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Previous studies have shown that neural activity in primate dorsal premotor cortex
(PMd) can simultaneously represent multiple potential movement plans, and that activity
related to these movement options is modulated by their relative subjective desirability.
These findings support the hypothesis that decisions about actions are made through a
competition within the same circuits that guide the actions themselves. This hypothesis
further predicts that the very same cells that guide initial decisions will continue to
update their activities if an animal changes its mind. For example, if a previously selected
movement option suddenly becomes unavailable, the correction will be performed by the
same cells that selected the initial movement, as opposed to some different group of cells
responsible for online guidance. We tested this prediction by recording neural activity in
the PMd of a monkey performing an instructed-delay reach selection task. In the task, two
targets were simultaneously presented and their border styles indicated whether each
would be worth 1, 2, or 3 juice drops. In a random subset of trials (FREE), the monkey was
allowed a choice while in the remaining trials (FORCED) one of the targets disappeared
at the time of the GO signal. In FORCED-LOW trials the monkey was forced to move
to the less valuable target and started moving either toward the new target (Direct) or
toward the target that vanished and then curved to reach the remaining one (Curved).
Prior to the GO signal, PMd activity clearly reflected the monkey’s subjective preference,
predicting his choices in FREE trials even with equally valued options. In FORCED-LOW
trials, PMd activity reflected the switch of the monkey’s plan as early as 100 ms after the
GO signal, well before movement onset (MO). This confirms that the activity is not related
to feedback from the movement itself, and suggests that PMd continues to participate
in action selection even when the animal changes its mind on-line. These findings were
reproduced by a computational model suggesting that switches between action plans can
be explained by the same competition process responsible for initial decisions.

Keywords: decision-making, movement preparation, reach, motor planning, free choice, monkey, computational
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INTRODUCTION
Natural behavior requires animals to make many kinds of deci-
sions. For example, an animal is often faced with selecting
between different movements that accomplish the same behav-
ioral goal, such as different directions to run to escape a predator.
At a higher level of selection, the same animal may decide between
different types of activity, such as running away versus turning
around to fight. Still other kinds of decisions may involve purely
abstract choices, which are not (at least immediately) associated
with any specific action. In human behavior, such decisions may
be extremely abstract, such as choosing what kind of career to
pursue in life. Because the brain was built through continuous
evolutionary refinement, we expect that the neural mechanisms
of decisions at different levels of abstraction share many aspects
of their architecture, and that consideration of simple spatial
decisions between movement options may yield insights into
decision-making in general (Cisek and Kalaska, 2010).

Recent work has suggested that, at least in the case of select-
ing between actions, decision-making is intimately integrated

with sensorimotor control (Basso and Wurtz, 1998; Platt and
Glimcher, 1999; Romo et al., 2004; Cisek and Kalaska, 2005; Gold
and Shadlen, 2007). This has led to the proposal that while an
animal is deciding between actions, neural activity in the sen-
sorimotor system represents several movements simultaneously
and the decision is made by selecting between these parallel rep-
resentations (Kim and Shadlen, 1999; Cisek, 2007; Cisek and
Kalaska, 2010). For example, Cisek and Kalaska (2005) found that
while a monkey is deciding between two different potential reach-
ing movements, neural activity in dorsal premotor cortex (PMd)
represents both options simultaneously and reflects the selec-
tion of one over the other when the monkey makes his choice.
This is consistent with earlier proposals suggesting parallel move-
ment preparation (Fagg and Arbib, 1998; Tipper et al., 1998;
Erlhagen and Schoner, 2002), and with the hypothesis that action
selection is accomplished through a biased competition within a
sensorimotor map of potential actions (Cisek, 2006).

This “affordance competition” hypothesis (Cisek, 2007) stands
in contrast to the classical serial model, in which decisions
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are made in higher cognitive centers and the resulting choice
passed down to the sensorimotor system for execution. Instead,
it suggests that decisions are determined when a competition
between actions is resolved within the sensorimotor system—
e.g., for reaching, within the fronto-parietal cortex and associated
corticostriatal loops. This means that although the biases that
influence the decision may come from many sources, including
the activity of higher cognitive regions, it is in the sensorimo-
tor system that the final decision is taken. For selecting between
actions, this makes good sense from an ecological perspective: the
systems most sensitive to the spatial and dynamic attributes of
the candidate actions are best qualified to make the final selection
that takes all of these factors into account. For example, when
choosing between actions, the spatial layout of the immediate
environment directly specifies the options and is of critical impor-
tance for evaluating what is the best choice in terms of payoffs and
costs. Indeed, all else being equal, humans select the action that
is least demanding from a biomechanical perspective (Cos et al.,
2011), suggesting that the same “forward models” (Shadmehr
et al., 2010) useful for predicting the consequences of motor com-
mands may also play a role in selecting the actions themselves by
biasing activity in sensorimotor cortices.

Decision-making within a sensorimotor map is particularly
useful for spatial choices, such as selecting among different ways
to escape a predator through an environment filled with obsta-
cles. If two escape routes are close together, then you should not
waste time deciding but instead run between them and choose
in flight. In contrast, if you are up against a wall then a clear
“winner-take-all” decision is critical, even if it takes a little more
time to resolve. Finally, even during ongoing escape, you must
continuously evaluate and update the options presented by the
environment in case what appeared as an escape route turns out
to be a dead end and/or if a new and better option presents itself.
If that new option is already partially represented in sensorimotor
maps of potential actions, then switching to it will be very fast.

In an analogy to the above scenario, here we consider selec-
tion between reaching movements to different spatially specified
targets. The affordance competition hypothesis predicts that if we
present a monkey with multiple reaching options associated with
different rewards, neural activity in PMd will be modulated by
the relative value of those rewards. However, if a single option
is present, then its value will not influence PMd activity because
there is no competition. A recent study in our lab (Pastor-Bernier
and Cisek, 2011) confirmed both of these predictions, showing
relative value modulation when two targets were presented but
no value modulation with one target. Furthermore, it was found
that the competition between options was strongest when they
were furthest apart—just as predicted in the prey escape exam-
ple described above. All of these results are consistent with the
idea that the competition unfolds within a sensorimotor map that
respects the pragmatic issues of selecting actions in space, and
all of them could be simulated with a simple model of biased
competition among populations of tuned cells (Cisek, 2006).

In summary, previous studies have shown that the process of
deciding between actions involves the very same brain regions
that are implicated in sensorimotor guidance of actions, consis-
tent with the affordance competition hypothesis (Cisek, 2007).

