintained during the experiment by continu-
ously infusing α-chloralose-HBC-complex (55 mg/kg/h; Sigma).
Animals were artificially ventilated (30–50 breaths/min; CWE
SAR-830-P) and paralyzed with gallamine triethiodide (20 mg/kg
bolus; 20 mg/kg/h; Sigma) to prevent eye movements. Mean arte-
rial blood pressure (MABP), blood oxygen saturation (sO2), and
pH were maintained within physiological limits (100–125 mmHg,
92–97%, and 7.35–7.45, respectively). MABP and sO2 were not dif-
ferent between experimental groups: control, 111.3 ± 2.8 mmHg
and 95.7 ± 0.8%; diabetic, 122.2 ± 4.4 mmHg and 92.7 ± 1.5%;
diabetic treated with AG IV, 115.4 ± 1.1 mmHg and 95.2 ± 0.8%;
and diabetic treated with AG in water, 116.6 ± 2.5 mmHg and
94.8 ± 0.6% (P > 0.05). Following experiments, animals were
euthanized by IV injection of 40 mM KCl (1 ml/kg).

LIGHT STIMULATION
Retinal photoreceptors were stimulated with a 12 Hz flickering dif-
fuse white light (Riva et al., 2005). Stimulus trials were separated
by 2 min periods in the dark. Light from a fiber optic illuminator
was gated with an electromechanical shutter and focused onto the
globe at a 45˚ angle through a fiber bundle. The illuminance of the
light was 12 klux at the surface of the globe.

MEASUREMENT OF FLICKER-INDUCED DILATION
The retina was imaged with a 4× objective and an Olympus
FluoView 1000 laser scanning confocal microscope. Blood vessels
were labeled by IV injection of dextran fluorescein isothiocyanate
(2,000,000 MW, 3% solution, 1–3 ml; Sigma). The luminal diam-
eters of first order arterioles were measured with confocal line
scans drawn perpendicular to the vessel (Srienc et al., 2010) and
luminal diameter vs. time graphs calculated with a custom Mat-
Lab routine. Flicker-induced dilations were composed of transient
and sustained phases. Response amplitude was measured using
the first transient peak and the three largest responses averaged

to calculate peak response. Diabetic animals developed partial
cataracts, a common occurrence in STZ-treated animals (Perry
et al., 1987). These cataracts did not interfere with line scan mea-
surements of vessel diameter but prevented us from using laser
speckle flowmetry (Srienc et al., 2010) to monitor blood velocity.

ELECTRORETINOGRAM MEASUREMENT
The corneal electroretinogram (ERG) electrode was attached to
the center of a custom-made plastic light diffuser placed over the
cornea. The reference electrode was placed under the skin on the
right cheek, 1 cm from the eye. The retina was dark-adapted for
15 min prior to recording ERGs. Ten millisecond flashes of dif-
fuse white light were focused onto the diffuser. A series of flashes
(intensities −3 to 0 log units) was employed to determine the ERG
b-wave intensity-response relation, with 0 log unit corresponding
to an illuminance of 120 klux at the surface of the diffuser. ERGs
were averaged to improve signal-to-noise ratio. Animals display-
ing noisy ERGs were excluded from analysis. ERGs were filtered
(1–100 Hz bandpass) and b-wave amplitude was measured from
the negative a-wave trough to the positive b-wave peak.

STATISTICS
One-way ANOVA followed by one-tailed Dunnett’s post hoc test
was used to calculate statistical significance for percent dilation
data and two-tailed Dunnett’s post hoc test for resting diame-
ter data. Homoscedastic two-tailed Student’s t -test was used to
compare ERG data. Data presented as mean ± SEM. α = 0.05.

RESULTS
We evaluated flicker-induced retinal arteriole dilation in vivo in
diabetic and age-matched control rats. Experiments were con-
ducted 7 months after induction of diabetes. The retina was stimu-
lated with a diffuse 12 Hz flickering light and the luminal diameter
of arterioles measured with confocal line scans (Figure 1). In age-
matched control animals, light stimulation evoked pronounced
arteriole dilations composed of an initial transient dilation fol-
lowed by a sustained response (Figure 2). Flicker-evoked dilations
in control retinas averaged 10.8 ± 1.1% (n = 6; summarized in
Figure 3A). The dilatory response was greatly diminished in dia-
betic animals (Figure 2), where responses averaged 4.2 ± 0.3%
(n = 6), only 39% of control responses (P < 0.001; Figure 3A).

