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Using cultured Aplysia neurons we recently reported on the development of a novel
approach in which an extracellular, non-invasive multi-electrode-array system provides mul-
tisite, attenuated, intracellular recordings of subthreshold synaptic potentials, and action
potentials (APs), the so called “IN-CELL” recording configuration (to differentiate it from
intracellular recordings). Because of its non-invasive nature, the configuration can be used
for long term semi intracellular electrophysiological monitoring of APs and synaptic poten-
tials. Three principals converge to generate the IN-CELL configuration: (a) engulfment of
approximately 1 μm size gold mushroom-shaped microelectrodes (gMμE) by the neurons,
(b) formation of high seal resistance between the cell’s plasma membrane and the engulfed
gMμE, and (c), autonomous localized increased conductance of the membrane patch facing
the gMμE. Using dissociated rat hippocampal cultures we report here that the necessary
morphological and ultrastructural relationships to generate the IN-CELL recording configu-
ration are formed between hippocampal cells and the gMμEs. Interestingly, even <1 μm
thin branches expand and engulf the gMμE structures. Recordings of spontaneous elec-
trical activity revealed fast ∼2 ms, 0.04–0.75 mV positive monophasic APs (FPMP). We
propose that the FPMP are attenuated APs generated by neurons that engulf gMμEs.
Computer simulations of analog electrical circuits depicting the cell–gMμE configuration
point out the parameters that should be altered to improve the neuron–gMμE electrical
coupling.
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INTRODUCTION
Multiunit, non-invasive extracellular recordings by flat microelec-
trode arrays (MEAs) is currently the central electrophysiological
methodology for long term analysis of in vitro and in vivo neuronal
network activities (Fromherz, 2003, 2006; Berdondini et al., 2009;
Maccione et al., 2010; Wheeler and Nam, 2011) These MEA also
serve as a platform for drug neurotoxicity screening (for example
Johnstone et al., 2010). Similar MEAs are also used for the develop-
ment of brain–machine interfaces (Hochberg et al., 2006; Lebedev
and Nicolelis, 2006). In fact, the extracellular MEA approach is the
only available technology for high temporal resolution of multi-
unit electrical recordings and stimulation. It enables long term
recordings of field potentials that reflect extracellular currents gen-
erated by neuronal action potentials (APs) in the vicinity of the
electrodes and local field potentials (FPs) that reflect synchronized
subthreshold activity generated by ensembles of nearby neurons
(Einevoll et al., 2010). Despite the extensive research and devel-
opment efforts, extracellular recordings provide no direct infor-
mation on synaptic potentials. Furthermore, the analysis of FP
requires extensive computations, which often relay on estimated

parameters (Quiroga et al., 2004; Einevoll et al., 2010). On the
other hand,with excellent signal-to-noise ratio, sharp-intracellular
microelectrodes, and patch-electrodes enable to resolve subthresh-
old events including excitatory and inhibitory synaptic potentials
as well as to analyze the mechanisms underlying the genera-
tion of APs. In addition, intracellular current injections through
these electrodes serve to reliably stimulate individual neurons as
well as to extract essential biophysical parameters such as input
resistance, membrane capacitance, and analyze synaptic proper-
ties (e.g., reversal potentials). Nevertheless, the use of sharp or
patch microelectrodes is limited to a relatively small number of
neurons as the manipulation of the electrode tips toward tar-
get cells requires the use of bulky micromanipulators (but see
Markram and Perin, 2011; Perin et al., 2011). In addition, the
duration of intracellular recording and stimulation sessions by
these electrodes is limited, since with time, mechanical instabil-
ities damage the plasma membrane, or in the case of the patch
electrodes perfusion of the cytoplasm alter the intracellular com-
position of the cells (Sakmann and Neher, 1984 but see Akaike and
Harata, 1994).
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Using cultured Aplysia neurons we reported in a recent series
of publications on the development of a novel neuro-electronic
interface that integrates the advantages of non-invasive extracel-
lular electrodes and intracellular access to neurons (Spira et al.,
2007; Hai et al., 2009a,b, 2010a,b). The method consists of an
array of chemically functionalized non-invasive, micrometer sized,
gold mushroom-shaped microelectrodes (gMμEs) that practically
provide multisite, attenuated intracellular recordings of APs, and
subthreshold synaptic potentials, while the electrodes maintain
an extracellular position. We referred to this mode of recording
and stimulation as the IN-CELL configuration to differentiate it
from intracellular recording and stimulation. The IN-CELL con-
figuration enables recording with quality and signal-to-noise ratio
that matches recording by perforated patch-electrode (Akaike and
Harata, 1994; Inyushin et al., 1997). The interface also supports
“IN-CELL stimulation” by milliseconds long single pulses (Hai
et al., 2010b). Consistent with the extracellular position of the
gMμEs in respect to the cells, the recording sessions can last for
days (Hai et al., 2010b).

Three cell biological processes converge to generate effec-
tive IN-CELL recording and stimulation configuration: (a) active
engulfment of the gMμEs by the neurons, (b) the generation of
high seal resistance between the neuron and the electrode and (c)
localized increase in the conductance of the plasma membrane that
faces the gMμE. The physical principles underlying the IN-CELL
recording and stimulation are similar to those of the perforated
patch clamp configuration (Akaike and Harata, 1994; Inyushin
et al., 1997; Hai et al., 2010a,b).

The main objectives of the present study were to begin and
examine the prospective to implement the IN-CELL configura-
tion to cultured mammalian cells. It should be noted that the cell
bodies and main neurites of isolated Aplysia neurons are signifi-
cantly larger than vertebrate neurons and can be manually placed
on top of chemically functionalized gMμE. This in turn leads to
optimal positioning of the neuron’s cell bodies in respect to a num-
ber of gMμEs and their engulfment (Spira et al., 2007; Hai et al.,
2009a,b). Here we asked whether primary mammalian cell bodies
of 10–20 μm in diameter respond to the presence of a 1- to 2-μm
size gMμEs by their engulfment. How would growing 1 μm thick
neurites that extend from the cell bodies respond when encounter-
ing gMμEs? Would the neurites avoid the gMμEs structures and
grow in between them or engulf them? Would the plasma mem-
brane of the neurons form close physical contact with the gMμEs?
And can the cells survive; develop excitable membrane properties
and synaptic contacts when grown on a matrix of gMμE? What is
the nature of the cells–gMμE electrical coupling?