However, the hypothesis also makes a complementary predic-
tion: that the same cells involved in selecting the initial action
will continue to be involved in adjusting and even switching
between actions during overt behavior. In other words, if the
environment changes and old opportunities are lost or new ones
become available, the same integrated selection and sensorimotor
guidance system should reflect the switch of the plan. Here, we
investigate this issue by examining neural activity in PMd after a
monkey has chosen one of two actions, but the selected option
becomes unavailable. We examined the same cells whose delay
period activity showed relative value modulation in our previous
work (Pastor-Bernier and Cisek, 2011) but extended our analysis
to the activity after the GO signal, with particular interest in tri-
als in which the option with highest payoff becomes unavailable.
Some of these results have been previously presented in abstract
form (Pastor-Bernier et al., 2011).

MATERIALS AND METHODS
INSTRUMENTATION AND TECHNICAL PROCEDURES
A male monkey (Macaca mulatta) performed a planar center-out
reaching task illustrated in Figure 1A. The task involved mov-
ing a cursor from a central circle (2 cm radius) to one of six
possible targets (2.4 cm radius) spaced at 60◦ intervals around a
12.6 cm radius circle. The monkey performed movements using a
cordless stylus whose position was recorded (125 Hz) by a dig-
itizing tablet (CalComp). Target stimuli and continuous cursor
feedback were projected onto a mirror suspended between the
monkey’s gaze and the tablet, creating the illusion that they are in
the plane of the tablet. Oculomotor behavior was unconstrained,
as eye movements do not strongly influence arm-related PMd
activity (Cisek and Kalaska, 2002), but was monitored with an
infrared oculometer (ASL). Neural activity was recorded with 3–4
independently moveable microelectrodes (NAN microdrive) and
data acquisition was performed with AlphaLab (Alpha-Omega).
On-line spike discrimination was used to estimate cell preferred
directions for choosing target locations. All analog waveforms
were stored on disk for offline sorting using principal compo-
nents (Plexon). All task events, trajectory data and spike times
were stored in a database (Microsoft SQL Server 2005) accessed
through custom scripts for data analysis (Matlab). After complet-
ing training, the animal was implanted under general anesthesia
with a titanium head post and a recording chamber placed
using MRI images (Brainsight primate). The chamber was cen-
tered on the arm area of PMd, between the precentral dimple
and the junction of the arcuate sulcus and spur (Figure 1B).
All procedures followed university and national guidelines for
animal care.

BEHAVIORAL TASK
The monkey began each trial by placing the cursor in the cen-
tral circle for a 350–650 ms Center-Hold-Time (CHT). Next, one
or two cyan targets appeared, with border styles indicating the
amount of juice that the monkey was likely to receive for reaching
to that target (See Figure 1A, inset). The reward was determined
probabilistically to encourage the monkey to explore available
options (Herrnstein, 1961). A “low-value” target (L, thick border)
had a 60% chance of yielding 1 drop, 30% chance of yielding 2,
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FIGURE 1 | (A) Behavioral tasks. The tasks involve moving a cursor
from a central circle to one of six possible target locations. At the
beginning of each trial the monkey placed the cursor in the center and two
targets appeared. Each target was associated with different rewards
indicated by different border styles (legend shows the probability of receiving
1 (red), 2 (green), or 3 (blue) drops of juice for each border style).
The monkey had to keep the cursor in the center until the targets changed
color (GO signal). Then, it moved to one of the targets and held the cursor

there to get a reward. In one variant of the task, the monkey was
presented with only one target (1T). In a second variant two targets were
presented, and the monkey was either free to move to either of them
after the GO signal (FREE trials), or one disappeared after GO leaving the
monkey with only the remaining option (FORCED trials). (B) The recording
locations in PMd. Black crosses indicate recording sites. The locations for
cells modulated by relative value (RV cells) are shown with red circles
(N = 52).

and 10% chance of yielding 3 (Expected value, EV = 1.5). A
“medium-value” target (M, no border) was worth 2 (60%), 1
(20%), or 3 drops (20%) (EV = 2). A “high-value” target (H,
thin border) was worth 3 (60%), 2, (30%), or 1 drop (10%)
(EV = 2.5). The non-monotonic relationship between border
thickness and value was used to dissociate motivational factors
from physical properties of stimuli. In particular, the most visu-
ally salient cue with a thick border style is deliberately chosen
to have a small payoff (“low value”) to dissociate saliency from
value effects. The monkey held the cursor in the center for an
instructed delay period (DELAY, 700–1300 ms) until a GO signal
was indicated by a change in target color and the disappearance
of the central circle. After the GO signal, the monkey had to ini-
tiate the movement within a 550 ms reaction time (RT) (which
had to be at least 100 ms, to discourage anticipation). To receive
a reward, the monkey had to move to a target within a maxi-
mum 550 ms movement time (MT) and hold the cursor there
for 500 ms (Target-Hold-Time, THT). When cells were isolated,

we first ran a block of 90 trials in which only one target was
presented (1T), to identify the DELAY-period preferred target
(PT) of each cell. Next, we ran a block of 180 two-target trials
(2T), including ones where the PT target was present and low,
medium, or high-valued, while the other target (OT) appeared at
60◦, 120◦, or 180◦ away and was low, medium, or high-valued.
Each block also included 30 trials in which the targets were 120◦
apart but neither was in the direction of the PT. In this paper we
focus only on trials in which the targets are 120◦ apart (90 tri-
als per 2T block) and at least one of the presented targets was
the cell’s PT. In 67% of 2T trials (FREE), the monkey was free
to move to either target after the GO signal. In 33% of 2T tri-
als (FORCED), one of the targets disappeared at GO and the
monkey had to move to the remaining one. FREE and FORCED
trials were randomly interleaved to encourage the animal to keep
both options partially prepared. FORCED trials were classified
according to the value of the target that disappears after the GO
signal. In FORCED LOW trials the target with the higher expected
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value disappears (inset in Figure 1A bottom), while the opposite
is true in FORCED HIGH trials. In a FORCED EQUAL trial both
the target that disappears and the target that remains have the
same value.