Increased tissue concentration of NO, resulting from iNOS
upregulation, may be responsible for the reduction in flicker-
induced dilations. We thus evaluated the effect of the iNOS
inhibitor AG on flicker-induced arteriole dilations in vivo. AG
was administered in two ways. We injected AG intravenously
(100 mg/kg) to test the effect of acute AG treatment. Flicker-
induced changes in arteriole diameter were measured within 4 h
of AG injection. We also tested the effect of chronic AG treatment
by adding AG to the drinking water of diabetic rats (500 mg/l;
Hammes et al., 1991) starting 1 week after successful induction of
diabetes and continuing until the experiments were conducted.
Both treatment paradigms reversed the loss of flicker-induced
arteriole dilation in diabetic animals (Figure 2). Flicker-induced
dilations in the AG treatment groups averaged 8.8 ± 0.9% (n = 3)
for IV administration and 9.5 ± 1.3% (n = 7) for drinking water
administration, both significantly larger than in untreated diabetic
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FIGURE 1 | Measurement of flicker-induced changes in retinal arteriole

diameter using confocal line scans. (A) Low power confocal image of
retinal vessels. Arterioles (a) can be distinguished from venules (v) by their
branching pattern and relative size. The diameter of the arteriole was
measured with confocal line scans (white line). Scale bar, 250 μm. (B) High
magnification image of the boxed area in A showing the region of the arteriole
where line scans were taken. Scale bar, 25 μm. (C) Segments of a line scan

image from the arteriole in (B). The vertical bars in (D) indicate the times at
which the three segments were taken. Distance is represented vertically
(scale bar, 25 μm) and time horizontally (scale bar, 100 ms). A diffuse flickering
light-evoked vessel dilation, indicated by the widening of the vessel in
segment 2. (D) Time course of the flicker-induced arteriole dilation. The onset
of the flickering light (black bar at bottom) evoked an initial transient dilation
followed by a smaller secondary dilation.

rats (P < 0.02; Figure 3A). Neither treatment group differed from
controls (P > 0.2).

The loss of neurovascular coupling observed in diabetic animals
could be due to a change in the resting diameter of the arteri-
oles. Vessels that are more dilated at rest would not be able to
dilate as much in response to light. However, there was no signif-
icant difference in the average resting arteriole diameter between
groups in our study. The resting diameter of retinal arterioles was
32.7 ± 1.4 μm (n = 6) in control animals, 35.6 ± 2.0 μm (n = 6)
in diabetic animals (P > 0.7), and 29.3 ± 7.6 μm (n = 3; P > 0.7)
and 34.8 ± 2.1 μm (n = 7; P > 0.8) in diabetic animals treated
with AG IV and in drinking water, respectively (Figure 3B). The
smaller flicker-evoked vasodilation observed in diabetic retinas

was independent of the resting arteriole diameter, as demonstrated
by a scatter plot of percent dilation vs. resting arteriole diameter
(Figure 3C).

AG treatment could affect flicker-induced dilations in con-
trols animals, but this was not the case in our experiments.
AG administration had no effect on flicker-induced dilations in
controls. Vasodilations averaged 10.0 ± 0.8% (n = 7; P > 0.3) for
IV administration and 9.6 ± 0.4% (n = 6; P > 0.2) for drink-
ing water administration (Figure 3D). AG was administered in
drinking water for 2 months prior to experiments. The rest-
ing arteriolar diameter of control animals treated with AG
acutely (via IV injection) was 34.5 ± 2.1 μm (n = 7; P > 0.6)
and chronically (in drinking water) was 37.9 ± 1.8 μm (n = 6;
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FIGURE 2 | Flicker-induced dilation of retinal arterioles in control and

diabetic animals. A diffuse flickering light (black bar at bottom) evoked a
prominent arteriole dilation in a control animal, but a much smaller dilation
in a diabetic animal. Treatment with the iNOS inhibitor aminoguanidine (AG)
restored flicker-induced arteriole dilations in diabetic animals to control
levels when given intravenously (diabetic AG-IV), or in drinking water
(diabetic AG-H2O).

P = 0.1), neither statistically different from untreated controls
(Figure 3E).