We report here that: (a) the cell bodies and branches of cul-
tured hippocampal cells (neurons and glia) engulf functionalized
gMμEs. (b) The cell’s plasma membrane forms tight physical
apposition with the gold surfaces to increase the seal resistance.
(c) These parameters are sufficient to enable the recordings of
mainly positive monophasic APs, with amplitude of 0.04–0.75 mV,
spontaneously generated by the neurons, and monophasic slow
potentials reaching amplitudes of approximately 5 mV, which
might represent glial membrane potential shifts. Analysis of the
results indicates that bioengineering the IN-CELL configuration
for vertebrate neurons is feasible.

MATERIALS AND METHODS
gMμE BASED MEA FABRICATION
Arrays of gMμE electrodes for electrical measurements were pre-
pared on 200 μm thick glass wafers (AF45 Schott Glass) as pre-
viously described (Hai et al., 2009a, 2010b). Briefly, wafers were
coated with a Ti (10 nm)/Au (100 nm) layer by way of evapora-
tion, spin-coated with photoresist AZ-1505 (4,000 RPM) baked
for 30 min (90˚C) after which a first photolithographic process
was performed to define the conduction lines by Au/Ti wet etch.
Next a second lithographic step using S-1813G2 photoresist was
performed to open holes for the deposition of the gMμE stalks
as well as the contact pads. Next the gMμEs were formed by
way of gold electroplating at current density of 0.15A/cm2 for
15–20 min. The photoresist layer was stripped off and a layer
of silicon oxide (∼3,000 A) was deposited by chemical vapor
deposition. This layer serves to passivate the conducting elec-
trode lines. A third layer of photoresist was then applied. A
third lithographic step was used to expose the contact pads and
the caps of the gold mushrooms followed by wet oxide etch to
selectively remove the oxide from the contact pads and the mush-
room caps. Retrospective SEM of the gMμEs revealed that the
oxide on the upper (third) part of the stalk was also etched.
Wafers were then diced and underwent manual bonding to 62-
pad printed circuit boards to which 21 mm glass rings were
attached to create a recording bath chamber for the culturing
medium.

FABRICATION OF GOLD MUSHROOM-SHAPED MICRO PROTRUSIONS
MATRIXES
Scanning- and transmission-electron microscopic imaging were
conducted using dissociated cultured hippocampal cells grown
on matrices of gold mushroom-shaped protrusions (gMμP). The
fabrication of gMμP matrixes were prepared on 200 μm glass
wafers (AF45 Schott Glass) by means of photolithography and
electroplating techniques, as described above.

The slides were attached to culture dishes using silicone
(Sylgard Dow Corning).

SURFACE FUNCTIONALIZATION
Three different surfaces were used in accordance to the purpose
of the experiment: (a) For immunolabeling observations we used
plane cover slide substrate (Marienfeld, Germany). (b) For elec-
tron microscopy (SEM and TEM) we used gold mushroom based
matrixes in which the substrate in between the electrodes was
Au. This enabled us to label the surface of the glass substrate
by electron opaque gold layer for its visualization and reduced
the cost of chip fabrication for SEM imaging. (c) For electro-
physiological recordings we used gold mushroom based MEA (as
described above) in which the space between the electrodes was
of SiO2. All three surfaces were functionalized by: Poly-d-Lysine
(PDL) supplemented with laminin (Lam), or by polyethylenimine
(PEI; Sigma Aldrich, MW > 300,000) or by the cysteine termi-
nated engulfment promoting peptide (EPP; Spira et al., 2007; Hai
et al., 2009a,b). Coating of the surfaces by PDL or by PEI sup-
plemented with laminin (20 μg/ml) was done by application of
0.1% PDL or PEI in 0.1 M sodium borate to the culture dish as
previously described (Soussou et al., 2007). Functionalization of
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the Au surfaces by the EPP was done by application of 1 mM
peptide dissolved in phosphate buffer onto the surface at room
temperature as previously described (Spira et al., 2007; Hai et al.,
2009a).

CELL CULTURE
Cell cultures were prepared from neonatal SD/Hsd rats as
described (Gitler et al., 2004). Briefly, after decapitation, the hip-
pocampi were removed, treated with papain (Sigma Aldrich),
and serially triturated. Cell density at plating was 200,000–
400,000 cells/ml. Cells were cultured in B27 supplemented Neu-
robasal medium (GIBCO) at 37˚C in a humidified atmosphere of
5% CO2. All experiments were approved by the Committee for
Animal Experimentation at the Institute of Life Sciences of the
Hebrew University.

ELECTRON MICROSCOPY
For both SEM and TEM analysis cells cultured on the gold mush-
room substrate were fixed, dehydrated, and embedded in Agar
100 within the culturing dish as previously described (Spira
et al., 2003). Briefly, hippocampal primary cultured cells were
fixed by 3% glutaraldehyde in phosphate buffer at pH 6.9. The
cells were then washed in phosphate buffer and then in 0.5 M
cacodylate buffer, pH 7.4 (Agar Scientific, Stansted, England).
The cells were post-fixed in 0.5% osmium tetroxide (Next Chim-
ica, Centurion, South Africa) and 0.8% K3Fe(CN)6. Dehydra-
tion was carried out through a series of ethanol solutions. For
TEM the neurons were embedded in Agar 100 (Agar Scientific,
Stansted, England). Then the glass substrate was etched using
30% hydrofluoric acid (for ∼3 h). The Cr/Au layer was par-
tially etched by diluted Au etcher (I2/KI/H2O) and diluted HF
(1:40), leaving the gold mushroom structures intact. Thereafter,
the agar block, including the cells was re-embedded in Agar
100 in a flat mold. This doubly embedded preparation was then
thin-sectioned.

Measurements of cleft width from TEM images were done dig-
itally using image analysis program ImageJ (NIH, USA). Each
image was divided into three areas: (1) gold mushroom cap, (2)
gold mushroom stalk, and (3) flat gold substrate in between the
gold mushrooms. The sampling locations were selected within a
grid (100 nm pitch) randomly placed on the image. The distance
between the cell membrane and the mushroom was measured
along the corresponding fraction of the grid lines.

ELECTROPHYSIOLOGY
For recording with commercially available flat MEAs we used the
Multi Channel Systems (MCS, Reutlingen, Germany) electrode
arrays (62 Ti/Au/TiN electrodes, 10 μm diameter, 200 μm spac-
ing). Both commercial devices and gMμE devices were amplified
by an AC, 60-channel amplifier (MEA-1060-Inv-BC, MCS) with
frequency limits of 1–10,000 Hz.

Origin 8.1 software (OriginLab Corp., Northampton, MA,
USA) was used to plot the results.

