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Sensory perception results from the way sensory information is subsequently transformed
in the brain. Olfaction is a typical example in which odor representations undergo con-
siderable changes as they pass from olfactory receptor neurons (ORNs) to second-order
neurons. First, many ORNs expressing the same receptor protein yet presenting heteroge-
neous dose–response properties converge onto individually identifiable glomeruli. Second,
onset latency of glomerular activation is believed to play a role in encoding odor quality and
quantity in the context of fast information processing.Taking inspiration from the olfactory
pathway, we designed a simple yet robust glomerular latency coding scheme for process-
ing gas sensor data. The proposed bio-inspired approach was evaluated using an in-house
SnO2 sensor array. Glomerular convergence was achieved by noting the possible analogy
between receptor protein expressed in ORNs and metal catalyst used across the fabricated
gas sensor array. Ion implantation was another technique used to account both for sensor
heterogeneity and enhanced sensitivity.The response of the gas sensor array was mapped
into glomerular latency patterns, whose rank order is concentration-invariant. Gas recogni-
tion was achieved by simply looking for a “match” within a library of spatio-temporal spike
fingerprints. Because of its simplicity, this approach enables the integration of sensing and
processing onto a single-chip.

Keywords: glomerular convergence, latency coding, olfaction, electronic nose, chemical sensing, gas sensors,

neuromorphic engineering

INTRODUCTION
Identifying and localizing volatile compounds is an important
challenge in numerous applications such as, among others, explo-
sive detection (civil or military security), aliment quality control,
air pollution analysis (Gardner and Bartlett, 1999; Röck et al.,
2008). During the past few years, there has been an increasing
effort for developing low-cost microelectronic gas sensors allowing
quantitative and qualitative analyses (Röck et al., 2008). Never-
theless, whatever the technology is (e.g., metal oxide, conducting
polymer, piezo-electric quartz), a common feature of the sensors
is their lack of selectivity (Röck et al., 2008). Gas sensors react to a
large number of chemical compounds and it seems likely that the
situation will continue in the long run. We can even ask whether
it is useful to have selective sensors as it is cost intensive and time
consuming to develop a specific sensor for every odorant to be
detected. Note that lack of selectivity is also encountered in olfac-
tory receptor neurons (ORNs). Yet, biological systems are not less
very efficient. Mice and bees for example recognize learned odors
in less than 200 ms (Abraham et al., 2004; Buck, 2005; Bhandawat
et al., 2010; Chen et al., 2011), thereby indicating a rapid process-
ing of the olfactory input. More strickling is the fact that primary
olfactory centers in insects and vertebrates share a common design
both at anatomical (cellular organization) and functional (mech-
anisms for olfactory coding) levels (Hildebrand and Shepherd,
1997; Strausfeld and Hildebrand, 1999; Jacquin-Joly and Lucas,
2005). The efficiency of biological olfactory systems and their
similarities across species imply that nature has found an optimal

solution for encoding odors (Ache and Young, 2005). The current
knowledge about architectural and computational strategies used
in biological systems should therefore guide the development of
algorithms for processing gas sensor data.

The concept of electronic nose as a bionic system of artificial
olfaction appeared about 30 years ago (Persaud and Dodd, 1982).
It consisted in using an array of different sensors whose activation
pattern contains the signature of the odorant to be identified, in
the same way as our olfactory perception results from the acti-
vation of multiple ORNs by the odorant molecules. The analogy
stops here however. The current artificial noses are only a weak
imitation of the sense of smell with performance far below that of
their biological counterparts. The reason is twofold.