The loss of neurovascular coupling could also be due to a
decrease in light-evoked neuronal activity in diabetic animals,
caused either by a loss of neuronal responsiveness or by neu-
ronal death. We evaluated retinal responsiveness by monitoring
the b-wave of the ERG, which primarily reflects ON bipolar
cell activity. A series of ERGs were recorded to light flashes of
increasing intensities (Figure 4A). There was no difference in the
maximal b-wave amplitude between control and diabetic animals:
0.22 ± 0.01 mV (n = 7) vs. 0.24 ± 0.03 mV (n = 3), respectively
(P > 0.4; Figures 4B,C). The sensitivity of the retina, evaluated
by the light intensity that evoked a half-maximal b-wave response,
was also similar: 0.012 ± 0.003 in controls vs. 0.014 ± 0.007 in
diabetic rats (P > 0.7, where an intensity value of 1 corresponds
to 0 log unit intensity; Figures 4B,D). These results indicate that

overall neuronal activity was not reduced in the retinas of our
diabetic rats.

DISCUSSION
Our results demonstrate that the iNOS inhibitor AG, delivered
either IV or in drinking water, reverses the loss of functional
hyperemia in an animal model of type 1 diabetes. Although AG
also inhibits the formation of AGEs (Brownlee et al., 1986), it
is likely that AG acts to restore functional hyperemia by block-
ing iNOS. Our findings demonstrate that the loss of light-evoked
vasodilation is reversed within 4 h following IV administration of
AG. AG could not act this rapidly if it functioned by reducing for-
mation of AGEs. In addition, we showed previously that the loss
of light-evoked vasodilations in an ex vivo isolated retina prepara-
tion were also restored rapidly by AG, within 30 min (Mishra and
Newman, 2010). A second selective iNOS inhibitor, 1400W, was
also effective in reversing the loss of functional hyperemia in this
ex vivo preparation. Previous work (Metea and Newman, 2006)
has demonstrated that NO, the product of iNOS, inhibits light-
evoked vasodilations in healthy retinas. Together, these results
strongly suggest that AG functions to reverse the loss of functional
hyperemia by inhibiting iNOS and lowering NO.

The loss of functional hyperemia could be due to a decrease
in light-evoked neuronal activity. However, our ERG experiments
suggest that light-evoked neuronal activity was not diminished in
our diabetic animals. Several previous animal studies have demon-
strated a decrease in ERG amplitude in early stages of diabetic
retinopathy (Barber et al., 1998; Phipps et al., 2004; Antonetti et al.,
2006; Fletcher et al., 2007). There are a number of reasons why
our ERG results might differ from these earlier studies. Many ERG
studies have been conducted using albino strains whose retinas are
susceptible to light damage, compounding the effects of diabetic
retinopathy. Our experiments are conducted in pigmented Long–
Evans rats, a strain that displays a much lower retinal inflammatory
response up to 4 months after induction of diabetes by streptozo-
tocin, compared to changes observed in albino Sprague-Dawley
retinas (Kirwin et al., 2009). We also treated our rats with supple-
mental insulin, which could slow the loss of the ERG in diabetic
animals.

The reduced flicker-induced vasodilation we observed could
also be due to a loss of vascular responsiveness. This does not
appear to be the case. A recent study demonstrated that vas-
cular reactivity to exogenous NO stimulation is unchanged in
diabetic patients (Pemp et al., 2009). In addition, we demon-
strated in an earlier study using the ex vivo retina preparation that
prostaglandin E2-induced dilation of retinal arterioles remains
unchanged in diabetic animals (Mishra and Newman, 2010). The
decrease in flicker-induced vasodilation could also be due to an
increase in the resting diameter of the vessels. However, there was
no significant difference in resting diameter in control and dia-
betic groups, and the reduced dilation in diabetic animals was
independent of resting vessel diameter (Figure 3C).

Instead, the loss of flicker-induced vasodilation is likely caused
by altered neurovascular coupling in diabetic retinas. Recent evi-
dence suggests that flicker-induced vasodilation in the retina as
well as neuronal activity-dependent vasodilation in the brain, is
largely mediated by glial cells. Release of transmitters from active
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FIGURE 3 | Aminoguanidine treatment reversed the loss of

flicker-induced arteriole dilation in diabetic animals. (A) The reduction in
flicker-induced vasodilation in diabetic animals was restored by treatment with
AG (either IV or in H2O). (B) The resting arteriole diameter was similar in all
experimental groups. (C) The amplitude of flicker-evoked dilation in diabetic

animals was independent of resting arteriole diameter. +Indicates mean
values for the control and diabetic groups. (D) AG did not alter flicker-induced
vasodilations in control animals. (E) AG did not alter the resting arteriole
diameter in control animals. Numbers in parenthesis indicate number of
animals. *Indicates P < 0.001.