COMPUTER SIMULATION
Computer simulations were done using SPICE. For the simula-
tions, the parameters used were: (1) the non-junctional membrane

resistance (Rnj) which was measured in a large number of publica-
tions to range between 100 and 250 MΩ (Spruston and Johnston,
1992; Ambros-Ingerson and Holmes, 2005; Scorza et al., 2011)
for neurons and 2–6 MΩ for glia (Murphy et al., 1993; Linden,
1997). (2) Junctional membrane resistance (Rj) was estimated
from TEM images analysis. The contact area of the gMμE with
the cells was estimated to be ∼10 μm2. This is only a fraction
of the actual surface area of an averaged gMμE, which is esti-
mated to be 12 μm2 (see Results). For the calculations of Rj we
multiplied the total input resistance (Rin) with the ratio between
the surface area of the neuron and the contact surface area of
the gMμE. We estimated Rj for neurons to be ∼100 GΩ and for
glia ∼5 GΩ. (3) The non-junctional membrane capacitance Cnj

equals the total membrane capacitance Cm and was set to 100 pF
for both neurons and glia. (4) The estimated junctional mem-
brane capacitance (Cj) is calculated from the estimated contact
area between the cells and the gMμE (10 μm2) and the value
of specific membrane capacitance (1 μF/cm2) to be 0.1 pF. (5)
The gMμE resistance (RgMμE) in solution was estimated to be
1,500 GΩ in accordance with the measured resistance of gold elec-
trodes in physiological solution (McAdams et al., 2006; Hai et al.,
2010a) normalized by the gMμE surface area. (6) The capacity of
the gMμE in solution is estimated by taking the specific capacity
of gold electrical double layer to be ∼50 μF/cm2 (Mirsky et al.,
1997) multiplied by the surface area of the gMμE to be 5 pF. (7)
The amplifier input capacitance is 8 pF (Multi Channel Systems,
Reutlingen, Germany).

For the simulations, a short (2 ms) and a long (250 ms) square
current pulses (2 nA) “were injected” into the simulated cell
(between Rnj and Rj). The coupling coefficients were calculated
as the voltage ratios between the amplitudes of simulated gMμE
and the potential generated within the simulated cell.

Simulation of the shape of the voltage calibration pulse were
done by applying a 20-ms, 1 mV voltage pulse to the “bathing
solution” – between the simulated cell and ground.

RESULTS
BIOCOMPATIBILITY OF THE PROTRUDING MUSHROOM-SHAPED
MICROSTRUCTURES MATRIXES
We began the study by testing the compatibility of the gold
mushroom protruding microstructures functionalized by differ-
ent chemicals as substrates for culturing dissociated rat hippocam-
pal cells. To that end we plated dissociated hippocampi on flat glass
surfaces or on matrixes of gMμPs fabricated on glass sputtered by
a thin film of gold (see Materials and Methods). The inter-gMμPs
interval was 8 μm and they were functionalized by PDL, PDL/Lam,
PEI, PEI/Lam, or EPP (as explained above).

Differential interference microscopic observations comple-
mented by retrospective immunolabeling revealed that the growth
pattern of the hippocampal cells on PDL, PDL/Lam, PEI, or
PEI/Lam were similar on the glass substrate and on the gMμP
matrixes. In contrast, hippocampal cells grown on EPP function-
alized substrates generated large aggregates in which the glia cells
formed a sheet in contact with the substrate and the neurons
grew on top (Figures A1A,B in Appendix). This configuration
was mechanically unstable and easily detached from the surface.
Immunolabeling of neurons by NF, glia cells by GFAP and nuclei
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by DAPI, revealed that the relative number of surviving neu-
rons decreased over time (from 60% on day 5 to 25–35% on day
20) for all tested substrates. Hippocampal cells cultured on EPP
functionalized matrixes generated aggregates and thus could not
be counted.

CHARACTERIZATION OF THE STRUCTURAL RELATIONS BETWEEN
HIPPOCAMPAL CELLS AND THE gMμPs BY SCANNING ELECTRON
MICROSCOPY
Scanning electron microscope images of dissociated cultured hip-
pocampal cells on gMμP matrixes (Figures 1 and 2) revealed a
number of cell morphologies. These most likely correspond to
neuronal- and non-neuronal cells (Rothman and Cowan, 1981).
According to earlier studies (Rothman and Cowan, 1981) the cell
bodies of the non-neuronal cells assume in culture flat geome-
try and extend numerous branches while the neurons generate
a distinctive long neurite, the axon, and a number of shorter
branches the dendrites (Craig and Banker, 1994). Examination
of SEM micrographs of cultured cells grown on PDL, or PEI, 5, 10,
and 21 days after plating revealed that many cell bodies are local-
ized on top of one to three gMμPs (Figure 1A). A single branch
is often seen to contact a number of gMμPs (Figure 2). Images of
the cell bodies or branch perimeters generated at an angle of 45˚
cannot provide a clear view of the interface formed between the
cell body and the gMμP but suggest that the cell’s plasma mem-
brane tightly adhere to the gMμP (Figures 1 and 2). Unexpectedly,
we observed that even very thin branches with a diameter of 0.5–
1 μm also engulf the gMμPs (Figure 1). The high incidence of
extensive engulfment of the gMμPs by these thin neurites suggest
that during the growth period, the growth cones at the leading tips

FIGURE 1 | SEM images of dissociated cultured rat hippocampal cells

grown on a matrix of gMμP functionalized with PEI for 6 days. (A) A
low magnification showing a neuron (upper left) and a non-neuronal cell
(lower right). The white arrows denote the location of three gMμPs residing
below the neuron. (B) A close-up image of a single gMμP partially engulfed
by a neurite. (C) Thin branches expand to engulf gMμPs. (D) A close-up
image of thin branches engulfing a single gMμP. [Scale bars denote 5 μm
for (A), 1 μm for (B–D)].

of the extending neurites “recognize” the gMμP geometry, enlarge
to encompass the structure, and then continue to grow.

Occasional breaks in the branches on top of the gMμP reveal
tight membrane-gold surface interfacing. SEM images generated
from 5, 10, and 21 days old cultures revealed that a similar fraction
of the engulfed gMμPs profiles is maintained over time. It is thus
conceivable to assume that this mode of structural relationships
between the neurites and the gMμPs is maintained for at least a
number of weeks.