KINEMATIC ANALYSIS
Movement trajectories were re-sampled at a constant rate
(200 Hz) and filtered using a two-way butterworth filter [0 phase
lag, 4th order, norm. cutoff 0.05 (∼20 Hz)] using Matlab func-
tions butter and filtfilt (Mathworks). The initial direction vector
(IDV) was calculated as the X and Y coordinate cartesian arct-
angent (atan2) between the position at movement onset (MO)
and the position 100 ms later. Trials were sorted by short RT
(<180 ms), medium RT (between 180 ms and 240 ms) or long RT
(>240 ms). The mean trajectory profiles and mean IDVs were cal-
culated for each RT group independently. To determine whether
the IDV was pointing to a given target in space, we calculated
the mean IDV in the 1T condition for each target individually.
Then, 2T trials were classified as “direct” to the selected target if
their IDV fell within ±60 degrees of that target’s mean IDV in the
1T condition. Trials whose IDV pointed away from the ultimately
acquired target were classified as “curved.”

CELL TUNING AND RELATIVE VALUE DISCRIMINATION
We investigated only cells that had both spatial tuning and rel-
ative value discrimination (see Pastor-Bernier and Cisek, 2011)
during DELAY. We calculated directional tuning preferences for
the cells during each behavioral epoch (DELAY, MT, and THT)
and assessed significance with a non-parametric bootstrap test
(1000 shuffles, p < 0.05; Cisek et al., 2003). To assess whether
a cell discriminated relative value during DELAY, we exam-
ined whether the cell showed statistically significant differences
in firing rate between a “HIGH” value condition (value in
PT was larger than OT) and a “LOW” value condition (value
in OT larger than PT) for the last 300 ms prior to the GO
signal (One-Way ANOVA, p < 0.05). This was done to verify
whether the same cells that are involved in the initial deci-
sion continue to reflect plan switches after the GO signal. Cells
satisfying both requirements were used for post-GO analyses.
Discrimination latencies were obtained using a sliding ANOVA
method adapted from Peng et al., 2008 (window: 50 ms, step:
5 ms, p < 0.05) to perform a statistical temporal analysis between
the HIGH and LOW value conditions. We obtained latencies
for relative value discrimination with respect to the GO sig-
nal by aligning the neural activity on GO and parsing each
trial backwards for 700 ms (shortest variable DELAY duration).
This chosen interval ensured that all trials had a similar time
range for firing rate comparisons. The latency of relative-value
discrimination was obtained as the last 80 ms sliding time-
window for which a statistical difference could be observed.
The cells that satisfied both the One-Way ANOVA and sliding-
ANOVA requirements were called relative value discriminating
cells (RV cells, N: 52). This population is identical to the data-set
described previously (Pastor-Bernier and Cisek, 2011) in which
relative-value effects were assessed for particular value combi-
nations (PTvsOT: 3vs1, 2vs1, 3vs2) using paired ANOVA and
Tukey–Kramer tests.

PLAN-SWITCH ANALYSIS
FORCED LOW trials were of particular interest for plan-
switching analysis because they represent conflict situations in
which the more desirable option must be replaced by the less
desirable option. In these “plan-switch” cases, DELAY activity
prior to GO (pre-GO plan) was compared with activity after GO
(post-GO plan). We further distinguished cases where the target
that disappears is located in the cell’s PT or in the OT, giving rise
to two different kinds of FORCED LOW trials. In FORCED LOW
PT2OT trials the pre-GO DELAY activity reflects an initial plan
to PT and the post-GO activity a final plan to OT. In FORCED
LOW OT2PT trials the pre-GO DELAY activity reflects a move-
ment plan to OT and the post-GO activity a final plan to PT. To
obtain plan-switch latencies FORCED LOW trials were compared
with trials belonging to the FREE condition in which the animal
naturally chose the high valued option (FORCED-FREE compar-
ison). To obtain the switch latency from an initial plan to PT to
a final plan to OT (SwitchPT2OT) the activity of FORCED LOW
PT2OT trials was compared with FREE trials in which PT was the
plan selected (FREE HIGH PT). This type of switch is illustrated
in Figure 3A. The plan-switch latency was obtained by parsing the
neural activity for both types of trials from GO to movement off-
set using a sliding ANOVA method (window: 50 ms, step: 5 ms,
p < 0.05) and calculated as the first moment in time in which
they were significantly different for at least 80 ms after the GO
signal. For the plan-switch latency to be valid we also required
that there be no significant difference between the FORCED LOW
PT2OT and the FREE HIGH PT types of trial for at least 300 ms
before the GO signal (One-Way ANOVA, p < 0.05 ms). To cal-
culate the switch latency from an initial OT plan to a final PT
plan (SwitchOT2PT) the activity of FORCED LOW OT2PT tri-
als was compared to FREE HIGH OT trials in which OT was
selected. Figure 3B illustrates an example of this type of switch.
We define as “convergence” the situation in which the pre-GO
DELAY activity for two types of trials represents different move-
ment plans, while the post-GO activity represents the same plan.
The time of convergence to a plan in the PT direction (CONV)
is found by comparing FORCED LOW OT2PT trials with FREE
HIGH PT trials (Figure 3C). Convergence to an OT plan can-
not be determined from the activity of cells because activity to
OT is generally low. To obtain CONV latency a similar sliding
ANOVA method was used, although the time of convergence
was defined as the first moment after the GO signal in which
the difference between the two types of trial was not significant
(p > 0.05) for at least 80 ms. We also required the pre-GO DELAY
activity between FORCED LOW OT2PT and FREE HIGH PT to
be different for at least 300 ms (One-Way ANOVA, p < 0.05). In a
variant of the plan-switch latency study we used FORCED HIGH
trials instead of FREE HIGH trials for the calculation of plan-
switch latencies (FORCED-FORCED comparison). This allowed
us to address whether differences in visual input after the GO sig-
nal (the number of remaining targets) could have an effect on the
plan-switching process.

The population’s mean switch latencies (ms) were calcu-
lated using the sliding-ANOVA method mentioned above. The
confidence intervals (CI) at 95% probability (p < 0.05) were
obtained as ±Z × √

E, where Z represents the critical area for
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the distribution of mean switch latencies across trials. Z can be
approximated to ±1.96 assuming by the central limit theorem
(Polya, 1920) that the mean distribution tends to normality with
large sample sizes. The variable E represents the error variance of
the mean and was calculated using the expression correcting for
overlapping intervals described in Müller (1993) (Equation 3.7)
and cited elsewhere (Dacorogna et al., 2001; Hansen and Lunde,
2006).

