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We present a study on wavelet detection methods of neuronal action potentials (APs).
Our final goal is to implement the selected algorithms on custom integrated electronics
for on-line processing of neural signals; therefore we take real-time computing as a hard
specification and silicon area as a price to pay. Using simulated neural signals including
APs, we characterize an efficient wavelet method for AP extraction by evaluating its detec-
tion rate and its implementation cost. We compare software implementation for three
methods: adaptive threshold, discrete wavelet transform (DWT), and stationary wavelet
transform (SWT). We evaluate detection rate and implementation cost for detection func-
tions dynamically comparing a signal with an adaptive threshold proportional to its SD,
where the signal is the raw neural signal, respectively: (i) non-processed; (ii) processed by
a DWT; (iii) processed by a SWT. We also use different mother wavelets and test different
data formats to set an optimal compromise between accuracy and silicon cost. Detection
accuracy is evaluated together with false negative and false positive detections. Simulation
results show that for on-line AP detection implemented on a configurable digital integrated
circuit, APs underneath the noise level can be detected using SWT with a well-selected
mother wavelet, combined to an adaptive threshold.

Keywords: wavelet transform, threshold detection, action potential, spike detection, real-time processing, spiking

neurons

INTRODUCTION
Analyzing and understanding signals in human cerebral cortex, is
the ultimate goal of many scientists in the field of neuroscience.
This work proposes insights on analyzing tools for better decod-
ing neural signals and consequently understand mechanisms of
cortical computation (Fee et al., 1996; Cao, 1997; Azouz and
Gray, 1999; Nirenberg and E-Lathman, 2003; Brown et al., 2004;
Laubach, 2004; Obeid and Wolf, 2004), by the mean of wavelet
detection methods of neuronal activity. Decoding communica-
tion between neurons and networks is for example mandatory
in prosthesis intended to overcome handicaps such as blindness
or limb amputation (Burrow et al., 1997; Buffoni et al., 2003;
Carmena et al., 2003; Rothschild, 2010). One bottleneck in this
domain is the lack of generic rules for deciding neural signal.
A bottom-up axis of research is to measure the influx exchange
between neurons, known as action potentials (AP) or spikes. An
AP is a pulse in the membrane voltage of an excitable biological
cell, like a neuron, after a membrane depolarization in response
for example to stimulation inputs received from presynaptic neu-
rons or sensory inputs. When neural signals are recorded using
extracellular electrodes, spikes are measured by capacitive cou-
pling and appear as weak amplitude signals (50–500 μV) with a
low signal to noise ratio (SNR); APs frequency components are
in the 100-Hz to 10-kHz frequency band, and their duration is
a few milliseconds (Rangayyan, 2002; Finn and Lopresti, 2003).
For active neurons, the spiking rate usually varies from 10 to 120
occurrences per second (Harrison et al., 2007). With these char-
acteristics, visual spike detection becomes ineffective (Wood et al.,

2004). Therefore automatic and real-time AP detection is essen-
tial for any application that requires continuous communication
between excitable cells and electronics.

Extracellular recordings present a major advantage (compared
to intracellular recordings) in terms of success rate and long-
term monitoring; but they present a particularly low AP sig-
nal/noise ratio. Main noise sources are: – the cellular activity
in the electrode spatial environment; – measurement device and
electronics (Oweiss and Anderson, 2001; Obeid and Wolf, 2004).
Due to its multiple components, characterizing precisely noise
in cortical extracellular electrode is extremely complex (Musial
et al., 2002; Pouzat et al., 2002; Kim and Kim, 2003). However,
noise is commonly considered to follow a Gaussian distribution
(Sahani et al., 1998; Oweiss and Anderson, 2001), and to have
a flat power spectral density («white») in the neural signal fre-
quency band (Chandra and Optican, 1997; Folkers et al., 2003;
Watkins et al., 2004).