FIGURE 2 | SEM images of a single rat hippocampal neuron grown on

a matrix of gMμP engulfing a number of gMμPs. The images were
prepared from cultures grown on PEI for 6 days. (A) A low magnification
micrograph showing three neurons and their neurites. (B,C) enlargements
of the neurite extending from the cell body marked by an asterisk in (A).
Note that this single neurite engulfs a number of gMμPs. [Scale bars
denote 12, 5, and 2.5 μm for (A–C), respectively].
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CHARACTERIZATION OF THE ULTRASTRUCTURAL RELATIONSHIPS
BETWEEN HIPPOCAMPAL CELLS AND THE gMμPs BY
TRANSMISSION-ELECTRON MICROSCOPY
Whereas scanning electron micrographs provided general infor-
mation on the physical contact formed between the cultured
cells and the gMμPs, it does not provide details on the inter-
faces formed between the plasma membrane and the gMμP. We
therefore turned to examine thin sections prepared from cultured
hippocampal cells on gMμP matrixes for transmission-electron
microscopy.

Examination of thin sections prepared from 5 to 21 days old
cultures revealed that fractions of the spaces adjacent to the flat
culture substrate are occupied by thin branches. As a consequence
cell bodies residing on top of the branches cannot form physical
contact with the gMμPs (Figure 3). Nevertheless, other cell bodies
tightly adhere to the substrate and engulf a number of gMμPs
(Figure 4). Consistent with the SEM images described above,
branches are often seen to tightly enwrap and adhere to at least
parts of the gMμP (Figure 1B). In many cases the branches adhere
to the mushroom cap and to parts of the “mushrooms stalks” leav-
ing other parts of the gMμP stalk in contact with large extracellular
space (Figure 5). Using TEM images (as illustrated by Figures 4
and 5) we measured the cleft width formed between the cell’s
membrane and the “cap” and “stalk” of the gMμP functionalized

FIGURE 3 |TEM image of cultured hippocampal cells grown on a matrix

of gMμPs functionalized by PEI. Low magnification image revealing that
in some parts of the cultures the cell bodies reside on top of a layer of
branches that do not form direct physical contact with the gMμPs. Note
that only a small part of the shown gold mushrooms “cap” is in contact
with the branches. Images are from a 10-days old culture. N, Nucleus; mt,
mitochondria; area of flat gold substrate-arrowheads. Scale bar: 1 μm.

by PDL, PEI, and EPP (Figures 5A,B). We found that under these
conditions approximately 50% of the cell–gMμP interface areas
appear to be in direct contact with the electrode surface (defined
as 0–5 nm cleft). The rest 40% of the interface reveals a cleft of 5–
40 nm. The remaining 10% of the gMμP surface area is in contact
with extracellular space that is larger than 40 nm (Figure 5C).

It should be noted that the measured extracellular cleft width
formed between the cells plasma membrane and the gMμP could
reflect osmotic pressure artifacts generated during the chemical
fixation, dehydration, and embedding processes (Studer et al.,
2008). Nevertheless, as the subcellular organelles (mitochondria,
vesicles, the endoplasmic reticulum, and the plasma membrane,
(Figures 3–5) are well preserved it is unlikely that the fixation
and embedding procedures generated significant osmotic pressure
artifacts. It is important to note in this respect that the presence
of electron translucent breaks in the embedding material, mainly
at the curving junctions between the cells and the gMμP cap as
well as the stalk (for example on the left hand side of the gMμP
in Figure 3) are generated during the TEM observations by the
detachment of the embedding polymer (Agar 100) from the gold
structures.

An alternative explanation to the tight interface between the
cell’s membrane and the gMμP could be mechanical tension gen-
erated by cytoskeletal elements in response to the curvature of the
gMμP (McMahon and Gallop, 2005; Hai et al., 2009a).

FIGURE 4 |TEM images of a cultured hippocampal cell engulfing three

gMμPs. (A) A low magnification micrograph of a cell body engulfing three
gMμPs (asterisks). (B–E) enlargements of the junctions formed between
the cell and two of the gMμPs. The arrows in (D,E) point to regions of tight
apposition between the cell’s plasma membrane and the PEI functionalized
surface of the gMμPs. Images are from a 10-days old culture. N, Nucleus;
mt, mitochondria; the horizontal straight lines in (B,C) depict area of flat
gold substrate-arrowheads. Scale bar for (A–C) 1 μm and for (D,E) 250 nm.
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FIGURE 5 | Analysis of the cleft width formed between hippocampal

cells grown on functionalized matrixes of gMμPs. For the experiments
the gMμPs were functionalized by PEI, PDL + laminin, and the engulfment
promoting peptide EPP. (A,B) The cleft width was measured along two
areas, the surface of the mushrooms’ “cap” (marked I), and along the upper
part of the stalk (marked II). Measurements were conducted at points
defined by a randomly placed grid on a TEM image. In the majority of the

TEM images the lower part of the gold mushroom’s stalk was not tightly
engulfed and not measured (marked III, yellow). Ruptured agar, appearing as
clear white areas in the TEM images, were not included in the analysis (see
text). Calibration 1 μm. (C) Independent of the chemical functionalization,
the cleft width along the mushrooms cap surface was close to zero. Along
the upper part of the stalk the gap was � 40 nm, and along the lower part of
the stalk � 40 nm.

The morphometric values obtained from the electron micro-
graphs were used to estimate the seal resistance formed between
the plasma membrane and the device (for details see Appendix).
For the estimate the mushroom cap and stalk diameters were taken
as 2 and 1 μm respectively and the height of the stalk 1 μm. For the
model we assumed that the tight contact between the cell’s mem-
brane and the gMμP is formed only along the upper third of the
stalk. With these values we obtained that Rseal is ∼53 MΩ. Because
of the large variability in the interface area between the cells and
the gMμPs we estimate that Rseal ranges between 10 and 100 MΩ.

ESTIMATE OF THE SEAL RESISTANCE GENERATED BY THE CELLS AND
THE gMμPs IN LIVING MATERIAL
As Rseal is one of the most important physical parameters that
define the electrical coupling between neurons and the sensing
gMμPs, and being concerned that osmotic pressure artifacts could
affect the morphometric measurements, we next estimated Rseal

in living cultures (unfixed) by the use of a calibration electrical
pulse. To that end we examined the time constant of a square

voltage calibration pulse delivered to the bathing solution and
recorded by the individual gMμEs (Figures 6A,B). As depicted
by the analog electrical circuit (Figure 6A) the simulation of the
time constant of a calibration pulse as “seen” by the gMμE is sen-
sitive to the value of Rseal. Comparison of the simulations and the
results obtained from individual cell-gMμE junctions corroborate
that the seal resistances generated between the cells and gMμE is
≤100 MΩ (Figures 6B,C). This estimate is in rough agreement to
the value obtained from the ultrastructural studies.