E = r/N2 × [rR − (r2 − 1)/3]

where r = min(m,N), R = max(m,N) and where m is the over-
lap between intervals and N is the number of samples per time
interval.

In our case we have a 50 ms window sliding by 5 ms bins.
Therefore, m = 45 and N = 10. Because m > N, then r = N, and
R = m, and the previous expression takes the form:

E = m − N/3 − 1/3N

Solving numerically with m = 45 and N = 10, we obtain E =
41.7 and therefore,

CI = ±1.96
√

41.7 = ±12.6 ≈ ±13 ms

With no overlap m = 0, r = 0, R = 1, N = 1, and the error of
overlap E = 0.

COMPUTATIONAL MODELING
The model (Cisek, 2006) is aimed at explaining and predicting
systems-level phenomena such as response patterns over large
population of neurons. It is implemented with a set of equa-
tions describing the activity of several populations of neurons that
correspond to specific cortical regions. Each population is orga-
nized as a layer of neurons that are tuned to spatial directions
of potential actions. Each neuron in a layer behaves according to
an expression that defines how its activity changes over time as
a function of four terms: passive decay, excitation toward satu-
ration, inhibition, and noise. This expression can also be called
“mean-rate leaky integrator” (Grossberg, 1973) and takes the
following form:

dX/dt = −αX + (β − X)γ · E − X · I + θ, (1)

where X is the mean firing rate of a given neuron, dX/dt is
the change in rate over time, E is the excitatory input, I is the
inhibitory input, α is a decay rate, β is the maximum activity of
a neuron, γ is the excitatory gain, and θ is the Gaussian noise.
The connections between each layer are hardwired and organized
to respect basic neuroanatomical connection patterns. Further
details concerning connectivity patterns and model behavior have
been described previously elsewhere (Cisek, 2006). For purposes
of the present task the model’s “prefrontal” activity was scaled
by a signal related to the absolute value of each target (low =
0.3, medium = 0.7, high = 1.0). To simulate plan switches, we
removed one of the two presented targets (high valued target
in FORCED LOW trials) at the beginning of the GO epoch. All

parameter settings were identical to Cisek (2006), except that
we used a gradual GO signal that allows the activity in PMd
to gradually spill into the M1 layer. The gradual GO signal is
defined as a multiplicative factor that scales the input from PMd
to M1 and is zero before the GO instruction. After the GO
instruction, it grows as 2.5·t where t is the time since the GO
instruction.

Note that the model in its present form is not intended to sim-
ulate the movement itself. Activity in the model M1 population
simply indicates the initial direction of movement, computed as
the preferred direction of the first M1 cell that crosses a threshold
of activity equal to 1.75.

BEHAVIORAL RESULTS
In 1T trials the monkey’s success rate was 98%, in 2T FREE it was
99%, and in 2T FORCED it was 96% (in all cases N > 60,000).
In 2T FREE trials the monkey selected the more valuable target
90% of the time, indicating that he understood the meaning of the
stimulus cues. We found that movement times (MT) were shorter
to higher-valued targets in 1T trials (400 ms to high-value and
416 ms to low-value targets). Although the difference was small,
it was significant (Kolmogorov–Smirnov test (KS), p < 0.01). RTs
in 1T trials did not depend on target value (KS-test p > 0.05 for
all comparisons).

We observed an interaction effect between RT and trajectory
kinematics in 2T trials. Trajectories belonging to short RT tri-
als were generally more curved than trajectories belonging to
medium or long RT trials (Figure 2A). This effect was accentuated
by the value of the unselected target with respect to the value of
the selected target in the FORCED condition. Trajectories in the
FORCED LOW condition (Figure 2A, rightmost panel) were gen-
erally more curved than the ones in the FORCED HIGH or FREE
HIGH conditions (Figure 2A, left and middle panels). These
curved movements have an initial launching direction toward
the target that vanishes and are corrected later to the remain-
ing target. To quantify this we obtained the mean trajectory IDV
across all conditions (Figure 2B). We observed that a great deal
of the curvature in FORCED LOW trials was due to movements
launching to the target that becomes unavailable after GO (High
value). This effect was particularly strong for short RT trials and
moderate for intermediate RT trials. Long RT trials were essen-
tially straight toward the remaining target (Figure 2B, rightmost
panel). We didn’t see this effect when the monkey was forced to
move to the high value target or when the monkey was free to
choose among the two targets, because in either situation the pre-
ferred and available target were the same. We further investigated
the interaction between RT, relative value, and initial launch-
ing direction by comparing raw RT distributions. The mean
RTs in FREE HIGH (266 ms, light-brown dashed histogram),
FORCED HIGH (271 ms, dark-brown dashed histogram), and
FORCED LOW (279 ms, black dashed histogram), were very sim-
ilar (Figure 2D) with only small differences between the mean
RTs in FREE HIGH and FORCED LOW distributions (KS-test,
p < 0.01). This could be due to the contribution of a higher pro-
portion of correct trials in FREE HIGH than in FORCED LOW
trials (3% difference). Most importantly we observed that the
mean RT in FORCED LOW trials with “direct” trajectories (red
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FIGURE 2 | (A) Average trajectories for 2T trials with the unselected
target located 120◦ clockwise (red) or counterclockwise (green) to the
selected target (always on the right). The three panels from left to right
represent FREE, FORCED HIGH, and FORCED LOW trials. The line
thickness represents trials classified by their RT. Thick lines correspond to
long RT (>240 ms), medium sized lines to intermediate RT (between
180 and 240 ms) and thin lines short RT (<180 ms) (See Method sections
for details). (B) Distribution of initial launching directions, with selected
target at 0◦. The color and line thickness code is the same as in
Figure 2A. Blue histograms represent 1T trials to the selected target.

(C) Method used to classify trials as direct (red) or curved (blue).
The top panel shows individual FORCED LOW trials when the remaining
target is to the right and the vanished target is to the upper left. Small arrows
indicate the IDVs and the red region indicates the 120◦ angle around the
average, within which trials were considered to be “direct.” The bottom panel
shows a rose plot of the distribution of individual IDVs. (D) The RT
distributions of FORCED LOW (black dash) trials, including FORCED LOW
“direct” (red solid) and “curved” (blue solid) trials along with the RT
distributions of FREE HIGH (light brown dash) and FORCED HIGH (dark
brown dash).
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histogram, 291 ms) was significantly longer (21 ms difference, KS-
test, p < 0.01) than the mean RT in FORCED LOW trials with
“curved” trajectories (blue histogram, 270 ms). In comparison,
FORCED LOW “curved” trials and FORCED HIGH trials did not
show RT differences (KS-test, p > 0.05) (Figure 2D).