Automatic biopotential detectors have been proposed for real-
time detection (Harrison, 2003; Watkins et al., 2004; Olsson and
Wise, 2005; Gosselin and Sawan, 2008, 2008). The most intu-
itive method is to use an adaptive threshold on the raw signal
to detect APs. But in noisy environments like cells cultures, when
APs are embedded in background noise, this method becomes
ineffective. An alternative is to use a pre-processor which ampli-
fies AP-like shapes and attenuates out-of-band noise. Followed by
a thresholding function, it will increase the detection rate together
with the spike-to-noise ratio. Mtetwa and Smith (2006), Pater-
son et al. (2008) introduce efficient pre-processing methods for

Frontiers in Neuroengineering www.frontiersin.org July 2011 | Volume 4 | Article 7 | 1

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org/Neuroengineering/editorialboard
http://www.frontiersin.org/Neuroengineering/editorialboard
http://www.frontiersin.org/Neuroengineering/editorialboard
http://www.frontiersin.org/Neuroengineering/about
mailto:sylvie.renaud@ims-bordeaux.fr
http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive
http://www.frontiersin.org/neuroengineering/10.3389/fneng.2011.00007/abstract
http://www.frontiersin.org/people/yannickbornat/30002
http://www.frontiersin.org/people/sylvierenaud/765


Quotb et al. Wavelet-based action potential detection

APs detection (Teager Energy Operator, Normalized Cumulative
Energy Difference, Phase-Space, Summation, Convolution-based
template matching). However most of these methods are not
efficient when processing noisy signals (SNR< 5). This justifies
investigations on alternative spike detection techniques.

The wavelets transform was considered only recently as a
relevant pre-processing method in the context of neural signal
processing. It has since been successfully used in biomedical appli-
cations (Sweldens, 1995; Unser and Aldroubi, 1996; Hulata et al.,
2000; Nakatani et al., 2001; Addison, 2002; Folkers et al., 2003;
Karel et al., 2005; Lee and Kipke, 2006; Yuning et al., 2010). The
interest for this method lies in its capability of compression and
time–frequency localization for feature extraction. Some wavelet-
based methods were already successfully implemented for offline
neural processing (Lewicki, 1994; Wickerhauser, 1994; Hwan and
June, 2003; Kim and Kim, 2003; Salmanpour et al., 2008; Manju-
nath and Ravikumar, 2010). These methods were tested for specific
AP shapes, and were implemented in software. In most cases, real-
time computation was not considered as an issue (by “real-time”
we mean here and for the rest of the paper that the period for pro-
cessing incoming data is lower than the sampling period, i.e., each
new sample is processed before the arrival of the next sample).

We present here a study on wavelet detection methods of neu-
ronal APs. Our final goal is to implement the selected algorithms
on custom integrated electronics for on-line processing of neural
signals. For that purpose, we investigate the influence on spike
detection success rate of different wavelet types and detection
parameters.

This paper is organized as follow: Section “Materials and Meth-
ods” reviews the wavelet theory. Section “Results” describes the
generation of artificial neural signals, APs detection, and the
process evaluation. Section “Discussion” presents experimental
results with artificial and real neural signals, and concludes the
paper.

MATERIALS AND METHODS
WAVELET THEORY
The wavelet principle has been developed as an alternative to the
Fourier transform for overcoming eventual resolution problem
(Phillies et al., 1996). The wavelet analysis is built in a similar way
to the Fourier one: a signal is convolved by a function identified as
the mother wavelet (1) [similarly to the window function for the
Fourier transform (2)] and the transform is computed for differ-
ent segments of the signal in the temporal (translation factor b)
and in the frequency field (dilatation factor a). While the Fourier
transform has a uniform time–frequency distribution the wavelet
transform provides a multi resolution analysis (MRA; Daubechies,
1992; Finn and Lopresti, 2003).

CWTψa,b {x(t )} =
+∞∫

−∞
x(t ) ∗ ψa,b(t )dt (1)

where ψa,b(t ) = (1/
√

a) ∗ ψ(t − b/a) is the mother wavelet and
ψ(t ) a wave-like window function with zero means.