RECORDING OF SPONTANEOUS ELECTRICAL ACTIVITY BY gMμE MEA
The gMμEs based MEAs used in this study are composed of 8 × 8
gMμEs with cap diameter of 1–2 μm2 and pitch of 20 μm cover-
ing a recording surface area of 147 μm × 147 μm (∼2,1000 μm2).
The flat surface in between the gMμEs is glass. The relatively small
surface area covered by the gMμEs based MEA and the small
surface area of individual gMμEs limit the number of cells and
neurites from which recordings are expected. Recording of sponta-
neous electrical activity was made from 10 to 20 days old cultures.
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FIGURE 6 | Estimation of the seal resistance by the shape of the

voltage calibration pulse. Using the analog electrical circuit depicting the
gMμE – hippocampal cells junction (A), we simulated the expected shape
of a 1-mV voltage calibration pulse delivered to the bathing solution (voltage
calibration) and compared it to the actual recorded calibration pulse by the
gMμE. (B) depicts the experimentally recorded voltage calibration of
Figure 7 (neuron, 62) and that of Figure 8 (electrode 85). (C) The electrical
parameters to simulate a neuron and a tentative glia cell are given in the
Section “Materials and Methods.” The simulation was conducted for
neurons and tentative glia with Rj of 100 GΩ and 5 GΩ, while the seal
resistance Rseal was altered from 100 kΩ to 100 GΩ (see color coding). The

voltage calibration pulse (1 mV) delivered to the bathing solution and
recorded by the gMμE is depicted in black. Note that in the simulation the
time constant of the calibration pulses as seen by the gMμE, depends on
the value of Rseal and the junctional membrane resistance. The time constant
of the experimentally recorded calibration pulses is shorter than the
simulated for Rseal = 100 MΩ. In the schematic drawing RgMμE and CgMμE are
depicted by Re and Ce respectively. Ra and Ca are the amplifier resistance
and capacitance respectively. Note: the downward drift of the
experimentally recorded calibration pulse (electrode 62 and 85) is due to the
properties of the AC amplifier used (charged is leaking to the ground). The
simulation model depicts a DC amplifier.

Successful recordings were occasionally made as early as 5 days
after plating. Typically, the background noise level of the system
was of ∼20 μV. In all experiments a 20-ms 1 mV voltage calibra-
tion square pulse was applied to the bathing solution by an isolated
pulse generator. To compare the recordings made by the gMμEs
and planar electrodes we used the commercially available 8 × 8
planar MEA with electrode diameter of 10 μm and surface area of
314 μm2 (Multi Channel System, Reutlingen Germany).

Because of the small dimensions of the gMμEs most individual
electrodes were in contact with a single cell as depicted in the SEM
micrographs (Figures 1 and 2) and indicated by the relatively uni-
form shape and amplitude of the recorded potentials by a given
gMμE (Figures 7 and 8). Recordings of spontaneous activity were
made with wide band filter of 1–10 kHz. Based on the duration
of the discreet spontaneous potentials and their shape we subdi-
vided the recorded activities to fast positive monophasic potentials
(FPMP), and long-lasting potentials (LLP). FPMP last ∼2 ms with

amplitudes ranging between 0.04 and 0.75 mV (Figure 8), and
LLP last >50 ms with amplitudes ranging between 0.1 and 5 mV
(Figure 9).

To gain some insight to the nature of coupling between neurons
and the gMμE we compared the shapes of spontaneous potentials
recorded by the gMμE MEA and those recorded by the planar
MEA. To that end both types were functionalized by PEI and cul-
tured for the same duration. The comparison revealed a number
of differences.

In contrast to the recordings obtained from planar MEA in
which the spontaneous firing of APs generate field potentials dom-
inated by negative peaks (Figure 7, and see for discussion Jenkner
and Fromherz, 1997; Fromherz, 2003; Nam et al., 2006; Cohen
et al., 2008; Wheeler and Nam, 2011), the FPMP recorded by the
gMμE MEA were dominated by positive peaks (Figures 7 and 8).
The significant differences in the dominant spike polarity between
planar MEA and gMμE based MEA could be accounted for in two
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FIGURE 7 | Categorization of the dominant spike waveforms detected

by planar and gMμE based MEA. The waveforms of spontaneous spikes
recorded by planar and gMμE based MEA were sorted by their dominant
positive or negative polarity and shape to monophasic, biphasic, and
triphasic. Note that whereas the majority of the waveforms recorded by the
planar MEA are of negative going spikes, the recorded potentials by the
gMμE based MEA are positive. P, positive spike; PB, positive bi-phase
spike; PT, positive tri-phase spike; N, negative spike; NB, negative bi-phase
spike; NT, negative tri-phase spike.

ways: (a) since negative field potentials reflect local extracellular
inward currents and positive field potential outward current, it is
conceivable that flat electrodes recorded mainly from axons and
excitable soma, while the gMμEs recorded outward currents from
unexcitable compartments such as the dendrites or inexcitable cell
bodies (Claverol-Tinture and Pine, 2002; Wheeler and Nam, 2011).
Alternatively (b), it is conceivable to assume that the seal resistance
generated by the neurons-gMμE configuration is much larger than
that formed with planar electrodes and that the membranes fac-
ing the gMμE express conducting ion channels. Thus, attenuated,
intracellular APs were in fact recorded by the gMμEs (Jenkner and
Fromherz, 1997; Claverol-Tinture and Pine, 2002; Fromherz, 2003;
Cohen et al., 2008; Hai et al., 2010a,b; Wheeler and Nam, 2011).
These hypothesizes will be further discussed below.

In addition to the FPMP, spontaneous LLP were recorded by
the gMμE based MEA (Figure 9). The amplitude of the LLP range
between 0.1 and 5 mV and last for >50 ms. They were monophasic
either positive or negative (Figure 8). Using the gMμE MEA we
recorded concomitant LLP by a number of neighboring gMμEs.
In some cases one gMμE recorded a positive LLP while its nearby
gMμEs recorded negative monophasic mirror image LLPs of
smaller amplitude (Figure 9 for further discussion of the LLP
see below).