NEURAL RESULTS
PMd ACTIVITY PREDICTS SWITCHING OF MOTOR PLANS
AHEAD OF MOVEMENT ONSET
Activity was recorded from 327 cells from the arm area of PMd
(Figure 1B) of which 226 (69%) had significant directional tun-
ing during at least one epoch (DELAY, MT, THT) and were con-
sidered task-related. Here, we focus on cells with DELAY-period
tuning (181/226, 80%), 52 of which (29%) were modulated by
relative value combinations during DELAY (One-Way ANOVA,
p < 0.05) and were considered further for the plan-switch analy-
ses (relative value, RV cells). In the first variant of this analysis we
compared neural activity in FORCED LOW versus FREE HIGH
conditions (FORCED-FREE). Figures 3A–C shows three individ-
ual cells illustrating the different types of plan-switch analyses. In
a SwitchPT2OT (Figure 3A) we compare trials that had a pre-GO
plan to PT and a post-GO plan to OT (FORCED LOW PT2OT,
green trace) with trials that had both a pre-GO and post-GO plan
to PT (FREE HIGH PT, red trace). In a SwitchOT2PT (Figure 3B)
we compare trials with a pre-GO plan to OT and a post-GO plan
to PT (FORCED LOW OT2PT, blue trace) with trials that had
both a pre-GO and post-GO plan to OT (FREE HIGH OT, pink
trace). In a convergence (CONV) the pre-GO plan is different
for two types of trials (FORCED LOW OT2PT and FREE HIGH
PT) but is the same (movement plant to PT) after the GO signal
(Figure 3C). Figures 3D–G show additional examples that had
statistically significant plan switches at the individual cell level.
Thirty-seven of the 52 (71%) RV cells showed statistically sig-
nificant modulation (sliding ANOVA p < 0.05) in at least one
plan-switch analysis in the FORCED-FREE latency comparison
and are referred to as Switch cells. Switches of activity of the other
cells did not reach statistical significance, often because those cells
were recorded during only a few trials of each type.

To address the role of visual input (the number of targets
remaining after GO) on the plan-switching process, we also
compared FORCED LOW versus FORCED HIGH conditions
(FORCED-FORCED comparison). Figures 3F–G illustrates a sin-
gle cell example in which plan switches were obtained both
for the FORCED-FREE comparison (Figure 3F) and for the
FORCED-FORCED comparison (Figure 3G). Twenty-eight out
of 52 (54%) RV cells showed statistically significant modulation
to plan switches in the FORCED-FORCED comparison. Table 1
summarizes the cell counts for the different types of switch in
both comparisons.

To test whether the plan-switch pattern observed at the indi-
vidual cell level also held at the population level, we obtained the
population profile for plan-switching in Switch Cells and all RV
cells separately and for both FORCED-FREE (Figures 4A–B) and
FORCED-FORCED (Figures 4C–D) comparisons. We observed
that the latency of SwitchPT2OT and SwitchOT2PT for Switch
Cells was 155 ± 13 ms (95% CI) after the GO signal and, there-
fore, well before MO (300 ± 50 ms) in both FORCED-FREE and

FORCED-FORCED comparisons (Figures 4E–F). Convergence
to a plan occurred later, 190 ms ± 13 ms after the GO signal, but
still well-ahead of MO. These results held for both the Switch cell
or RV cell populations, although we observed that switch laten-
cies in the larger RV cell population were later than in the Switch
cell population by about 15–20 ms (this difference did not reach
statistical significance, ANOVA p > 0.05), and was presumably
due to the presence, in the RV population, of cells with very few
trials resulting in a larger standard error. Table 2 summarizes the
latency results for each cell population and comparison.

PMd CONTRIBUTION TO KINEMATICS PRIOR TO MOVEMENT
ONSET (INITIAL DIRECTION) IS OBSERVED IN SITUATIONS
WHERE THERE IS NO RELATIVE VALUE BIAS
We examined the cell responses in the plan-switch paradigm tak-
ing into account the initial direction of the reach movements in
each trial. By doing so we classified trajectories as initially aiming
to the selected target (“direct,” to PT or OT) or initially aim-
ing to the unselected target (“curved”). We compared both direct
and curved movements in the conditions that were more likely to
provoke curvatures due to plan-switches, namely the FORCED
LOW and FORCED EQUAL conditions. Figures 5A–C shows
population histograms for Switch cells and RV cells, comparing
FORCED LOW direct and curved trials. We observed that cur-
vature is not predicted by DELAY activity in the FORCED LOW
condition. We did not observe statistically significant differences
either between activity in the FORCED LOW PT2OT direct trials
and FORCED LOW PT2OT curved trials, or between FORCED
LOW OT2PT direct and FORCED LOW PT2OT curved (ANOVA,
p > 0.05 in both cases). However, DELAY activity in the FORCED
EQUAL conditions does predict whether a trial will be curved or
straight. During the 600 ms prior to the GO signal, we observed
statistically significant differences (ANOVA, p < 0.05) between
FORCED EQUAL direct and FORCED EQUAL curved trials, for
both Switch cell and RV cell populations (Figures 5D–F). It is
noteworthy to mention that these differences take place only dur-
ing DELAY prior to the monkey’s knowledge of which target
will disappear (GO), and reflect pre-GO selection biases. That is,
among the FORCED EQUAL trials there are some in which the
pre-GO activity happens to be strongly biased toward one target,
and when that target disappears, the bias is likely to cause a curved
movement (green and blue traces).

Note that, as shown in Figures 5B,E, when we align activity on
the MO we can see that the switch of the plan (computed at the
population level) occurs approximately 150 ms before MO. This is
interesting because in the curved trials the monkey still launches
to the now non-existent target.

