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Sinkkonen and Tervaniemi, 2000). The test-retest reliability of the 
N100 response, for example, is higher than that of the mismatch 
negativity (MMN) because of the better latency stability (Pekkonen 
et al., 1995). In addition, the variation in the remaining level of 
interference also affects the test-retest reliability (e.g. Sinkkonen 
and Tervaniemi, 2000). This explains why the replicability of the 
response to the standard sound tends to be superior to the less 
frequent ones (Pekkonen et al., 1995). The test-retest reliability can 
be infl uenced by careful experiment design. However, as the initial 
amount of noise and the level of interference will vary anyway, the 
quality variation should also be compensated.

The basic problem is that the number of trials recorded is 
typically constant, while the initial quality of the signal changes 
between and during experiments. Consequently, the remain-
ing measurement error is subject to variation which affects the 
comparability of the responses and the test-retest reliability. 
Several methods have been suggested for cleaning the data (e.g. 
Effern et al., 2000; Quiroga, 2000; He et al., 2004) and to adjust 
the averaging process to cope with the alternating signal qual-
ity (e.g. Woody, 1967; Davila and Mobin, 1992; Woldorff, 1993; 
Jaskowski and Verleger, 1999; Wang et al., 2001; Leonowicz et al., 
2005; Gibbons and Stahl, 2007). However, even though the average 
signal quality could be improved, this does not compensate the 
insuffi ciency of the data. Alternatively, it would also be possible 

INTRODUCTION
The averaging of the evoked potentials is a convenient way to reduce 
the level of interference when highlighting event-locked electroen-
cephalographic (EEG) responses (Picton et al., 1995). Thus, in spite of 
the increasing interest in single-trial analysis, averaging is still the most 
commonly used method to recover event-related potentials (ERPs) 
from noise (Davila and Mobin, 1992). The average ERPs, however, are 
distorted by, for example, latency jitter (e.g. Gibbons and Stahl, 2007), 
amplitude variations, external interference, physiological artifacts, 
noise, and measurement errors during the experiment (Leonowicz 
et al., 2005). In addition to that, the within-subject and the between-
subject variations in the responses also affect the measurement out-
come (e.g. Pikvik et al., 1993; Lang et al., 1995). Even though the average 
level of interference is reduced in this process (Picton et al., 1995), the 
test-retest reliability of the responses on a single-subject level is too low 
for clinical applications (Lang et al., 1995; Sinkkonen and Tervaniemi, 
2000; Dalebout and Fox, 2001; Beauchemin and De Beaumont, 2005; 
Kujala et al., 2007; Duncan et al., 2009). The mismatch negativity, for 
example, has been estimated to have a test-retest reliability of just over 
0.5 (Sinkkonen and Tervaniemi, 2000), 0.46–0.71 (Frodl-Bauch et al., 
1997), or 0.56–67 (Pekkonen et al., 1995).

The replicability of the responses depends on the test subject, 
type and presentation of the stimulus, the response studied, and the 
electrode location (Pekkonen et al., 1995; Frodl-Bauch et al., 1997; 
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to increase the length of the experiments. In practice, however, 
fatigue, for example, may affect the neuropsychological phe-
nomena (Picton et al., 1995; Ding and Ye, 2003; Boksem et al., 
2005; Muller-Gass et al., 2005; Thornton, 2008) and the risks of 
equipment-related errors also increase with time (Mühler and 
von Specht, 1999; Rahne et al., 2008). As the amount of artifacts 
and sudden changes in the signal quality are not predictable, the 
suffi cient number of trials cannot be reliably predefi ned (Möcks 
et al., 1988; Sinkkonen and Tervaniemi, 2000). Thus, the length 
of the experiment should rather be defi ned online with respect 
to the concurrent data quality.