• The organization of both systems, artificial and biological, is
not comparable. In electronic noses, the sensing elements are
mapped on a two-dimensional array without particular orga-
nization. In biological olfactory systems on the contrary, the
sensory neurons distributed on insect antennae or in vertebrate
epithelia converge onto individually spherical neuropils, called
glomeruli, where all synaptic connections between ORNs and
second-order neurons are made (Figure 1). Olfactory glomeruli
are individually identifiable across animals and are functionally
specialized in terms of odor processing (Rospars, 1988; Baier
and Korsching, 1994). It is now well established that single ORN
projects onto a few (most often only one) glomeruli and that
all ORNs from a given glomerulus express the same olfactory
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FIGURE 1 | Schematic of the olfactory pathway (olfactory bulb)

illustrating that the ORNs expressing the same OR converge onto

spherical individual neuropils, called glomeruli, where all synaptic

connections between ORNs and second-order neurons (mitral cells)

are made.

receptor (OR), (Mombaerts, 1996, 2001; Vosshall et al., 2000).
The ORNs of a given glomerulus are thus homogeneous in terms
of receptor type. It has been shown however that in an homo-
geneous population with same OR, the ORNs present variable
odorant response properties (Grosmaitre et al., 2006; Grémiaux
et al., 2011). Computational advantages for such a variability
are still unclear but they could include lower detection thresh-
olds and wider dynamic ranges by averaging many independent
inputs (Grosmaitre et al., 2006).

• The processing of gas sensor arrays currently based on statisti-
cal methods (e.g., discriminant analysis, kernel methods) is very
far from the biological reality (neurons firing action potentials
or spikes). Second-order neurons (mitral cells in the vertebrate
olfactory bulb, projection neurons in the insect antennal lobe)
were found to encode information in a few spikes, using rel-
ative latencies after stimulus onset as an information carrier
(Hopfield, 1995; Margrie and Schaefer, 2003; Junek et al., 2010;
Belmabrouk et al., 2011; Smear et al., 2011). Timing of activity
relative to the sampling behavior (e.g., sniffing in rodents) leads
to a concentration-invariant code for odor identity (Hopfield,
1995; Margrie and Schaefer, 2003) and may play a significant
role in the context of fast information processing, a rat for
example recognizing a novel odor in less than 200 ms (Abra-
ham et al., 2004; Wesson et al., 2008) and a drosophila in 90 ms
(Bhandawat et al., 2010).

Taking inspiration from the organizational and functional charac-
teristics of the olfactory pathway (glomerular convergence and
latency coding), we designed a simple yet robust glomerular
latency coding scheme for processing gas sensor data.

MATERIALS AND METHODS
SENSOR ARRAY FABRICATION AND CHARACTERIZATION
Using an in-house 5 μm, 2-metal, 1-poly process, we have fab-
ricated a 4 × 4 gas sensor array consisting of 16 SnO2 sensors,

corresponding to different combinations of dopants and catalysts.
The structure of the fabricated 4 × 4 gas sensor array is shown in
Figure 2. Sensors belonging to the same column share the same
metal catalyst (Pt, Ag, or Au), while row wise sensors share the
same dopant (B, P, or H). Note that a single row of sensors has
no implanted dopant (ND) and a single column of sensors has
no metal catalyst (NC). Each individual sensor integrates a micro-
hotplate (MHP) heater (Figure 2), which consists of a membrane
stretched over a rigid frame (Graf, 2007). The membrane plays
two roles: (i) it acts as a support for the functional elements of the
sensor (e.g., heater and sensing layer), and (ii) it provides thermal
isolation of the hot sensing area through its low heat conductiv-
ity (Graf, 2007). The presence of a target gas is detected through
changes in the conductance of the sensing film, which depends on
the gas type and concentration, its operating temperature but also
on the deposited sensing film. In our array, a 100-nm SnO2 film
was deposited on the MHP structure, using sputtering and lift-off
techniques. Dopant implantation (B, P, or H) was selectively car-
ried out at a dose of 5 × 1012 cm−2 and energy of 30 keV. Different
catalysts (Pt, Ag, or Au) were subsequently deposited on individ-
ual sensing films by RF sputtering. Each MHP is a 190 × 190-μm2