A BIASED COMPETITION MODEL CAN REPRODUCE THE
DYNAMICS OF THE PLAN-SWITCH
Cisek (2006) described a “biased competition” model of action
selection, in which populations of cells along the dorsal stream
implement a distributed representation of potential actions that
compete against each other through lateral inhibition (Figure 6A,
see Methods). The model simulates relative value effects reported
previously when reward-related biasing signals are introduced
into PFC (Pastor-Bernier and Cisek, 2011). Here, we used the
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FIGURE 3 | Top-left: The different types of trials are represented in color
boxes. Target position is indicated by a blue circle in PT or in OT. The target
value is indicated by circle size. In a “FORCED LOW” condition the most
valuable option disappears after the GO signal (dashed circles) giving rise to
two possibilities: whether the target with the larger value (big circle) was the
cell’s PT (green box) or the other target (blue box). In both cases the monkey
is forced to move to the remaining option (small circle). We compare these
trials with “FREE HIGH” trials, in which the monkey is free to choose the
target located either in PT or OT (red or pink) and selects the option with
higher value (FORCED-FREE comparison). We also separately compare
FORCED LOW trials with “FORCED HIGH” trials in which the target that
disappeared after the GO signal was the less valuable one (orange and violet)
(FORCED-FORCED comparison). In all panels bold black arrowheads indicate
the selected option. (A–G) Examples of the activity of individual cells
illustrating the switching of movement plans observed between the pre-GO

and the post-GO period. Cell activity is depicted as firing-rate histograms,
with mean ± s.t.e., and rasters in which black marks indicate cue onset, go
signal, movement onset and offset, with trials sorted by RT. A switch from PT
to OT (SwitchPT2OT) is seen by comparing trials that have a pre-GO plan to
PT and a post-GO plan to OT (green) with trials that have both a pre-GO and
post-GO plan to PT (red). The time of the switch is indicated by a gray vertical
bar (only in Figures 1A–C for simplicity). The alignment of activity on the GO
signal for rasters and firing rate histograms is indicated by a black vertical bar
in all panels. A switch from OT to PT (SwitchOT2PT) is seen by comparing
trials that have a pre-GO plan to OT and a post-GO plan to PT (blue) with trials
that have both a pre-GO and post-GO plan to OT (pink). The time of
convergence to a plan in the PT direction (CONV) is found by comparing trials
with a pre-GO and post-GO plan to PT (red) with trials with a pre-GO plan to
OT but a post-GO plan to PT (blue). Convergence to an OT plan cannot be
determined from the activity of cells because activity to OT is generally low.
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same model to simulate plan switches by removing one of the
two presented targets at the beginning of the GO epoch and by
letting the activity in PMd gradually spill into the M1 layer (see
Methods). Figure 6D shows the activity of a simulated neuron
illustrating plan switches from OT2PT, PT2OT, and convergence
to PT. Note that the timing of the PT2OT and OT2PT plan
switches occur simultaneously and prior to MO. This is also
the case for convergence to PT. These results are compatible

Table 1 | Classification of cells.

PMd Cell counts N

Cells with any delay activity 181

Delay activity only 77

Movement and delay activity 104

Discrimination of relative value (RV) 52

Delay and movement 30

Delay only 22

Switch Cells ∗FORCED vs. FREE 37

Switch OT2PT 31

Switch PT2OT 22

Convergence PT 15

Switch ∗∗FORCED vs. FORCED 28

Switch OT2PT 24

Switch PT2OT 17

Convergence PT 13

∗FORCED LOW vs FREE HIGH
∗∗FORCED LOW vs FORCED HIGH

Cell counts per condition and type of plan switch.

with the experimental data and suggest that PMd contains all
the information concerning the final action plan before MO.
Figure 6B shows RT distributions from FORCED LOW sim-
ulations for trials in which the model launched toward the
target that vanished (blue) or the remaining target (red). We
observe that RTs are shorter for trials initiated toward the van-
ishing target, in agreement with behavioral data (Figure 2D).
Figure 6C shows the distribution of initial launching direc-
tions. Note that the blue distribution (which comprises the
majority of early RT trials) is aimed toward the target that
vanished, predicting that if the model were equipped with
online feedback during the movement itself, it would produce
curved trajectories as in the behavioral data. Figure 6E shows

Table 2 | Population latencies obtained with sliding ANOVA.

SwitchPT2OT SwitchOT2PT Convergence PT

N:37 POP ANOVA

FORCED-FREE 155 ± 13∗ 155 190

FORCED-FORCED 170 155 190

N:52 POP ANOVA

FORCED-FREE 170 170 190

FORCED-FORCED 190 160 190

∗CI for all comparisons.

Plan switch latencies in PMd cells that discriminate relative values (RV cells,

N = 52) and in a cell subset with individually statistically significant switches

(Switch cells, N = 37). The mean activity for each individual cell was calculated

prior to pooling the cells together in order to obtain a balanced contribution of

each cell. Latency values were obtained by a sliding ANOVA on the population

profile. CI = 95% confidence interval for latency values at p < 0.05.

A B
E

C D
F

FIGURE 4 | Population activity. Cells with statistically significant plan
switches (Switch Cells, N = 37) and all cells discriminating relative values
(RV Cells, N = 52) were examined separately for switch latencies in the
FORCED vs. FREE (A–B) and FORCED vs. FORCED comparisons (C–D). The
gray bar indicates the time range of movement onset. The legend has the

same color code as in Figures 3E–F. Comparison of the latencies of
SwitchPT2OT, SwitchOT2PT, and CONV in these two groups of cells in
FORCED-FREE (blue bars) and FORCED-FORCED comparisons (brown bars).
The horizontal line above the histograms represent comparisons that were
statistically significant (ANOVA, p < 0.05).
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A

B

C F

E

D

FIGURE 5 | Cell responses in the plan switch paradigm taking into

account the initial direction of the reach movements in each trial.

(A–C) Comparison of direct and curved movements in the FORCED
LOW condition for Switch Cells (A–B) and RV Cells (C). Trajectories are
classified as curved to PT (blue box), curved to OT (green box), direct to PT
(orange), or direct to OT (violet). (D–F) Comparison of straight and curved
movements in the FORCED EQUAL condition for Switch Cells (D–E) and

RV Cells (F). Trajectories are classified as curved to PT (dark blue box),
curved to OT (dark green box), direct to PT (magenta) or direct to OT
(cyan). In panels A, C, D, and F the data is aligned on GO and the
gray bar represents the time range of movement onset. Panels
B and E replot the data in A and D, respectively, with alignment on
movement onset (MO), and the grey bar indicates the time range of the
GO signal.