DISCUSSION
The main finding of the present study is that cultured rat hip-
pocampal cells (neurons and possibly glia) tightly engulf chemi-
cally functionalized 1–2 μm sized gMμE that extend from a flat

FIGURE 8 | Recordings of spontaneous fast monophasic positive

action potentials (FMPP) generated by cultured hippocampal neurons

grown on a PEI functionalized gMμEs based MEA for 10 days. (A)

Spontaneous trains of FPMP generated by three neurons (one coupled to
electrode 62, the second coupled to three electrodes 17, 36, and 27 and the
third to electrode 38). The distance between electrodes 27 and 36 is
approximately 40 μm. (B) The location of the electrodes that picked up the
spike activity is depicted on a schematic layout of the MEA. (C) The
potential recorded by electrodes 62, 17, and 38 in (A) are enlarged. (D) A
1-mV, 20 ms square calibration pulse delivered to the bathing solution and
recorded by electrode 62.

surface. A single cell body can engulf up to three gMμEs. Sur-
prisingly thin <1 μm branches that extend from the cell bodies
expand to engulf gMμEs forming a junction of close membrane
apposition over a large fraction of the gMμE. As suggested by the
SEM images, neurites that engulf a gMμE continue to extend and
grow to form physical contact with a number of gMμEs. Based on
electrophysiological criteria a single cell may form electrical cou-
pling with up to seven neighboring gMμEs spaced at a distance of
20 μm (Figure 9). TEM micrographs revealed that approximately
50% of the contact area formed between a cell and a chemically
functionalized gMμE appears to almost totally exclude the extra-
cellular space, 40% of the contact area is characterized by a gap of
<40 nm and 10% by a gap >40 nm. The ultrastructure of the tight
physical contact formed by the cells and the gMμEs is similar to
that reported by our laboratory for cultured Aplysia neurons, and a
number of cell lines (Chinese Hamster Ovary cells – CHO, embry-
onic fibroblast cells-NIH/3T3, rat adrenal medulla cells-PC-12,
and rat myocardium cells-H9C2; Hai et al., 2009a).

Using morphological criteria, it is impossible to unequivocally
differentiate between neurons, glia, or other cell types in culture.
Nevertheless, using retrospective immunolabeling of neurons and
glia we found that 10–20 days old cultures are composed of ∼50%
neurons and 50% of astrocytes.

The recorded spontaneous potentials could be subdivided into
two categories of FPMPs and LLPs. As the duration of the recorded
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FIGURE 9 | Recordings of spontaneous long-lasting potentials (LLP)

presumably generated by cultured glia cells grown on PEI

functionalized gMμEs based MEA for 10 days. (A) Spontaneous
synchronized LLPs recorded by seven gMμEs. Six gMμEs recorded
synchronized monophasic negative going potentials (electrode number 64,
65, 74, 75, 76, and 84) while one electrode (85) recorded mirror image
positive going potentials. (B) Enlargement of the mirror image LLPs
recorded by electrodes 85 and 75. (C) A calibration pulse of 1 mV 20 ms. As
recorded by electrode 85 (D) The location of the gMμEs that picked up the
LLPs is depicted on a schematic layout of the MEA. Note that the cell
generating these LLPs extends over an area of approximately
60 μm × 60 μm.

FPMPs is similar to intracellularly recorded APs generated by
neurons, and as the LLPs fits the time course of glial membrane
potential shifts, we tentatively propose that the FPMP represent
attenuated APs generated by neurons and the positive and nega-
tive going LLPs represent IN-CELL and extracellular recordings of
glia cells.

As the purpose of the current paper is to establish a starting
point for future application of the IN-CELL recording configu-
ration to cultured vertebrate neurons, we have not investigated
yet the mechanisms underlying the generation of LLPs. How-
ever, we tentatively wish to propose in the following paragraph
the possibility that the LLPs are recorded from glia cells.

It is unlikely that LLP electrical pattern can be generated
by highly synchronized synaptic activity (local field potentials)
among dissociated cultured neurons. It is also unlikely to be
the consequence of summation of trains of APs. The tentative
hypothesis that LLPs could be generated by glia is consistent with
what is known on astrocytes membrane potential shifts. It is well
established that glia sense local changes in the extracellular potas-
sium concentrations and express receptors that are activated by
“spillover” of various neurotransmitters released by neurons (For
review see Schipke and Kettenmann, 2004; Halassa and Haydon,
2010; Velez-Fort et al., 2011). The LLPs recorded by the gMμEs
clearly differ from the fast field potentials generated by spiking

neurons in their duration (for example Murphy et al., 1993). Inter-
estingly the amplitude of the positive LLPs (up to 5 mV) is in
the range of measured astrocytes potential shifts by patch elec-
trodes (Orkand et al., 1966; Murphy et al., 1993; Mennerick and
Zorumski, 1994; Mennerick et al., 1996). The observation of syn-
chronized mirror image single positive LLP and multiple negative
spontaneous LLPs recorded by a number of neighboring electrodes
(Figure 9) could theoretically represent a configuration in which:
(a) All the recording electrodes are extracellular. If this is the case
we have to assume that the multiple electrodes that record neg-
ative potentials are located on branches that are synchronously
activated to generate inward current and the single electrode that
records positive current represent a compartment in which the
currents flow out. An alternative interpretation (b), is that the pos-
itive potential represent IN-CELL recording from a glia cell body
and the mirror image negative potentials represent extracellular
recordings made from branches that engulf gMμEs. (c) Theo-
retically, although less likely, is the possibility that the LLPs are
generated by synchronized firing of a group of neurons (or a com-
bination of neurons and glia) that together form heterogeneous
seal resistances over a group of gMμEs.

To the best of our knowledge the literature using MEA for the
analysis of culture network activity has not dealt with such LLPs.
This might be due to deliberate limitation of data acquisition and
analysis by frequency filters selective for APs which last 1–2 ms.
Nevertheless, using planar MEA systems, we occasionally recorded
LLPs.

ESTIMATION OF THE SEAL RESISTANCE
The results described in the present study raise questions as to the
prospective of applying the IN-CELL recording configuration to
cultured vertebrate neurons. In contrast to the case of Aplysia neu-
rons and vertebrate cell lines in which the cell bodies that engulf the
gold mushroom’s cap and stalk also tightly adhere to the flat sub-
strate in between the microelectrodes (Spira et al., 2007; Hai et al.,
2009a), in dissociated hippocampus cultures extensive growth of
branches mechanically interfere with adhesion of the cells to the
substrate (Figure 3).

Based on measurements of the cleft dimensions, the dimen-
sions of the contact area and the size of the gMμEs as well as
with the aids of the calibration pulse analysis we estimated the
seal resistance to be ≤100 MΩ (see Appendix and Figure 6). As
discussed earlier (Jenkner and Fromherz, 1997; Fromherz, 2003,
2006; Cohen et al., 2008; Hai et al., 2010a,b) and elaborated on
later, increasing the seal resistance to the GΩ levels would be very
beneficial for the improvement of the electrical coupling between
the cells and the gMμEs.