oxide/low-stress nitride/oxide (O/N/O) multilayer membrane. A
2.8-μm air gap separates MHP and substrate to reduce heat losses
to the substrate. The air gap was formed by etching a sacrificial
polysilicon layer. A serpentine Pt microheater was patterned at
the center of the MHP, using sputtering and lift-off techniques
(Figure 2). The microheater has a width of 10 μm and a thick-
ness of 100 nm. Its resistance is about 297 Ω at room temperature
and 441 Ω at the 300˚C operating temperature. Plasma enhanced
chemical vapor deposition (PECVD) was used to deposit an insu-
lating oxide/nitride/oxide multilayer on top of the microheater.
The resistance change of each individual sensing film is measured
across two Pt electrodes. In the fabricated 4 × 4 gas sensor array,
the catalysts play the role of the receptor and the dopants add
heterogeneity in the sensors’ responses.

The fabricated electronic nose was characterized in a controlled
laboratory environment, using an automated gas delivery system
(Figure 3). Test gases used in the experiments were methane, car-
bon monoxide, and ethanol. Flow rates were set by adjusting the
voltage of computer controlled mass-flow-controllers (MFCs).
The control of the gas concentration, within the 2.5-cm radius
30 cm3 cylinder testing chamber, was achieved by mixing the tar-
get gas with dry air at different flow rates. The relative small size
of the chamber contributes to the uniformity of the gas concen-
tration across the sensor array. Prior to each gas exposure, the
surface of the sensor array was cleaned by injecting dry air. The
sensor array was subsequently exposed to the target gas for up to
300 s. Throughout each clean-and-expose-cycle, resistance varia-
tions across the array were recorded simultaneously using 10-bit
digital multimeters. The sensor steady state resistance was sampled
just before the end of the analyte injection period.

SPIKE LATENCY CODING
In the generalist olfactory pathway, ORNs are sensitive to multiple
odorants, and each odorant activates thousands of ORNs, leading
to a massive combinatorial code at the receptor level. Yet this code
is not only combinatorial, it is also structured temporally by the
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FIGURE 2 |The fabricated 4 × 4 SnO2 gas sensor array with the

structure of an individual sensor highlighted on the right. There are
16 SnO2 sensors, corresponding to different combinations of dopants and
catalysts. Sensors belonging to the same column share the same metal

catalyst (Pt, Ag, or Au), while row wise sensors share the same dopant (B, P,
or H). A single row has no dopant (ND) and a single column has no metal
catalyst (NC). Note that the above sensor numbering is kept for all
subsequent figures.

FIGURE 3 | Experimental setup used to characterize the gas sensor array:

(A) four mass-flow-controllers, (B) a data-acquisition-board (DAQ), (C) a

desktop computer, (D) power supplies and digital multimeters, (E) a

chamber housing the gas sensor array packaged in a (F) 24-pins Ceramic

Dual-Inline-Package (CDIP24) and (G) three gases namely H2, ethanol,

and CO.

sampling behavior of the animal (e.g., sniffing in rodents) which
provides a temporal frame of reference. Recent evidence shows
that mice are able to discriminate between olfactory inputs merely
on the basis of timing information relative to the respiration cycle
(Smear et al., 2011). Electrophysiological recordings in the mouse
olfactory bulb have revealed that the firing latency of mitral cells
relative to the respiration cycle depends on odor intensity in a log-
arithmic way (Margrie and Schaefer, 2003) and theoretical works
have suggested that such a logarithmic transformation makes rel-
ative latencies invariant to odor concentration (Hopfield, 1995).