the model’s Parietal, PFC (rostral and caudal), PMd (rostral
to caudal), and M1 population patterns of activity during a
FORCED LOW trial where we observe a plan switch that is com-
pleted before MO. In contrast, in the trial shown in Figure 6F,

the model launches the movement before the plan switch is
complete. We observe that the timing of plan switches in all
PMd layers is before MO, in agreement with our experimental
results.
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FIGURE 6 | (A) Model of action selection, in which populations of cells
along the dorsal stream implement a distributed representation of potential
actions that compete against each other through lateral inhibition. Each
population is modeled as a set of tuned neurons with
“on-center-off-surround” recurrent connectivity. The model includes posterior
parietal cortex (PPC), prefrontal cortex (PFC), three regions of PMd (rostral to
caudal), and primary motor cortex (M1). Biasing signals related to absolute
reward value (High, H or Low, L) enter as independent inputs to particular
PFC layers (PFC-H, PFC-L). (B) RT distributions for trials in which the model
launched to the target that vanished (blue) or to the remaining target (red).
(C) Initial launching directions toward the vanishing target (blue, at position

20) or remaining target (red, at position 50). (D) A simulated neuron
showing activity during four compared conditions: FORCED LOW OT2PT
(blue), FORCED HIGH OT (purple), FORCED LOW PT2OT (green), and
FORCED HIGH PT (red). Individual lines represent individual simulated
trials. (E) Patterns of activity in the model’s Parietal, PFC, PMd (rostral to
caudal) and M1 populations, during a FORCED LOW trial in which the target
at position 50 was more valuable but vanished at the time of the GO signal,
and the plan switch was completed prior to MO. (F) Patterns of activity in
another FORCED LOW trial, but in which the movement was launched
before the plan switch was complete, initiating to the target at
position 50.

DISCUSSION
Recent studies have shown that while a monkey is deciding
between two potential reaching movements, neural activity in
the dorsal PMd can specify both movements simultaneously

(Cisek and Kalaska, 2002, 2005; Klaes et al., 2011), and the neu-
ral representations of these movements are modulated by their
relative subjective desirability (Pastor-Bernier and Cisek, 2011).
These findings suggest that decisions between reaching actions are
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made within the same brain regions involved in the execution of
the actions themselves, in agreement with research on reaching
(Cisek, 2007; Pesaran et al., 2008; Cisek and Kalaska, 2010) and
oculomotor control (for reviews, see Glimcher, 2003; Gold and
Shadlen, 2007). In fact, decisions about eye movements appear
to involve even the superior colliculus, a brainstem structure that
is just two synapses away from the motor neurons that move the
eye (Basso and Wurtz, 1998; Carello and Krauzlis, 2004; Horwitz
et al., 2004; Ignashchenkova et al., 2004; Thevarajah et al., 2009).

However, the finding that decision variables (such as relative
value) influence neural activity in sensorimotor regions does not
necessarily imply that these same cells continue to be involved
in the on-line guidance of movement. It is plausible that once a
decision is made and an action is launched toward a given tar-
get, the decision-related cells fall silent while a separate circuit
becomes responsible for guiding movement toward the selected
target. The results presented here suggest that this is not the case.
We found that the very same PMd cells previously shown to reflect
relative value during a delay period continue to update their activ-
ity to reflect when the monkey changes its plan during situations
in which a previously selected action becomes unavailable. This
argues against the distinction between regions responsible for
choosing an action and those responsible for its guidance through
on-line feedback, and in favor of the hypothesis that decisions
emerge through a competition within the same circuit that guides
movement execution (Cisek, 2007).

A number of earlier studies provide converging evidence con-
sistent with this integrated view. For example, it has been shown
that humans and monkeys can quickly and smoothly update their
movement plans when the location of the reach target suddenly
and unpredictably changes (Georgopoulos et al., 1981, 1983;
Prablanc and Martin, 1992; Desmurget et al., 1999; Day and Lyon,
2000; Archambault et al., 2009, 2011; Gritsenko et al., 2011), even
when they are not consciously aware of the change. During these
“target jump” experiments, neural activity in fronto-parietal cor-
tex smoothly transitions between the original and final motor
plan (Archambault et al., 2009, 2011), without any “refractory
period” for aborting the previous plan before preparing a new
one. Among the regions tested, the earliest changes in neural
activity were found in PMd, in which 50% of cells reflected the
new plan about 140 ms after a target jump, followed by M1 at
180 ms and dorsal area 5 at 200 ms (Archambault et al., 2011).
This is comparable to the latency of responses to target jumps
in earlier studies by Georgopoulos et al. (1983), who observed
latencies of about 130–150 ms in the rostral part of M1.

Interestingly, the neural latencies to target jumps are com-
parable to the latencies of plan switches observed in PMd in
our study—about 155 ms for both increases (SwitchOT2PT) and
decreases of activity (SwitchPT2OT). They are also comparable
to the latencies reported by Wise and Mauritz (1985) in a study
in which the stimulus that instructed the plan switches was pre-
sented during the delay period, well before the GO signal. In that
study, it was found that PMd cells reflected the switch with a
median latency of 140–150 ms. In other words, the latency with
which neural activity in PMd reflects a plan change is approxi-
mately 140–150 ms after the sensory stimulus which instructs that
plan change. This holds true regardless of whether that stimulus

is the change of a target from one location to another during
the delay period (Wise and Mauritz, 1985), the displacement of
a target during RT or movement (Georgopoulos et al., 1983;
Archambault et al., 2009, 2011), or the offset of a PT that leaves
only a less-desirable one available (present study). Furthermore,
we found that the latency at which cells became suppressed when
their PT disappeared (SwitchPT2OT) was not statistically differ-
ent than the latency with which their discharge increased when
their PT, which was initially less desirable, suddenly became the
only remaining option (SwitchOT2PT). The similarity of these
neural latencies across different experimental conditions demon-
strates that in all cases, neural activity in PMd remains sensitive to
new information pertinent to available actions and their values.
This suggests a view whereby sensory information continuously
flows into the motor system (Coles et al., 1985; Cisek, 2007), as
opposed to a view of separate computational stages involved in
canceling one motor program and computing a new one.