In this study, the implementation of a novel autoadaptive record-
ing procedure for auditory event-related potentials (AERP) is sug-
gested. It aims at optimizing the length of the experiment with 
respect to the initial quality of the data recorded. The qualities 
being monitored are the contribution of noise and the remaining 
measurement error. The idea is to keep on recording until they 
meet a predefi ned threshold. This way, the quality of the results 
is guaranteed and the length of the experiment is optimized. The 
objectives of the study are to defi ne appropriate estimators for the 
quality tests and to study the infl uence of the compensation on the 
test-retest reliability in a simulated AERP experiment. Feasibility, 
technical requirements and developmental aspects will be discussed 
on the basis of the results.

MATERIALS AND METHODS
PROCEDURE DESCRIPTION
The procedure involved cycling three phases (Figure 1): preproc-
essing, quality estimation, and decision making. The analysis was 
performed trial-by-trial and the decision as to whether to continue 
the experiment or not was made at the end of each cycle. First, 
the trial being analyzed was fi ltered and tested to detect possible 
artifacts and the contaminated trials were rejected. Then, the matu-
rity of the accumulating average was estimated on the basis of the 
contribution of noise and the remaining measurement error. They 
were compared to predefi ned threshold values and the experiment 
was concluded if both the criteria were met.

The data used in the demonstration was taken from an MMN 
study (Pakarinen et al., 2007). Each trial lasted from −50 to +450 ms 
from the stimulus onset. The data was lowpass fi ltered (0–30 Hz) 
and the baseline was corrected on the basis of the 50 ms prestimu-
lus interval. These are typical fi lter settings for this kind of data 
(Pekkonen et al., 1995; Pakarinen et al., 2007; Duncan et al., 2009). 
Artifacts were detected by testing the amplitude of the response 
and trials exceeding ± 40 µV were rejected.

Additionally, variation in the physiological response may also 
affect the accumulating average. Latency variation, in particular, is 
harmful because it fl attens the amplitude of the peaks in the aver-
age waveform (e.g. Thornton, 2008). Several methods have been 
suggested to correct the error (e.g. Woody, 1967; Woldorff, 1993; 
Wang et al., 2001). None of these, however, were considered to be 
feasible online and, thus, were not included into the procedure.

ESTIMATION OF THE CONTRIBUTION OF NOISE
The purpose of the noise test was to evaluate the mean level of 
interference in the accumulating average waveform. In particular, 
the test was supposed to indicate the contribution of white noise 
so that the signifi cance of the responses could be assessed.

T-test is commonly used to test the statistical signifi cance of 
noise over the single trials in AERP studies (e.g. Picton et al., 1995). 
By defi nition, it estimates the probability of the null hypothesis 
that the value being tested is a random sample from a normal 
distribution with a mean of zero and unknown variance, against 
the alternative that the mean is different from zero. Typically, if 
the probability of the null hypothesis is smaller than 0.05, it is 
likely that the contribution of noise is negligible or small (Ewens 
and Grant, 2005).

In the current context, the one-sample t-test could be applied 
by testing a peak in the average response, the statistical signifi -
cance of which would represent the general quality of the whole 
waveform. The auditory N100 peak in the average waveform, 
for example, is relatively stable and typically easy to obtain. 
Thus, it could be a well-suited option for the purpose. On the 
other hand, the application of the t-test requires exact knowl-
edge of the latency of the peak to be tested and the localiza-
tion may prove laborious because the latency varies between 
trials. Thus, a simpler estimate would be preferable in terms of 
computational effi ciency.

Alternatively, the statistical signifi cance of noise may also be 
estimated from the respective signal-to-noise ratio (SNR) (Sackett, 
2001). Compared to the one-sample t-test, the computation of the 
SNR is simpler and it can also be applied to test the whole waveform 
at once. Although the accuracy of the estimation might be worse, 
it may still be capable of providing the number of trials required 
to obtain signifi cant responses with reasonable accuracy. Derived 
from Möcks et al. (1988), the effective SNR can be estimated from 
the difference of the consecutive trials by eqs 1–3.
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FIGURE 1 | The autoadaptive recording procedure. The data recorded is 
analyzed one trial at a time and the experiment is continued until the quality of 
the accumulating average meets the predefi ned criteria. The qualities being 