We have exploited the above ideas to design a spike latency coding
scheme that converts the sensor responses into a unique sequence
of latency spikes (Martinez et al., 2006; Ng et al., 2009; Chen et al.,
2011). The firing latency t i associated to the i-th sensor exposed
to a target gas j is proportional to the logarithm of the sensor
resistance

ti = ln Rij

γij
(1)
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where γij is a parameter which depends both on the type of gas
j and sensing material i and Rij is the resistance of sensor i when
exposed to target gas j. The resistance Rij is here modeled as a
power law (Gardner and Bartlett, 1999; Yamazoe and Shimanoe,
2008) leading to

ti = ln αij

γij
− ln Cj given that Rij = αijCj

−γij (2)

where αij is a parameter depending both on sensor i and gas j and
C j is the concentration of gas j. Considering the previous equation,
the relative latency between sensors p and q can be expressed as

tpq = ln αpj

γpj
− ln αqj

γqj
(3)

Note that the relative latency is concentration independent (C j

does not appear in Eq. 3) while being gas dependent (both
α and γ depend on the type of gas). As a result, the rank
order (i.e., firing order of sensors) can be used as a signature
(Figure 4, top) and gas recognition can be simply achieved by
looking for a match within a library of spatio-temporal spike
signatures.

GLOMERULAR LATENCY CODING
In the olfactory pathway, each glomerulus receives inputs
from ORNs expressing the same OR (Figure 1). We
have emulated glomerular convergence in the fabricated
gas sensor array, by making an analogy between OR
expressed and metal catalyst used. In this way, we defined
four glomeruli (considering the four types of sensors
Pt, Ag, Au, and NC), each one receiving four sen-
sory inputs. We further considered that the elemen-
tary unit of the olfactory code is a glomerular module
that consists of a glomerulus together with its associated
second-order neurons (Mori et al., 1999; Koulakov et al.,
2007). The onset latency of a glomerular module p was
defined as

tp =

∑

i∈p
ln

(
Rij

)

∑

i∈p
γij

(4)

where the sensors i are of the same type (i.e., with same cat-
alyst p). Considering a power law sensor response leads to

tp =

∑

i∈p
ln

(
αij

)

∑

i∈p
γij

− ln Cj (5)

and the relative latency between two glomerular mod-
ules p and q (catalysts p and q) is expressed as

tpq =

∑

i∈p
ln

(
αij

)

∑

i∈p
γij

−

∑

i∈q
ln

(
αij

)

∑

i∈q
γij

(6)

As for the spike latency coding, the relative latency is concentration
independent (C j does not appear in Eq. 6) while being gas depen-
dent (both α and γ depend on the type of gas). The glomerular
latency code (Figure 4, bottom) is however more compact than the
spike latency code (Figure 4, top). For both spike and glomeru-
lar latency codes, the parameters required to convert the sensor
resistances into firing times are the sensitivities γij (see Eqs 1 and
4). These parameters were estimated empirically by calibration,
i.e., by exposing the sensor array to each target gas j delivered at
different known concentrations C j ranging from 20 to 200 ppm,
and determining the slope of the linear regression of ln Rij ver-
sus ln C j. Because individual γij parameters depend both on the
type of gas j and sensing material i, 64 parameters have been
extracted given that we considered four target gases and 16 dif-
ferent sensors. The range of sensitivity values was found to be
0 < γij < 1.1.

RESULTS
SENSORS WITH THE SAME CATALYST EXHIBIT SIMILAR BEHAVIORS
Hydrogen, methane, carbon monoxide, and ethanol, at concen-
trations ranging from 20 to 200 ppm, were used to characterize
the fabricated gas sensor array, operated at 300˚C. Examples of
recorded response curves of individual sensors exposed to ethanol
at different concentrations are shown in Figure 5. Note that follow-
ing each gas exposure (at a given concentration), the gas chamber
was subsequently cleaned by injecting dry air. After the clean-
ing process, the sensor array was exposed to the same gas but at
another concentration level. Observe that increasing gas concen-
tration has the effect of decreasing the sensor resistance, which
follows a power law. This is the case because all target gases are
reducing gases. When dry air is injected, the sensor resistance
increases back to the initial baseline resistance. Interestingly, we
found that the sensors sharing the same catalyst exhibited similar
sensitivities to the target gases. As an example, the sensitivities of
the sensors to ethanol, as measured by the γij parameters, were
0.95 ± 0.09 (mean ± SD) with catalyst Pt (red curves in Figure 5),
0.22 ± 0.06 with Au (black curves in Figure 5), and 0.29 ± 0.08
with Ag (blue curves in Figure 5).