CWT corresponds to the continuous wavelet transform. a
(dilatation factor) and b (translation factor) provide the wavelet

MRA advantage and represent respectively the temporal and
frequency field.

STFTg (�,b){x(t )} = Xg (�, b) =
+∞∫

−∞
x(t ) ∗ [ψ∗

�,b(t )] dt (2)

where STFT represents the short time Fourier transform, g (t )
a positive window function centered on zero and ψ∗

�,b(t ) =
g (t − b)e−j�t .

In CWT, thanks to the dilatation factor (a), the window (mother
wavelet: ψa,b) width decreases when frequency increases, while
the window (g ) width for STFT is constant. In that case, this
wavelet convolution method provides both a good time resolu-
tion at high frequencies and a good frequency resolution at low
frequencies. These features are significant when the real signal has
high frequency components for short periods and low frequency
components for long periods. As APs present these exact features,
wavelets-based processing seems to be relevant for AP detection.

Discrete wavelet transform filter bank
One of the most reliable digital implementation methods of
wavelet transforms is based on a pyramidal algorithm called dis-
crete wavelet transform (DWT) and developed by Mallat (1989).
This method is based on a filter bank decomposition on an
orthogonal base realized by a convolution between an original
signal x[n] and two filters: an high-pass filter (G) which com-
putes dj[n] (so-called “wavelet detail coefficient”) at decomposi-
tion level j ; a low-pass filter (H) which computes aj[n] (so-called
“wavelet approximation coefficient”) at decomposition level j (see
Figure 1).

Convolution operations realized by G and H are described by
Eqs 3 and 4.

dj [n] =
L−1∑
k=0

g [k] ∗ aj−1[2n − k] (3)

aj [n] =
L−1∑
k=0

h[k] ∗ aj−1[2n − k] (4)

where L represents the order of the wavelet filters, typically
between 2 and 8 (see Table 1), j the current wavelet decomposition
level, n the sample number. g[k] and h[k] are the filter coefficients
of the low-pass and the high-pass filters. Note that both approx-
imation and detail wavelet coefficients at level j only depend on
the approximation wavelet coefficient at level (j − 1). This set of
two wavelet filters composes the mother wavelet, which shape is
adjusted by the coefficients (g[k] and h[k]) contrary to the Fourier
transform where the convolution function is fixed. The choice of
the mother wavelet coefficients has to be done carefully; usually,
the more the mother wavelet shape is similar to the AP shape, the
more the detection is efficient.

As illustrated in Figure 1, each wavelet detail coefficient at level
j (dj) is a band-pass filter between [1/4; 1/2]∗2−j using normal-
ized frequencies. In our application, with a sampling frequency of
10 kHz, the frequency bands are respectively [625; 1250]Hz for d2,
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FIGURE 1 | A three-level filter bank for discrete wavelet decomposition.

[312; 625]Hz for d3, and [156; 312]Hz for d4. This helps optimiz-
ing the wavelet detection level according to the energy in frequency
domain for a specific AP type.

In Figure 2, we can see mother wavelets which shape is similar
to the AP we chose for our study. Table 1 lists the correspond-
ing coefficients g[n] and h[n]. These coefficients can be found in
Meyer (1992), Coifman et al. (1992), Strang and Nguyen (1996),
and Mallat (1998).

Stationary wavelet transform filter bank
The main problem for the practical use of DWT is that it is not
time-invariant, which means that temporal shifts in the input sig-
nal will produce different sets of DWT coefficients (Salmanpour
et al., 2008).

Stationary wavelet transform (SWT) solves that issue by omit-
ting the DWT down-sampling decimation. The approximation
and the detail outputs of each level of SWT contain the same
number of samples as the input. Figure 3 represents the digital
SWT filter bank.

A N input vector gives N detail coefficients and N approxi-
mation coefficients at each level of decompositon. The resulting
information redundancy increases the power of wavelet detection.