ANALOG ELECTRICAL CIRCUIT SIMULATION OF THE COUPLING
COEFFICIENT BETWEEN CELLS AND THE gMμEs
The electrical coupling between cells and microelectronic devices
depends on the physical parameters depicted in the analog elec-
trical circuit of Figure 6A. In the following we first explain the
parameters comprising the analog electrical circuit for cultured
hippocampal neurons and glia cells and then, using an electrical
circuit simulation system (SPICE), examine the expected electri-
cal coupling between model neurons and glia and the gMμEs. The
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FIGURE 10 | Simulation of the estimated coupling coefficient between

neurons or glia with gMμEs. For the simulation we used the electrical
circuit depicted in Figure 6. The simulation was conducted by injection of a
long [250 ms (A,B,E,F)] and short [2 ms (C,D,G,H)] square current pulse.
(A–D) simulation of the electrical coupling coefficient of a neuron and a
gMμEs as a function of Rseal, (E–H) simulation of the coupling coefficient
between a tentative glia cell and a gMμEs as a function of Rseal (in Ohms) at

various Rj ranging between 100 GΩ and 10 MΩ (see color coding). (B,D,F,H)

are respective y-zooms into (A,C,E,G). The yellow squares emphasize the
expected coupling coefficient values when Rseal is set to the values
estimated by the experiments in the range of 10–100 MΩ. The expected
coupling coefficient for neurons and glia cells with junctional resistance of
10–100 GΩ is given by the Y -axis values corresponding to the red line within
the yellow box.

estimated values are then compared to the results and used to eval-
uate the alterations that should be introduced to the experimental
system to improve the electrical coupling.

The model (Figure 6A) depicts the passive elements of a cell
membrane (neuron or astrocytes), the extracellular space and
the gMμE. The cell membrane is composed of a non-junctional
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Table 1 | Electrical parameters used to simulates the coupling

coefficient between the cells (Neurons and glia) and the gold

mushroom shaped microelectrodes.

Parameter Neuron Glia

Non-junctional membrane resistance – Rnj 100 MΩ 5 MΩ

Non-junctional membrane capacitance – Cnj 100 pF 100 pF

Junctional membrane resistance – Rj 100 GΩ 5 GΩ

Junctional membrane capacitance – C j 0.1 pF 0.1 pF

Resistance of the gMμE – RgMμE 1,500 GΩ 1,500 GΩ

Capacitance of the gMμE – CgMμE 5 pF 5 PF

membrane characterized by a passive RC circuit with parame-
ters (Rnj; Cnj) and a junctional membrane facing the gMμE (Rj;
Cj). The cleft formed between the neuron’s plasma membrane
and the surface of the gMμE and extends toward the bulk of the
solution (Rseal) and the gMμE (Re = RgMμE and Ce = CgMμE).
The majority of parameters used for the simulation were obtained
from published experimental results and estimations of the phys-
ical parameters to fit the geometry and dimensions of the gMμE
and the neuron–gMμE interface (see Table 1 for the values used
and the Appendix for their estimations).

Simulation of the coupling coefficient for high frequencies of
500 Hz (simulating APs) and long pulses (250 ms square pulses)
were obtained by current injection (2 nA) into the “neurons” and
“glia” with parameters shown in Table 1 and as a function of
Rseal using different values for the junctional membrane resistance
(Figure 10).

Given that Rseal is in the range of 10–100 MΩ (our results,
yellow boxes in Figure 10.) and Rj is 5–100 GΩ (red and black
in Figure 10 and see Appendix), the simulations reveal that the
coupling coefficient for a short or a long injected current pulses
ranges between ∼0.05 and ∼0.2. To improve the coupling coef-
ficient to a desirable level of being able to record intracellular
synaptic potentials of ∼1 mV the minimal coupling coefficient
should be somewhat larger than 0.2. If Rseal is not improved
and remains in the range of 10–100 MΩ, Rj has to be reduced
by two to three orders of magnitude from an estimated value of
10–100 GΩ to 100 MΩ. If the seal resistance can be elevated to

values of hundreds of gigaohm, the junctional resistance does not
have to be altered.

The simulation of a glia cell, which differs from a neuron by
its lower Rnj (in the range of 5 MΩ, Murphy et al., 1993; Lin-
den, 1997), and therefore by a lower Rj (∼5 GΩ), revealed that
the estimated electrical coupling coefficient is similar to that esti-
mated for the neurons. The experimental results revealed however
almost tenfold higher recordings amplitudes of the positive LLPs
than the FMPP (Figures 8 and 9). These observations suggest that
either the Rj value of the cells generating the LLPs is lower than
that estimated by us for the calculations, or that the value of Rseal is
higher than used in the model (or that both parameters are in fact
involved). Assuming that the LLP are indeed IN-CELL recordings
of intracellular glial transmembrane potentials (that are reported
in the experimental literature to be in the range of the 1- to 10-
mV), we have to assume that the coupling coefficient between the
glia and the gMμE is in the order of 0.5. Theoretically to reach such
value Rj has to be lower than 10 MΩ (Figure 10). Such a low value
could be obtained if the cell either recruit ion channels into the
patch of membrane facing the gMμE as suggested and discussed
by us in earlier publications (Hai et al., 2010a,b), or that because
of the geometry of the gMμE the curved junctional membrane
generate nano-holes and thereby locally increase the membrane
conductance.

In conclusion, the experimental results and analysis of the inter-
face formed between dissociated hippocampal cells and gMμE
based MEA suggest that the recorded FPMP represent attenuated
APs generated by the neurons. To improve the coupling coeffi-
cient between the neurons and the electrodes either Rj has to be
reduced or Rseal increased. Attenuation of Rj could be achieved by
inducing the recruitment of voltage-independent ion channels to
the junctional membrane by appropriate chemical functionaliza-
tion of the gMμE. The results tentatively suggest that PEI or PDL
functionalized gMμE based MEAs might interface glia cells with
the electrodes to generate IN-CELL recordings.
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APPENDIX
In this section we explain the parameters and values used in
the analog electrical circuit of hippocampal cells–gMμE interface
model.