One major challenge to gas identification is the inherent drift
of gas sensors, which results in temporal variations of the sensor
response with repeated experiments. Figure 6 shows the drift of
the sensors as defined by (Rij − R′

ij)/Rij where Rij is the resistance

of sensor i exposed to gas j measured in the first cycle while R′
ij

is the sensor resistance measured after the experiment has been
repeated n times. The drift sensitivities, computed as the slopes of
the linear regressions in Figure 6, were 0.76 ± 0.002 (mean ± SD)
with catalyst Pt (red curves in Figure 6), 0.23 ± 0.0003 with Au
(black curves in Figure 6), and 0.25 ± 0.001 with Ag (blue curves
in Figure 6). As within catalyst-group variances are small, these
results indicate that sensors with the same catalyst exhibit similar
drift behaviors.

SPIKE LATENCY CODING GREATLY SIMPLIFIES THE TASK OF GAS
RECOGNITION
Most current approaches to gas identification rely on statistical
pattern-recognition techniques (Gutierrez-Osuna, 2002). The sil-
icon area and thus cost associated to their implementation are too
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FIGURE 4 | Spike and glomerular latency coding. Top: spike
latency coding (Eq. 1) converts the response of the fabricated
4 × 4 sensor array into a unique sequence of 16 spikes with the
firing latency mapping the strength of the stimulation across the
array. Sensor numbering corresponds to that of Figure 2, with a

single color associated to sensors sharing the same catalyst (Au, Ag,
Pt, or NC). Bottom: glomerular latency coding (Eq. 4) converts
the sensor array into a unique sequence of four spikes which correspond
to the four virtual glomeruli defined by grouping the sensors according to
their catalysts.

FIGURE 5 | Sensor array response to ethanol at concentrations ranging

from 20 to 200 ppm. After each exposure, the sensor array is cleaned by
injecting dry air. Observe that sensor resistances decrease during exposures

because all target gases are reducing gases. Sensors sharing the same
catalyst are plotted with the same color. ND stands for No Dopant and NC for
No Catalyst.

prohibitive to envision their on-chip integration with the sensor
array (Gutierrez-Osuna, 2002). To address this issue, we have
developed a bio-inspired encoding scheme that can convert the
response of the sensor array into a unique sequence of spikes, with
the firing delay mapping the strength of the stimulation across the
array. In spike latency coding (Eq. 1 in Materials and Methods, see
also Figure 4 top), the inter-spike interval is concentration inde-
pendent while the firing order of the spikes is gas dependent. This
means that the rank order (i.e., firing order of sensors) can be used
as a signature to identify the target gas. We have experimentally

validated this encoding scheme using the fabricated in-house 4 × 4
SnO2 gas sensor array. For any target gas (methane, hydrogen,
ethanol, and carbon monoxide) the rank order of the spike latency
code did not change much when the gas concentration increased.
The corresponding rank order signatures are shown in Figure 7A,
with a correct detection rate ranging from 80 to 99.1% (Table 1).
These results suggest that the traditionally complex and compu-
tationally intensive task of gas recognition can be dramatically
simplified to the task of looking for a match within a library of
spatio-temporal spike signatures. To assess the benefit of spike
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FIGURE 6 | Drift behavior of sensors sharing the same catalyst as a function of the number of clean-expose cycles. The injected gas was ethanol at
200 ppm. Note that the sensor drift behavior is mainly determined by the catalyst and not the type of dopant. ND stands for No Dopant and NC for No Catalyst.