Contrary to the DWT where all filter coefficients are identical,
in SWT they are different thanks to up-sampling (Figure 3). One
example of the coefficients of the up-sampled filter is presented
for Haar mother wavelet in Table 2.

ACTION POTENTIAL DETECTION STRATEGY
We describe in this paragraph the different strategies we used for
AP detection, together with the related wavelet algorithms. The

Table 1 | Mother wavelet coefficients.

Wavelet L: co-

efficient

number

High-pass filter (G)

coefficients

Low-pass filter (H)

coefficients

Haar 2 g[0] = −0.7071067812 h[0] = 0.7071067812

g[1] = 0.7071067812 h[1] = 0.7071067812

Symlet2 4 g[0] = −0.4829629131 h[0] = −0.1294095226

g[1] = 0.8365163037 h[1] = 0.2241438680

g[2] = −0.2241438680 h[2] = 0.8365163037

g[3] = −0.1294095226 h[3] = 0.4829629131

Biortho-

gonal 1.3

6 g[0] = 0 h[0] = −0.0883883476

g[1] = 0 h[1] = 0.0883883476

g[2] = −0.7071067812 h[2] = 0.7071067812

g[3] = 0.7071067812 h[3] = 0.7071067812

g[4] = 0 h[4] = 0.0883883476

g[5] = 0 h[5] = −0.0883883476

Daubechies4 8 g[0] = −0.2303778133 h[0] = −0.0105974018

g[1] = 0.7148465706 h[1] = 0.0328830117

g[2] = −0.6308807679 h[2] = 0.0308413818

g[3] = −0.0279837694 h[3] = −0.1870348117

g[4] = 0.1870348117 h[4] = −0.0279837694

g[5] = 0.0308413818 h[5] = 0.6308807679

g[6] = −0.0328830117 h[6] = 0.7148465706

g[7] = −0.0105974018 h[7] = 0.2303778133

The inverse DWT (IDWT) reconstructs a j from aj + 1 and dj + 1 by up-sampling by

a factor of two and convolving the results by the reconstructed filter. The original

signal (x[n]) can be recovered by iteratively continuing the IDWT algorithm. IDWT

is not interesting for APs detection, that’s why we don’t use it. It is then possible

to take approximations toward filters orthogonality and filter coefficients.

FIGURE 2 | Examples of mother wavelets: (A) Haar, (B) Symlet2, (C)

Biorthogonal 1.3, and (D) Daubechies4 (Daubechies, 1992).

associated architectures were designed for future implementation
on a configurable digital integrated circuit (FPGA type).
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FIGURE 3 |Three-level SWT filter bank and Filter coefficients up-sampling.

Table 2 | Haar mother wavelet coefficients for SWT.

Level 1 (j = 1) Level 2 (j = 2) Level 3 (j = 3)

High-pass filter, Gj g1[0] = −0.7071067812 g2[0] = −0.7071067812 g3[0] = −0.7071067812

g1[1] = 0.7071067812 g2[1] = 0 g3[1] = 0

g2[2] = 0.7071067812 g3[2] = 0

g2[3] = 0 g3[3] = 0

g3[4] = 0.7071067812

g3[5] = 0

g3[6] = 0

g3[7] = 0

Low-pass filter, Hj h1[0] = 0.7071067812 h2[0] = 0.7071067812 h3[0] = 0.7071067812

h1[1] = 0.7071067812 h2[1] = 0 h3[1] = 0

h2[2] = 0.7071067812 h3[2] = 0

h2[3] = 0 h3[3] = 0

h3[4] = 0.7071067812

h3[5] = 0

h3[6] = 0

h3[7] = 0

The main drawback of SWT algorithm is its computational expensiveness. We will address this issue quantitatively later in this paper. More information about wavelet

analysis can be found in Meyer and Ryan (1993), Coifman and Donoho (1995), Pesquet et al. (1996), Niervergelt (2001), and Jensen and La Cour-Harbo (2001).