tested are the contribution of noise (pnoise) and the remaining measurement error 
(ERR). Prior to qualitative testing, the trial being analyzed is lowpass fi ltered, 
baseline corrected, and tested for artifacts.
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Here, P
avg,n

 represents the average power of the noise, P
avg,s

 rep-
resents the power of the average response, µ

N
 is the average of N 

trials, x
i
 represents the ith trial, and the time frame of the trial is [t

0
, 

T]. Furthermore, the SNR values exceeding one are interpreted to 
indicate zero signifi cance, because statistical signifi cance may only 
have values between 0 and 1.

ESTIMATION OF THE REMAINING MEASUREMENT ERROR
The purpose of testing the remaining measurement error was to 
be able to estimate the stability of the accumulating results and the 
magnitude of the change that could still be expected. In particular, 
the test was supposed to indicate the magnitude of the remaining 
interference peaks and the uncertainty in the average waveform 
resulting from variations in the physiological response. In order to 
estimate the measurement error, two alternative estimators were 
considered: a convergence-based estimator and a direct estimator 
of the measurement error. Both alternatives derive from comparing 
partial averages of the data and the computation of the estimates 
is simple.

The convergence rate represents the magnitude of change in the 
average waveform as new trials are included into the sum. It can be 
calculated online by comparing the consecutive averages. The com-
parison is made with respect either to the amplitude or the form 
of the responses. The similarity of the form of the responses can 
be estimated on the basis of the correlation. The calculation of the 
parameter is straightforward and it provides a reasonable estimate 
of the similarity of the whole waveform. On the other hand, the 
form of the whole curve is often irrelevant and it would be more 
interesting to estimate the maximal error in the peak amplitudes. 
This could be assessed better from the differences in the consecu-
tive averages. Thus, the convergence rate-based error estimate ε

c
 

was calculated according to eqn. 5.
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where N is the total number of averaged trials and x
i
 represents the 

ith trial included into the sum.
Alternatively, the measurement error can also be estimated 

directly by computing the difference of two independent averages 
extracted from the data. Following Schimmel (1967), the direct esti-
mate of the measurement error ε

d
 was calculated from the difference 

of the average of the odd and the even trials according to eqn. 6.
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where N is the total number of averaged trials and x
i
 represents 

the ith trial included into the sum. The difference of the even and 
the odd average represented the remaining error in the response. 
Thus, the maximum of the waveform could be considered to be 
representative of the maximal error.

EVALUATION OF THE PROCEDURE
Test data
The methods applied in this study were evaluated by simulating 
their performance with real data. With the authors’ permission, 
the data used were taken from Pakarinen et al. (2007). In that 
study, the multi-feature MMN paradigm was applied to obtain 
an auditory discrimination profi le by using harmonic sinusoi-
dal sounds. The standard tones were composed of three sinu-
soidal partials (523, 1046 and 1569 Hz). They were presented at 
an intensity of 60 dB above the subject’s hearing threshold and 
the length of the stimuli was 75 ms (including 5 ms rise and fall 
times). The deviant tones differed from the standard tones in 
frequency, intensity, duration, or perceived sound-source location 
and the magnitude of the deviation varied across six levels. The 
probability of the standard tone was 0.5 and the probability of 
each deviant tone at each level was 0.125/6. The length of each 
recording session was 90 min and the number of trials recorded 
was 5472 for the standard stimulus and 225 for each deviant 
stimulus (Pakarinen et al., 2007).

For the concurrent study, data from eight test subjects was 
available. These data were used to simulate a series of repeated 
experiments with each test subject and they were each permuted 
100 times to create artifi cial test runs. However, in order to avoid 
creating permutations that were too similar, datasets that were too 
small had to be rejected. The expected length of a single simulated 
experiment was about 200–600 trials. Therefore, only the standard 
datasets were applied. In addition, the evaluation was further lim-
ited to only the one channel having the largest SNR with respect 
to the physiological response (F

z
 referenced to the mean of the 

mastoids). Thus, the test data accepted for the study included eight 
datasets with over 5000 trials, from each of which 5% to 19% was 
still rejected because of artifacts.