FIGURE 7 | Rank order signatures of the target gases at

concentrations of 20 and 200 ppm using spike latency coding

(A) and glomerular latency coding (B). In spike latency coding (A) the rank
order corresponds to the sensor labeling given in Figure 2. In glomerular
latency coding (B), the rank order (1, 2, 3, 4) corresponds to four virtual

glomeruli formed by catalysts Au, Ag, Pt, and NC, respectively. Note
that the rank order signature is 100% concentration-invariant in the
case of glomerular latency coding. The resistance to time conversion was
achieved using Eqs 1 and 4 for spike and glomerular latency codes,
respectively.

encoding in terms of pattern separability, we projected the 16-
dimensional spike vectors onto a two-dimensional space by using
principal component analysis (PCA). The first two eigenvectors
accounted for 99.7% of the variance and four clusters correspond-
ing to the target gases were easily identifiable (see Figure 8B).
For comparison, the raw sensor data (sensor resistances) were also
projected using PCA and a much larger within-class scatter was
obtained (Figure 8A).

GLOMERULAR CONVERGENCE INCREASES ROBUSTNESS
In the mammalian olfactory bulb and the insect antennal lobe,
glomeruli are generally thought to represent functional units of
olfactory coding. A glomerulus receives axonal inputs from thou-
sands of ORNs that all express the same OR. This glomerular
convergence is believed to provide improved signal-to-noise ratio
as well as increased sensitivity. We have emulated glomerular con-
vergence using the fabricated in-house 4 × 4 SnO2 gas sensor array,
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Table 1 | Performance comparison between spike and glomerular

latency coding.

Target gas Gas recognition performance (%)

Spike latency

coding (16-spike

rank order; %)

Glomerular latency

coding (4-spike

rank order; %)

Hydrogen (H2) 99.1 100

Carbon monoxide (CO) 80 100

Ethanol (C2H5OH) 91.82 100

Methane (CH4) 99.1 100

by noting the possible analogy between OR protein expressed and
metal catalyst used across the sensor array. In this way, we defined
four glomeruli by considering the four types of sensors (catalysts
Au, Pt, Ag, and NC), each one processing inputs from four sen-
sors (glomerular latency coding given by Eq. 4 in Materials and
Methods, see also Figure 4 bottom). The proposed glomerular
latency coding serves two computational functions. (i) It leads
to a more compact odorant representation (e.g., four glomeru-
lar spikes in Figure 7B) than that available at the sensory level.
(ii) It averages out uncorrelated noise by summation of sen-
sory inputs of the same type, resulting in 100% accuracy for our
dataset (Table 1). These bio-inspired computational advantages
were obtained because the processed sensors had similar gas affin-
ity, similarly to ORNs of the same type converging to a given
glomerulus.

To assess the gas affinity of the sensors sharing the same cat-
alyst, we projected the sensors’ responses of each gas onto a
two-dimensional space by using PCA (Figure 9). Four separate
clusters corresponding to the four catalysts were identified. The
clusters were well separated for three gases (methane, hydrogen,
and carbon monoxide) and the model thus mimics the formation

FIGURE 8 | Pattern separability achieved with spike latency coding (B)

as compared to the raw sensor data (A). For spike latency coding (B), the
16-dimensional spike vectors were projected onto a two-dimensional space
by using principal component analysis (PCA). The first two eigenvectors
accounted for 99.7% of the variance and four clusters corresponding to the
target gases were easily identifiable. For comparison, the raw sensor data
(sensor resistances) were also projected using PCA and a much larger
within-class scatter was obtained (A).

of individual glomeruli. For ethanol however, only the Pt cluster
is well separated, with the other catalyst clusters exhibiting simi-
lar response to ethanol. This difference can be explained from the
mean sensitivities to ethanol (γij = 0.95 on average for Pt versus
0.22 and 0.29 for Au and Ag). For comparison,we performed a sim-
ilar analysis by grouping the sensors according to their dopants.
The PCA plots did not reveal any particular clusters for any of
the target gases specified above (see Figure 9). All together, these
results suggest that sensors sharing the same catalyst have similar
gas affinity to the majority of the target gases (methane, hydrogen,
and carbon monoxide) thereby validating the analogy with ORNs
expressing the same OR.