Raw thresholding (adaptive or not) is the cheapest method
to extract APs, in terms of computational cost. Threshold-based
detection is applied directly on the raw signal without any pre-
processing. A spike is detected when the absolute value of the
signal is above the threshold. An absolute threshold can be set
manually above the background activity level, and be roughly opti-
mized to minimize detection errors. But in most cases this method
is not robust enough for extracting AP in a noisy or unstable
environment.

Donoho proposes to use an adaptive threshold (T ) defined
using the algorithm introduced in Donoho (1994). Equations
are given in Eqs 5 and 6. This algorithm was developed
with the assumption that the input to the system consists of
spikes added to band-limited white Gaussian noise (Watkins et al.,
2004).

T = σ
√

2 log(N ) (5)
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where N is the number of samples of the full-length neural signal,
σ is the SD of the Gaussian noise calculated by Eq. 6.

σ = median (s[n])
0.6795

(6)

s[n] is the input signal where the SD is computed. This SD compu-
tation method is generally used for offline AP detection. It is not
adapted for real-time APs extraction since it post-processes the
whole signal to detect local events. Without pre-processing s[n]
corresponds to the raw signal but with wavelet pre-processing it
corresponds to the first detail level d1[n].

To ensure real-time computation, a first step is to add a low-
pass filter for a continuous estimating of σ. Depending on the filter
time constant, a preset period has to be considered at the start of
the experiment before the threshold is correctly set. For low SNR
signals this detection method is however limited as APs amplitude
can be lower than average noise.

Our strategy for on-line AP detection is to implement a pre-
processor which emphasizes APs shapes and attenuates out-of-
band noise, followed by a thresholding circuit which discriminates
AP events. In our case, the pre-processing algorithm is the DWT
or the SWT and the thresholding is computed in real-time.

A block diagram of the wavelet detection module is presented
in Figure 4. The SWT or DWT module provides the first level
d1 and the most effective detail level (dk) for the application of
the threshold. σ is dynamically estimated on the first detail level
d1 using a feedback loop. We use d1 instead of the raw signal
because it is obtained after a high-pass filter which keeps only the
highest frequency of the signal. In these conditions signal with
low variations are removed and a better computation of the SD is
obtained. Within the loop the signal and its estimated σ are com-
pared (Harrison, 2003) by the comparator A. The output of A is a
binary pulsatile signal, which mean value is a linear representation
of the ratio of samples above the estimated σ. A low-pass filter (F1)
extracts this mean value with a gain of G1. The difference between
this value and a reference P is fed back to the comparator A. This
signal is an estimation of the input data SD σ. The user must set
the reference P depending on the approximate distribution of the
processed signal. For a white Gaussian noise signal, the probability

FIGURE 4 | Block diagram of the wavelet detection module.

of a sample absolute value to be over σ is 0.318. In that case the
reference in the control loop is set to 0.318. We chose that con-
figuration according to Addison (2002). We use absolute sample
values to increase the reference ratio and reduce constraints on the
low-pass filter F1. Finally, after a low-pass filter (F2) that stabilizes
its value, the threshold T is calculated as shown in Eq. 7, where G2
gain is an integer in the range of 0 and 3.

T = G2 ∗ σ (7)

G2 is defined by the user according to its experience and to the
neural signal. For a white Gaussian noise, 95% of samples are
between 0 and 3σ, so setting the threshold above this range ensures
a correct spike detection (Watkins et al., 2004).

The transfer function of the digital low-pass filters F1 and F2
is:

H (z) = K ∗ 1 − wz z−1

1 − wpz−1
(8)

H is a Butterworth low-pass filter, which cut-off frequency is 10 Hz
and sampling frequency is 10 kHz. Due to the hardware imple-
mentation prospective, we encode H parameters in fixed-point 16
bits format. They were computed using MATLAB and are listed in
Table 3.