Tests
In short, the quality estimators were tested fi rst in order to verify the 
plausibility of the tests and to be able to defi ne appropriate thresh-
olds to be applied in the online procedure. Then, the procedure was 
fi nalized on the basis of the results and the benefi ts from using the 
active compensation were studied by comparing the application 
with the use of a fi xed number of 200 trials. The tests prepared for 
the evaluation are summarized in Table 1.

The plausibility of the SNR estimator was evaluated by compar-
ing the application with the use of a one-sample t-test. The t-test 
was made for the N1 component of the average AERP waveform. N1 
was parameterized using an average time window of 40 ms placed at 
the peak maximum of an individual waveform at 80–140 ms. First, 
the SNR was computed as a function of the statistical signifi cance 
of noise in order to determine a criterion that would correspond 
to the t-test (p

noise 
< 0.05). Then, both parameters were applied 

to estimate the required number of trials to obtain a statistically 
signifi cant response in order to see how they match. In order to 
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Table 1 | Evaluation of the novel procedure and the quality estimators applied. The estimators are evaluated fi rst to justify their use and to defi ne 

appropriate criteria for the tests. Then, the benefi ts of using the compensated procedure are studied by comparing the application with the use of a fi xed 

number of 200 trials.

Test Test method Tested parameter(s) Aim

Evaluation of  Comparison of SNR test Estimated number of trials  1. To defi ne SNR test criterion

the SNR test and one-sample t-test to obtain signifi cant N1 2. To estimate plausibility

Evaluation of the  Comparison of direct and  Sensitivity, validity,  1. To study their preference with respect to

meas. error estimators convergence-based estimator distortion, calculus   the application in the procedure

Evaluation of feasibility Comparison of the criteria and  Number of trials and  To defi ne error test criteria:

of requirements the required number of trials remaining meas. error 1. criterion → N ≈ 200, on average

   2. criterion → feasibility ≈ 0.6

Evaluation of the Comparison of the use of the novel Test-retest reliability To test the infl uence on:

benefi ts of compensation procedure and the use of a fi xed  1. mean test-retest reliability

 number of 200 trials  2. variation of test-retest reliability

justify the use of the SNR test, the correlation was supposed to be 
high. The limit for approval was chosen to be 0.8, which indicates 
high correlation.

The measurement error estimators were evaluated by studying 
their relevance to the validity of the measurement outcome. First, 
the estimators were computed as a function of the validity of the 
respective partial averages. Then they were compared on the basis of 
the sensitivity, distortion and the amount of the calculus required. 
Validity was estimated by the correlation of the partial averages and 
the expected outcome. The expected outcome was estimated by 
computing the sorted average (Rahne et al., 2008) of each dataset. 
The trials were sorted on the basis of the respective interference 
level and they were averaged starting from the best one, until the 
SNR of the average started to decrease. The remaining trials were 
discarded and the average with the maximum SNR was considered 
to be the optimal outcome. Sorted averaging maximizes the SNR 
of the average curve (Rahne et al., 2008). Thus, it was considered 
to be a well-suited reference for the test.

The last parts of the evaluation dealt with the actual application 
of the procedure. First the use of the selected measurement error 
estimator was studied with respect to the feasibility in order to 
defi ne two alternative threshold values for the test. Two such values 
were defi ned: one that would lead to recording 200 trials on average 
and one that represented the most stringent requirements still plau-
sible in most cases (p = 0.6). Then, the application was simulated 
again with the concluded thresholds and the resulting test-retest 
reliability was compared with the results obtained when the total 
number of trials was fi xed at 200. The feasibility was estimated by 
the probability of the requirements being reached with fewer than 
300 trials on average. Test-retest reliability was computed using 
the one-way intra-class correlation coeffi cient (ICC), because it 
provides more accurate results than the simple Pearson’s correla-
tion coeffi cient (Farahat et al., 2003).