DISCUSSION
SENSORY MISMATCH
The front-end of the olfactory pathway comprises a massive
number (∼10–100 million) of ORNs, each of which selectively
expresses one or a few genes from a large (∼1,000) family of recep-
tor proteins (Buck, 2005). This massively redundant representa-
tion improves signal-to-noise ratio, providing increased sensitivity
in the subsequent processing layers (Pearce et al., 2003; Koickal
et al., 2007). Unlike the biological olfactory system, the electronic
nose uses very few sensors with commonly one replica of only
several sensor types. Progress in the fabrication of largely redun-
dant and diverse arrays has been hindered by process complexity,
variability, and cost. This is not surprising given the number of
process variables (e.g., sputtering power, substrate temperature,
reactant concentration, etc.) that can affect a material (Pearce et al.,
2003; Röck et al., 2008). Even if a high degree of sensory diversity
and redundancy was implemented, the number of connections
required to read-out such an array would still be unmanageable

FIGURE 9 |The sensors’ responses to target gases (methane,

hydrogen, ethanol, and carbon monoxide) were projected onto

two-dimensional spaces by using PCA. The first two eigenvectors
accounted for more than 99% of the variance. Top: grouping the sensors
according to their catalysts revealed four identifiable clusters mimicking
the formation of biological glomeruli (Glom1, 2, 3, and 4). Bottom:
grouping the sensors according to their dopants did not reveal any
particular clustering.
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using conventional read-out techniques. In this work, we fixed the
size of our gas sensor array to 4 × 4 to limit the complexity and
cost associated to the fabrication process.

ROLE OF THE CATALYST
When an odorant binds to an odor receptor, the receptor under-
goes structural changes. This activates the olfactory-type G protein
that is inside the OR neuron. Molecular studies have suggested that
each ORN expresses a single type of OR genes. ORN specificity
has been ascribed to that of its OR protein. Achieving analogous
selective sensor response toward particular target gases involves
altering the sensing surface. This can be achieved, during sen-
sor fabrication, through the introduction of dopants (e.g., P, B,
H) and/or metal additives (e.g., Pt, Ag, Au). In the fabricated
4 × 4 SnO2 sensor array, we emulated ORN specificity through
the use of catalysts, with each playing the role of the OR pro-
tein. This is possible because catalysts are known to dominate the
sensing mechanism and the equilibrium rate of the redox reac-
tions between detected gas and sensor surface (Vlachos et al.,
1997). This may explain why sensors sharing the same catalysts
are seen to exhibit the same drift behavior (Figure 6). Mech-
anisms proposed to explain the catalyst control are all based
on oxygen reactions at the sensor surface. The sensitivity pro-
vided by a given metal catalyst has been shown to depend on
its work function because the depletion region formed inside the
semiconductor has the effect of reducing the electron availabil-
ity of semiconducting grains. This makes their active size smaller
than the geometrical one. Furthermore, experimental results have
shown that sensitivity provided by a given catalyst is directly cor-
related to the active grain size (Vlachos et al., 1997). In regard to
the implanted dopants, their effect is to further enhance the sen-
sitivity of the sensor by introducing impurities into the sensing
material. These impurities take up some of the substitutional and
interstitial sites in the lattice, creating more oxygen vacancies for
adsorption.