In all our analysis, we assume that the noise is Gaussian and
white. If noise is colored, a preliminary noise characterization
is necessary and G1 and the P reference have to be adjusted
consequently.

MATERIALS AND METHODS
Method for generating references neural signal
We intend in this paper to compare different methods for APs
detection on various of neural signals. For a quantitative compar-
ison, we ran initial tests on artificial neural signals for which the
waveform and timing of all APs are known. We present results
obtained using three types of neural signals (see Figure 5, for APs
waveforms and patterns).

The design of artificial neural signals consists in three steps:
the first one is to define the AP waveform, specific to each of our
test signals. Two of them are inspired from literature: Figure 5B
(Quiroga et al., 2004) and Figure 5C, (Nenadic and Burdick, 2005).
The third AP (Figure 5A) was recorded in vivo from Macaca
mulatta monkeys in the resting state with glass-coated tungsten
microelectrodes (impedance 0.5 MΩ at 1 kHz) at a frequency of
10 kHz. The second step consists in creating a signal (x[n]) where

Table 3 | Low-pass filter coefficients.

Real value Binary*10−14

K 0.003112792968750 0110011000000000

wz 1 0100000000000000

wp −0.99371337890625 1100000001100111

A spike is detected if the absolute value of the most efficient detail level (dk) is

above T.
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FIGURE 5 |Three artificial neural signals with SNR = 5 and different APs

shapes and patterns. (A) 50-AP pattern; AP from monkey in vivo recordings
(courtesy from Boraud et al., 2005), (B) 18-AP pattern; APs are reconstructed

from Quiroga et al. (2004) APs, (C) 10-AP pattern; APs are reconstructed
from Nenadic and Burdick (2005) APs. Upper line: AP shapes and neural
signals. Bottom line: power spectral density of neural signals.

AP waves appear randomly (with three different amplitudes).
Finally, by adding a Gaussian noise to x[n] (Eq. 9), we obtain
the artificial neural signal (y[n]) with a defined SNR.

y[n] = x[n] + χ [n] ∗ K (9)

K is a coefficient chosen in order to define a specific SNR for each
neuronal signal. n is the sample number. χ[n] is a pseudo-random
sequence which distribution is centered on 0 and variance is 1.

Signal to noise ratio is computed using Eq. 11, which is a varia-
tion of the general SNR Eq. 10. Equation 11 emphasizes the weight
of APs in the SNR, which would not be significant otherwise
considering the short duration of AP event.

SNR = 10 log10

(∑
x[n]2∑
y[n]2

)
(10)

SNR = 10 log10

⎛
⎝

∑
spike[n]2 ∗ length(x)

length(s)∑
y[n]2

⎞
⎠ (11)

spike corresponds to the AP shape, x[n] is s[n] in Eq. 6.
We ran simulations with different SNR values: from 0 to 10 dB

by steps of 1 dB. Figure 5 shows three examples of artificial neural
signals designed with a SNR of 5 and different AP shapes. The
number of APs in each signal is variable: 50 spikes in Figure 5A,

18 spikes in Figure 5B and 10 spikes in Figure 5C, with no overlap
between APs. The signal was computed using MATLAB©. To com-
plete the characterization, we computed for each signal its power
spectral density. Spectra don’t present signature lines that would
be representative of AP occurrence; therefore a simple Fourier
analysis would not have been sufficient to detect all APs.

The AP waves are sampled at 10 kHz and have to be noise-
less, as a Gaussian noise is added during the construction of the
neural signal. This characteristic is essential for the success of
the wavelet AP detection in our simulations. If the original AP
has its own noise component, SNR will be lower than expected
because of the added Gaussian noise. To fit that constraint, we
have applied a smoothing algorithm (median method) on the
in vivo recorded AP, with the method of the median, as shown in
Figure 6.

Evaluation method for the AP detection algorithm
Our method do classify AP detection algorithms for a future
hardware implementation, is as follows:

At first the method for calculating the threshold has to be
defined. We don’t know a priori which level of the wavelet trans-
form gives the best compromise for threshold detection of APs for
a given mother wavelet.