RESULTS
EVALUATION OF THE SNR TEST
According to the results (Figure 2A), in general, the SNR estima-
tion indicated a smaller signifi cance than the t-test and the cor-
relation of the single observations was only moderate (p ≈ 0.5). 

A probable reason for this was that the SNR test assessed the aver-
age signifi cance of noise in the whole waveform, while the t-test 
focused on a single peak in the response. On the other hand, the 
SNR estimator could still be applied to verify the realization of the 
signifi cance criterion (p

noise 
< 0.05). Generally, it was met when the 

SNR exceeded 0.69. Using this value as a detection threshold, the 
required number of trials only exceeded the results from the t-test 
by 4 ± 17 (mean ± SD) trials (Figure 2B). The correlation of the 
estimations was about 0.86, which suggests that the SNR estimator 
could be considered to be plausible.

EVALUATION OF THE MEASUREMENT ERROR ESTIMATORS
According to the results (Figure 3), the convergence-based esti-
mate was a linear function of the validity, while the direct estimate 
had a quadratic relation. Thus, the convergence-based estimator 
would be simpler to apply. On the other hand, both estimators 
were quite distorted and the direct estimator was more sensitive 
(3.6 µV/unit) than the other one (0.42 µV/unit). In this respect, the 
direct estimate would be a better choice. In terms of computation 
time, the difference between the alternatives was considered to be 
insignifi cant. They both included an update operation, difference 
calculation and fi nding the maximum. The direct estimator also 
included an additional absolute value operation which, however, 
did not cause signifi cant difference to the computation time. Thus, 
as a whole, the direct estimator was considered to be preferable and 
was chosen to be implemented into the procedure.

 EVALUATION OF THE FEASIBILITY AND THE INFLUENCE ON THE 
TEST-RETEST RELIABILITY
Figure 4A presents the required number of trials, the feasibility of 
the test, and the test-retest reliability with respect to the remaining 
measurement error as given by the direct error estimate. The criterion 
that is achieved with 200 trials on average is 1.5 µV and the criterion 
that has a feasibility of 0.6 is 1.2 µV. These values were applied in the 
last phase of the evaluation. The resulting test-retest reliabilities in the 
simulated repeated experiments are presented in Figure 4B.

On the basis of the results (Table 2), the variation in the test-
retest reliability between test subjects was reduced by 0.1 and the 
average test-retest reliability was improved by 0.01–0.06,  depending 
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FIGURE 2 | Estimation of the contribution of noise using the one-sample t-test and SNR estimator. (A) Estimated SNR as a function of the statistical 
signifi cance of noise (pnoise) that was estimated using the one sample t-test. (B) The number of trials required to realize the signifi cance criterion on the basis of the 
one sample t-test (pnoise < 0.05) and the SNR test (SNR > 0.69).

FIGURE 3 | The remaining measurement error as a function of the validity of the respective partial average with respect to the expected outcome. (A) The 
remaining error assessed using a convergence rate-based estimator. (B) The remaining error assessed using a direct estimator.

FIGURE 4 | Infl uence of the compensation on the test-retest reliability. (A) Test-retest reliability (ttr), feasibility of the requirements (p), and the required number 
of trials as a function of the remaining measurement error. (B) Test-retest reliability obtained when the number of trials recorded was constant (N = 200) and when 
the novel procedure was applied withan error threshold of 1.5 µV and 1.2 µV. Mean test-retest reliabilities across the test subjects are indicated with horizontal lines.
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on the measurement error threshold applied. The required number 
of trials in the novel procedure was 209 ± 60 (mean ± SD) when 
the threshold was 1.5 µV and about 310 ± 78 (mean ± SD) when 
the threshold was 1.2 µV. Thus, the variation between the test 
subjects was improved, although the average number of trials 
recorded was not greatly altered. The increase in the mean test-
retest reliability, on the other hand, was achieved by increasing the 
number of trials. Thus, the feasibility dropped with the improved 
test-retest reliability.