FIGURE 4 | Electroretinogram recordings from control and

diabetic animals were similar. (A) Intensity series of ERG traces
from a control and a diabetic animal to 10 ms light flashes (black bars at
bottom) of increasing intensities (numbers indicate intensity in log
units). (B) Intensity-response relations for the control (open circles)

and diabetic (black squares) series shown in (A). (C,D) The maximum
b-wave response (C) and the light intensity evoking a half-maximal
b-wave response (D) were similar in control and diabetic animals
(P > 0.4). The data were fit with the Rushton–Naka relation (Naka and
Rushton, 1966).

neurons induces Ca2+ increases in glial cells that, in turn, release
vasodilatory agents onto blood vessels (Metea and Newman, 2006;

Attwell et al., 2010). In the retina, NO modulates this signaling
pathway by an as-yet unidentified mechanism, whereby high tissue

Frontiers in Neuroenergetics www.frontiersin.org January 2012 | Volume 3 | Article 10 | 5

http://www.frontiersin.org/Neuroenergetics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroenergetics/archive


Mishra and Newman Functional hyperemia in diabetic retinopathy

NO results in reduced vasodilation and enhanced vasoconstric-
tion (Metea and Newman, 2006). The high NO levels found in
the diabetic retina (Kowluru et al., 2000) due to increased iNOS
expression (Du et al., 2002; Mishra and Newman, 2010) likely
inhibit the glial release of dilatory agents, disrupting the coupling
between neuronal activity and vasodilation. It is likely that AG acts
by inhibiting iNOS and lowering retinal NO levels, thus allowing
normal neurovascular signaling to occur. Our finding that AG
does not alter functional hyperemia in control animals supports
this view, as iNOS expression is minimal in the healthy retina. The
oxygenation response to carbogen inhalation challenge, another
vascular response that is diminished in diabetic retinas, is also
restored by iNOS inhibitors (Berkowitz et al., 2004).

Light-evoked vasodilation in the retina, as well as neuronal
activity-dependent vasodilation in the brain, is believed to be
important for meeting the increased demand of active neurons for
oxygen and glucose (Polak et al., 2002; Riva et al., 2005). A disrup-
tion of this coupling may have damaging effects due to the resulting
hypoxia, hypoglycemia, or accumulation of harmful metabolites.
Such adverse effects could potentially be offset by an increase in
resting vessel diameter, and such increases have been reported in
some studies of early stage diabetic retinopathy (Klein et al., 2004;
Roy et al., 2011). However, a loss of functional hyperemia has been
reported in diabetic patients who showed no increase in resting
vessel diameter (Garhofer et al., 2004; Bek et al., 2008). Our results
also show no increase in resting diameter in diabetic animals at
the 7 month post-induction stage. Further research is needed to
determine whether the loss of functional hyperemia in the diabetic
retina results in adverse physiological consequences.

Aminoguanidine has been previously assessed as a treatment
for complications of diabetes in both animal models and in

diabetic patients. A clinical study has demonstrated the ben-
eficial effects of AG on retinopathy, where significantly fewer
patients showed progression of retinopathy when treated with
AG, compared to placebo-treated patients (Bolton et al., 2004).
Several studies on animal models of diabetes have also demon-
strated the efficacy of iNOS inhibitors in slowing the progression
of diabetic retinopathy (Hammes et al., 1991; Kern et al., 2000;
Kowluru et al., 2000; Kern and Engerman, 2001; Du et al., 2002).
Early treatment with iNOS inhibitors has also been shown to
be more efficacious in slowing the progression of the disease
(Berkowitz et al., 2005). The beneficial effects of AG have gener-
ally been attributed to the inhibition of AGE formation. However,
two studies have shown that AG prevents the development of
diabetic retinopathy without significantly affecting AGE produc-
tion (Kern et al., 2000; Kern and Engerman, 2001), suggesting
that the principal action of AG in diabetic retinas is to inhibit
iNOS. Supporting this view, diabetic retinopathy is also reduced
in iNOS-deficient mice (Zheng et al., 2007). It remains to be
determined whether the beneficial effect of iNOS inhibitors is
due to a restoration of functional hyperemia. Targeting iNOS or
its downstream signaling pathway with more selective inhibitors
to reverse the loss of functional hyperemia may help to resolve
this issue and may suggest new therapies for treating diabetic
retinopathy.
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