Then, we compare the detection methods described above
(raw thresholding, DWT, and SWT). The detection ratio for each
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FIGURE 6 | Action potential smoothing on the in vivo recorded spikes.

method is an important parameter, but we also consider the num-
ber of operations for each method in order to reduce the estimated
implementation cost on an integrated circuit (device area and
power consumption).

Thirdly, we underline the role of the mother wavelet in APs
detection by comparing the results with different kinds of mother
wavelets. We implemented two computation schemes for each of
these mother wavelets. These schemes correspond to different pre-
cision levels on the filter coefficients: standard 10-digits coding
from the literature, then lower precision (1% of the full range
value).

RESULTS
This section shows the simulation results obtained with MATLAB.
Statistical analysis was conducted on 50 realizations. Input sig-
nals length is in the range [1s; 2s] (specified in figures); sampling
frequency is 10 kHz. The p-values and errors bars have been cal-
culated, but not plotted due to its extremely low values, which was
expected as we present a synthesis of software simulations.

THRESHOLDING COMPUTATION EFFECTS ON APS WAVELET DETECTION
This section addresses the discussion of Section “Evaluation
Method for the AP Detection Algorithm”: at which wavelet level
should the thresholding be applied to detect APs? Indeed as
shown in Figure 7, it depends from the detail level in the wavelet
decomposition.

In order to set a level for APs detection, we have simulated the
response to threshold detection when changing the decomposition
level after which we compute the threshold. Results are presented
in Figure 8.

Results show that for SWT with a neural signal sampled at
10 kHz, the percentage of correct detection is the best when apply-
ing the threshold on the third level of wavelet decomposition. In
term of operations, computation cost on level three is three times
higher than on level 1. Detection rate is also correct on level 2
with a cost of two times that of level 1. Still, for a given SNR, level
3 detection provides performance of level 2 if the SNR is lower
by 1 dB. The 50% increase in computational cost is acceptable
compared to the efforts required to provide such a SNR differ-
ence. This result will change with the increase of the sampling
frequency, improving results for the level 3 based detection. Above
17 kHz sampling, level 4 becomes in turn more performing than
level 3, which is expected since digital filters frequency response is
highly dependent on the sampling frequency. Level 3 detection is

FIGURE 7 | Stationary wavelet decomposition from the signal with

monkey APs (Figure5A).

FIGURE 8 | Correct detection rate for different thresholding at different

decomposition level, depending on SNR. We used SWT and Haar
mother wavelet. Maximum error bar is 0.93% (not represented); p-values
and false positive are not significant.

then accurate from 8.5 to 17 kHz, which is compatible with bio-
logical signal features (spectrum of APs is below 3 kHz). We expect
best performance of our system at the geometrical center of this
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FIGURE 9 | Action potential detection results for three detection

methods (Raw threshold, SWT, DWT) depending on the signal SNR for:

(A) In vivo monkey APs, (B) Quiroga APs, (C) Nenadic APs. Maximum error
bar is 0.86% (not represented); p-values and false positive are not significant.

band, which is about 12 kHz but this needs to be further studied
and confirmed.

DENOISING TECHNIQUE EFFECTS ON APS DETECTION
We compare here the three detection methods for the three artifi-
cial neural signals at various SNR. The first method uses raw signals
(no transformation), the second one uses DWT, and the last uses
SWT. We plotted in Figure 9: the rates of correct detection for each
signal with three different detection methods.

In terms of detection efficacy, SWT is clearly the best solu-
tion for all signals. Its results are comparable to other methods
with SNR lower by 2–4 dB. In terms of algorithm computa-
tion, if we consider that a level of wavelet decomposition costs
one resource unit, DWT costs 1.75 resources thanks to the fac-
tor 2 down-sampling (1 for the first level, 0.5 for the second
level, and 0.25 for the third) and the SWT costs 3 resources. As
a result, SWT uses 58.3% resources more than DWT. Despite
this drawback, SWT appears to be the best choice compared to
DWT and raw threshold when the dominant objective is detection
performance.