DISCUSSION
The results of this study show that the compensation for the varia-
tion in the data quality has signifi cant relevance for the remaining 
measurement error and the reproducibility of the average AERPs. 
In the simulated series of repeated experiments, the test-retest reli-
ability was improved by 2–9%, on average, and the variation in the 
value between the test subjects was reduced by 33–35%. In addition, 
the compensation also improved the measurement effi ciency. When 
the number of trials recorded was a constant 200, the average result-
ing test-retest reliability was about 0.69. In the novel procedure, the 
number of recorded trials was optimized and similar results could 
be achieved with about 209 ± 60 (mean ± SD) trials, depending 
on the data quality. Thus, the length of the experiment could be 
decreased when the signal quality was high enough (about 40 % 
of simulation runs).

The fi ndings of the study might be of practical interest par-
ticularly in the clinical context. On the one hand, the method 
suggested will simplify the comparison of results from repeated 
measurements. The level of distortion is minimized, while the 
number of trials is optimized. Thus, the differences between 
repeated measurements are more likely to occur because of the 
differences in the neuropsychological condition of the test sub-
ject. On the other hand, the improvement of the measurement 
effi ciency is also an important factor. If the number of recorded 
trials is constant and the quality of the outcome is supposed to 
be high, the number of trials recorded must also be high in order 
to minimize the possibility of error. Some groups of patients, 
such as children or acutely ill patients, may not tolerate long 
experiments. The optimization of the number of trials prevents 

excessive recording, while the suffi ciency of the data to obtain 
meaningful AERPs is still guaranteed. Thus, application of this 
kind of active compensation might reduce the negative impact 
of the investigation on them.

Regarding future developments, the effi ciency of the method 
might be increased if the cleaning procedure and the artifact 
processing scheme were improved. Although most of the results 
were in line with each other, the results obtained using dataset 8 
seem to deviate from the others. The estimation of the statisti-
cal signifi cance was less accurate and the test-retest repeatability 
deviated from the others, particularly when the number of trials 
included was kept constant. This suggests that the variation in the 
quality of the data was higher than in the other datasets. Thus, the 
implementation of advanced means for signal processing might 
improve the quality of the results.

CONCLUSIONS
The fi ndings of the study indicate that the method suggested 
could be applied to compensate for the changes in the quality 
between repeated AERP measurements. Practical investigations, 
however, are needed to confi rm the results and to gain further 
information about application of the method, the possible issues 
and the impact in practice. From the practical perspective, the 
predefi nition of the measurement error criterion is particularly 
interesting. The suitable threshold is application-specifi c and 
depends on the response studied. Thus, the recommendations 
have to be prepared case sensitively. In general, the successful 
implementation of the method requires high signal quality, a 
reliable method for online artifact rejection, and a device capable 
of both recording and analyzing the EEG data. The effi ciency 
may be further improved by implementing an advanced tool for 
online data processing.

ACKNOWLEDGMENTS
We thank M. Linnavuo and P. Eskelinen for valuable discus-
sions. The work was supported in part by the Graduate School 
of Electrical and Communications Engineering, the Society of 
Electronics Engineers and the Finnish Centre of Excellence in 
Interdisciplinary Music Research.

Table 2 | Results from the simulated series of repeated AERP experiments with eight test subjects. The tests were made by using the novel procedure 

(SNR > 0.69 and ERR < 1.5 µV/1.2 µV) and a comparative procedure (N = 200). Test-retest reliability (ttr) was estimated by using ICC. µ represents the mean 

value, σ represents the standard deviation and Δ represents the range of variation.

Procedure SNR threshold Measurement  Required number  µ (ttr) Δ (ttr)

  error threshold (µV) of trials (µ ± σ)

Fixed number of trials – – 200 ± 0 0.689 0.309

Novel procedure 0.69 1.5 209 ± 60 0.701 0.206

Novel procedure 0.69 1.2 310 ± 78 0.753 0.202
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