NEURONAL MEMBRANE PARAMETERS
The non-junctional membrane resistance (Rnj) was estimated in a
number of experimental studies. The input resistance (Rin) values
for cultured hippocampal neurons is in the range of 100–250 MΩ

(Scorza et al., 2011). We selected to use in the model the value of
100 MΩ. The input resistance of the glial cell was taken as 5 MΩ

(Murphy et al., 1993; Linden, 1997). Since the surface area of the
junctional membrane (Rj) is negligible in respect to the cell surface
area, Rnj and the input resistance (Rin) in both neurons and glia
can be considered as equal.

For the estimation of the junctional membrane resistance (Rj)
we first estimated the engulfed surface area of the gMμEs. To that
end we modeled a gMμE with cylinder-shaped stalk of 1 μm in
diameter and stalk height of 1 μm. The mushroom’s cap (modeled
as half a ball) diameter is 2 μm. Based on the electron micrographs
we assumed that the cells engulf the mushrooms cap and only the
upper third of the stalk which is denoted as hstalk.

The engulfed area of the gMμE is given by:

AgMμE = Astalk + Acap + Arim

Rrim = the surface area under the mushroom
Where:

Astalk = 2π · rstalk · hstalk

Acap = 2π · r2
cap

Arim = π
(

r2
cap − r2

stalk

)

Using the values given above, we obtain that the total area of
the gMμE electrode is 11.8 μm2 and the engulfed area is 9.81 μm2

for the estimation we used

AgMμE ≈ 10 μm2

Dividing the value of the neuron capacitance of C = 100 pF
by the universal value of the specific membrane capacitance
Cs = 1 μF/cm2, we obtain an estimated value of the neuron’s
surface area

Aneuron = 104μm2

Next, we multiplied the total input resistance (Rin) with the
ratio between the surface area of the neuron (Aneuron) and the sur-
face area of the cells plasma membrane in contact with the gMμE
thus:

Rj = Rin · Aneuron

AgMμE
= 100 · 106 · 104

10
≈ 100 GΩ

Using the same considerations the glial Rj ≈ 5 GΩ.

The non-junctional membrane capacitance for both neurons
and glia-Cnj equals the total membrane capacitance Cm and was
set to 100 pF.

The junctional membrane capacitance Cj is estimated from the
plasma membrane engulfing surface area of 10 μm2 to be 0.1 pF.

gMμE AND AMPLIFIER PARAMETERS
The gMμE resistance (RgMμE) in solution was estimated to be
1,000 GΩ for mushroom surface area of ∼14 μm2 (Hai et al.,
2010a). In this work, as a result of gMμE smaller dimensions,
we estimated the values of RgMμE:

RgMμE = 1500 GΩ

The capacitance of the gMμE in solution is estimated by taking
the specific capacitance of gold electrical double layer (CEDL) to
be ∼50 μF/cm2 (Mirsky et al., 1997) multiplied by the surface area
of the gMμE (AgMμE) given above yielding:

CgMμE = 5 pF

The amplifier input capacitance is 8 pF (Multichannel systems,
Rutlingen, Germany).

THE SEAL RESISTANCE
The seal resistance (Rseal) is generated by the solution within the
gap confined between the surface of the gMμEs and the engulf-
ing cell membrane and extends from the center to the cap of the
gMμEs to the point in the stalk were the tight engulfment is ter-
minated (top third of the stalk). It consists of three resistors in
series.

1. The resistor depicting the gap formed between the cap surface
and the cell membrane.

2. The resistor of the cap bottom rim.
3. The resistor of the stalk.

In reality the combination of the capacitors and seal resistance is
a distributed network.

For the sake of simplicity we replace it with discrete elements
circuit in which we calculate the seal resistance by assuming that
its starting point is an imaginary circle on the cap which divides
the capacitance of the gMμEs into two equal parts.

Following are the calculations of the three segments:

Mushroom cap
The model is based on the integration of the resistors of concentric
rings on the cap starting at angle α and ending at angle of π/2 .
The result of the integration is:

R1 = (ρ/2πt )
{

ln
[
tg (π/4)

] − ln
[
tg (α/2)

]}

ρ is the solution resistivity, ρ = 100 Ωcm, t is the cleft thickness,
t = 5 nm.
α is determined by the above considerations, i.e., that the cap
capacitance up to α is equal to the sum of the capacitance of the
cap from α to π/2 plus the bottom rim capacitance plus the stalk
capacitance.
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FIGURE A1 |The growth pattern of the hippocampal cells on

poly-D-lysine/laminin versus EPP. Retrospective immunolabeling of
20 days old hippocampal cells grown on poly-D-lysine (A) and EPP (B):
neurons (green), glial cells (blue), counterstained with nuclear marker DAPI
(red). Scale bar: 50 μm. Neurons were labeled for neuron-specific
intermediate filaments with mouse anti NF antibodies followed by goat
anti-mouse secondary antibodies conjugated to Cyanine 2 (Cy2). Glial cells
were labeled for glial fibrillary acidic proteins with primary anti-GFAP rabbit
monoclonal antibodies followed by goat anti-rabbit secondary antibodies
conjugated to Cy3. Confocal imaging was done using D-Eclipse C1 imaging
system (Nikon) mounted on an Eclipse TE-2000 microscope (Nikon).
Images were collected and processed using EZ-C1 software (Nikon).
Scanning was done in sequential mode: red was excited with 543 nm
He–Ne laser and collected with 605 ± 75 band pass filter; green was
excited with 488 nm Argon laser and collected with 515 ± 30 band pass
filter; blue excited with 405 nm Diode and collected with 450 ± 35 band
pass filter. Images were prepared using the open-source image analysis
program ImageJ (NIH, USA). Hippocampal cells grown on the EPP
clustered to form bundles and aggregates in which the glia cells formed a
sheet in contact with the substrate and the neurons grew on top. Cells in
different aggregates interconnect by thick fascicles emanating from
clusters and projecting to adjacent aggregates.

The cap surface area from its center till angle α is given by:

A1 = 2π r2
head (1 − cos α)

The rest of the capacitor area is given by:

A2 = 2π r2
head cos α + 2π

(
r2

head − r2
stalk

) + 2π rstalkhstalk

From the arbitrary definition that S1 = S2 and the values of
all other parameters as given above, the value of α is estimated
to be 77.3˚. Inserting this value in the equation of R1 yields
R1 = 7.1 MΩ. The other two contributions to Rseal are:

Rrim = (ρ/2πt ) ln
(
r head

/
rstalk

)

Rstalk = ρhstalk
/

2πtrstalk

Rseal = R1 + Rrim + Rstalk

Inserting the parameters given above, results in:

Rseal = 53 MΩ
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