It is also worth mentioning that for a 5-dB SNR (Figure 5),
AP extraction with a simple threshold is not possible whereas
SWT provides excellent results. We get very high detection rates
for in vivo monkey spikes and Nenadic spikes and above 60%
for Quiroga spikes, which is still relevant for analyzing a net-
work activity. This comparison shows the power of SWT for
extracted AP from noisy signal, but also demonstrates the strong
dependence of the detection rate to the nature of the neural
signal.

FIGURE 10 | Correct detection rate with four mother wavelets on

in vivo AP neural signal. Maximum error bar is 0.99% (not represented);
p-values and false positive are not significant.

EFFECT ON APS DETECTION OF MOTHER WAVELET SHAPE AND
COEFFICIENT REDUCTION
In this section, we study the effect of the mother wavelet shape
on the APs detection. We illustrate the study in Figure 10 by
measurements on the in vivo AP-based neural signals.
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FIGURE 11 | Action potentials detection rate using 2 and 10 digits for

coding wavelet filters coefficients. Maximum error bar is 0.94% (not
represented); p-values and false positive are not significant.

We observe that the use of the Bior1.3 (Biorthogonal 1.3)
mother wavelet results in the best correct detection rate. Figure 2,
which represents the four mother wavelets used in this study, shows
the similarities between the Bior1.3 mother and the AP. This con-
firms SWT detection is all the more efficient than the shape of the
mother is similar to the APs in the neural signal.

In terms of computation cost, we expect a mother wavelet
with as less coefficients as possible (see number of coefficients
in Table 1). For a hardware implementation, Haar mother wavelet
with its four coefficients and it good detection results is definitely
appropriate for APs detection in our configuration.

In parallel, in order to minimize the silicon area for hardware
implementation, it is possible to reduce the computation preci-
sion while limiting the degradation of the AP detection rate. As an
illustration, we present in Figure 11 the AP detection rate when
the same mother wavelet is computed with high and low precision
coefficients.

Results show a small difference on the detection rate. Of course,
using 2-digit coefficients implies loosing the precise orthogonality

of the two filters. This is however not a case of matter since we
are not interested by the properties it brings in terms of signal
reconstruction.

A 2-digit coefficient can be coded using 8 bits, while a 10-digit
value requires 34 bits. Silicon area in digital hardware almost lin-
early depends on the date format (number of bits) for storage and
additions. For multipliers, the relationship is quadratic for a given
computation time or just linear if we extend linearly the computa-
tion time. By limiting the coefficients resolution, we will therefore
release the constraints on the silicon area, which is usually a limit-
ing factor in the context of implementing parallel detection devices
on high density multi-electrode arrays.

DISCUSSION
We propose in this paper an implementation study for an adap-
tive detection method using wavelet transforms. We investigated
the influence on the detection success rate of different design
choices: detection method, mother wavelet, wavelet detection level,
sampling frequency, digital resolution of coefficient.

Our main conclusions are: (a) in terms of APs detection rate,
SWT appears as the best solution. Although this method requires
more computational power than DWT, its cost is limited by the
fact that it is only requires computation at the third detail level; (b)
the mother wavelet has to be defined in accordance with the AP
shape; (c) wavelet filters with few coefficients perform excellent
spike detection in a noisy environment; (d) that high-precision
computation is not necessary: encoding the wavelet filter coeffi-
cients on 2 bits rather than 10 bits only degrades the detection
rate by a few percents, and strongly reduces the computational
cost.

This study provides new inputs for the implementation of adap-
tive threshold wavelet-based detection, adapted to neural signals
in extracellular recordings. We will use it for the design of a hard-
ware microelectronic device, to be integrated with micro-electrode
arrays in neural acquisition systems.
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