GLOMERULAR CONVERGENCE
Experimental studies have established that ORNs expressing the
same OR converge precisely to a single glomerulus (or a small
number of glomeruli). The implications of this convergence, in
terms of coding are believed to be twofold: improved sensitivity
so as to ensure detection and increased signal-to-noise ratios by
averaging out of uncorrelated noise (Laurent, 1999). Raman et al.
(2006) have sought to emulate this glomerular convergence by
dynamically modulating the operating temperature so as to create
thousands of virtual sensors.

However, the specificity of the sensors belonging to the same
glomerulus cannot be controlled as it is in our technique with the
analogy made between the receptor protein expressed in ORNs and
the metal catalyst used in SnO2 sensors. Although capable of emu-
lating a large number of pseudo-sensors, the approach followed in
Raman et al. (2006) provides highly correlated and redundant
data given that only two real sensors are used. In contrast, the sen-
sors sharing the same catalysts in our fabricated gas sensor array
exhibited different dopants to mimic the variability in terms of
odorant response properties found in ORNs expressing the same
OR (Grosmaitre et al., 2006; Grémiaux et al., 2011).

PRACTICAL LIMITATIONS
The actual number of virtual glomeruli was limited to 4, because
of process complexity and cost considerations. Increasing the
number of glomeruli to n, would increase the discriminability
capability with the number of possible rank order codes increas-
ing from 4! (i.e., 24) to n! Increasing the number of ORNs
converging into a single glomerulus would further improve the
sensitivity. Concentration-invariance of glomerular latency cod-
ing resulted from the power law sensor response. However, this
relationship might break down at very low concentrations (Gard-
ner and Bartlett, 1999). Our experimental setup does not allow
us to control gas concentration at those levels, which would be
required for applications such as trace detection of explosives or
drugs. Another important factor that needs to be considered is the
impact of long-term drift which occurs as a result of dynamic
processes (e.g., poisoning or aging) or environmental changes
(e.g., temperature and pressure conditions). Our experimental
results (Figure 6) show that sensors sharing the same catalyst
(i.e., belonging to the same glomerulus) exhibit the same long-
term drift behavior. This observation was also reported by Sulz
et al. (1993) who suggested that the overall sensor drift behavior
is mainly determined by the chosen catalyst rather than the cho-
sen dopant (Sulz et al., 1993). Vlachos et al. (1997) explained that
such a behavior may be most probably due to the fact that cat-
alysts dominate the sensing mechanism and the equilibrium rate
(Vlachos et al., 1997). The above results suggest that the specificity
of the catalyst and thus that of its associated glomerulus is still
preserved after long-term drift. These observations could explain
why the rank order of the glomerular latency code did not change
after hundreds of measurements taken.

HARDWARE CONSIDERATIONS
In existing electronic noses, all sensor data need to be trans-
ferred to the pattern-recognition engine to identify ambient
gases (Gutierrez-Osuna, 2002). The size and power consump-
tion required to support this traditional architecture are pro-
hibitive because most of the current approaches for processing
multivariate sensor data are direct applications of statistical and
chemometric pattern-recognition techniques (Gutierrez-Osuna,
2002). In addition, these techniques rapidly break down when
the dimensionality of the input space becomes large. As a result,
the co-integration of sensor and circuitry has been so far limited
to on-chip signal amplification, conditioning, and/or analog-to-
digital conversion (Hagleitner et al., 2001; Hierlemann and Baltes,
2003; Graf, 2007). In contrast, the proposed glomerular latency
coding turns the task of gas recognition into a simple code match-
ing task. The matching can be carried out by means of simple XOR
gates, enabling the integration of sensing, and processing elements
on a single-chip. Furthermore, “fingerprint matching” can easily
handle large sensor arrays, since it can be aborted as soon as the
detected spike does not match. The proposed scheme requires a
single off-line calibration to determine gas fingerprints, while gas
parameters γi can be stored on-chip.

Although the proposed glomerular latency coding constitutes
an excellent tradeoff between classification accuracy and imple-
mentation complexity, further work is required to generalize these
results to other types of sensors and target gases.
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