The neural processes of canceling a planned movement have
been studied in the frontal eye fields (Hanes et al., 1998), superior
colliculus (Pare and Hanes, 2003) and for arm-reaching stud-
ies in the supplementary motor area (SMA), pre-SMA (Scangos
and Stuphorn, 2010) and PMd (Mirabella et al., 2011) using the
countermanding task (Logan et al., 1984). In this task, subjects
are asked to make a saccade or reach to a target, but to inhibit
the movement if an infrequent STOP-signal is presented after a
variable delay following the GO signal. As the delay increases, it
becomes increasingly difficult to successfully inhibit the move-
ment, making it possible to estimate a given subject’s “stop-signal
reaction time” (SSRT). Although many cortical areas such as
motor cortex (M1) and supplemental cortical areas (pre-SMA
and SMA) harbor neurons with DELAY activity related to move-
ment planning (Okano and Tanji, 1987) it is unlikely that these
areas are involved in processes causally related to movement can-
cellation because their responses to a stop signal take place after
the SSRT (Scangos and Stuphorn, 2010). In contrast, Mirabella
et al. (2011) found that during successful STOP trials, neurons in
PMd show activity changes prior to the SSRT, making it possible
that this region is involved in inhibiting the movement. This is
consistent with the findings reported here that the suppression of
PMd activity tuned to the target which vanished (SwitchPT2OT)
occurs well before MO.

Our behavioral results are compatible with the proposal that
at the end of the DELAY period, the movement to the higher-
valued target is more strongly prepared than the movement to
the lower-valued target. When the higher target disappears in a
FORCED LOW trial, then one of two things can happen. If the
RT is short, then the movement initiates toward the location of
the unavailable target and the monkey must later turn around
(curved trials, Figure 2D blue). If the RT is long, then the monkey
completes his plan switch and initiates directly to the remaining
target (direct trials, Figure 2D red). Nevertheless, what is surpris-
ing is that in both cases, neural activity in PMd already clearly
reflects the change of plan more than 150 ms before the MO. This
can be seen in Figures 5A,B. For example, the green traces illus-
trate trials in which the monkey initiated the movement toward
the PT of recorded cells, which was the more valuable of the tar-
gets present during the DELAY. However, that target vanished
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and so the monkey curved its movement trajectory and arrived at
the remaining target. Although the neural activity becomes sup-
pressed within 200 ms of the GO signal, reflecting the change of
plan away from the PT, the initial movement some 100 ms later is
still launched in the direction of the original plan. This happens
most often during trials with short RTs (Figures 2B,D) suggesting
that the motor system has a certain “inertia” that cannot be easily
overcome. That is, movement initiation and muscle contraction
could be starting to take place shortly after the GO signal despite
the possibility that the more desirable choice will become unavail-
able. In this sense, the short-RT curved movements would be a
natural consequence of the monkey’s impulsivity and a strategy of
reaching quickly and correcting the trajectory when necessary. In
FORCED LOW trials, we found no significant difference in PMd
activity between curved versus direct trials (Figures 5A–C), sug-
gesting that other regions (presumably M1) may be more strongly
responsible for determining whether the movement launches
toward the initially selected or not. In FORCED EQUAL trials, we
did observe differences in PMd activity when comparing curved
versus direct movements (Figures 5D–F), but we believe this is
simply due to selection bias: Curved movements (dark blue and
green traces) are more likely to occur when the monkey happens
to be strongly biased during DELAY toward the target that van-
ished, while direct movements could result equally from trials in
which DELAY activity is biased to the PT, the OT, or neither, and
the average DELAY activity of these three groups of trials will lie
somewhere in the middle (red and cyan traces).

Cisek (2006) described a model of biased competition between
action plans, which was originally designed to capture neural data
on the simultaneous specification of multiple movements (Cisek
and Kalaska, 2005) and behavioral data on the distributions of
initial directions in short-RT pointing tasks (Favilla, 1997; Ghez
et al., 1997). That same model, without any changes in param-
eters, was able to simulate more recent data on the modulation
of PMd activity by relative subjective desirability (Pastor-Bernier
and Cisek, 2011). In the model, potential actions are encoded as
hills of activity in populations of directionally tuned neurons with
short-range mutual excitation between similarly tuned cells and
long-range lateral inhibition among cells with different tuning.
The distance dependence of these lateral interactions is respon-
sible for producing both the distance-dependent distributions of
initial reach directions (Favilla, 1997; Ghez et al., 1997) and the
distance-dependent influence of the value of one target on the
PMd activity related to another (Pastor-Bernier and Cisek, 2011).
That same model, only slightly modified with a gradual GO sig-
nal, is also able to reproduce our current results on plan switches
(Figure 6D) and the distributions and timing of initial launching
directions (Figures 6B,C). Note, however, that the model makes
no attempt whatsoever to explain activity after MO—it includes
no dynamics for producing or guiding movement, and its M1
activity should only be interpreted as capturing the initial pat-
tern around the time of MO. Nevertheless, despite the absence
of any movement production mechanisms in the present form
of the model, it is consistent with models in which the move-
ment trajectory is generated through continuous feedback via
proprioceptive and visual signals (Bullock and Grossberg, 1988;
Bullock et al., 1998; McIntyre and Bizzi, 1993; Burnod et al.,

1999; Shadmehr and Wise, 2005) and through internal forward
models (Bullock et al., 1993; Miall and Wolpert, 1996; Shadmehr
et al., 2010). The model is compatible with general theories
proposing that movements unfold as a dynamical system that is
guided by the continuously updated pattern of activity within
a distributed sensorimotor map. These patterns of activity can
be shaped by a variety of processes, including attention (Tipper
et al., 1998; Baldauf and Deubel, 2010), decision-variables (Cisek,
2007), and continuous spatial information from the dorsal visual
stream (Goodale and Milner, 1992; Milner and Goodale, 1995;
Desmurget et al., 1999; Day and Lyon, 2000).

That a relatively simple “biased competition” model can
explain this fairly large set of data is particularly interesting given
that the same mechanism is often used to explain the neural
mechanisms of spatial attention (Desimone and Duncan, 1995;
Boynton, 2005). This supports the conjecture (Allport, 1987;
Rizzolatti et al., 1987; Neumann, 1990; Duncan, 2006; Cisek,
2007) that both attention and decision-making are related aspects
of a general process of selection necessary to arbitrate between the
many demands and opportunities for action that animals are con-
tinuously faced with in their natural environment. In this view,
sensory information is continuously winnowed along the dorsal
stream as it is converted into information specifying potential
actions and ultimately guiding their execution. In all cases, this
winnowing process involves a biased competition, but the specific
dynamics of the process may be somewhat different in different
brain regions.

For example, Louie et al. (2011) showed that activity in LIP
was best described as

R = Rmax
Vin + β

σ + Vin + Vout
, (2)

where R is the firing rate, Rmax is the maximum firing rate, V in is
the value of targets in the receptive field, Vout is the total value of
targets outside the receptive field, and β and σ are the baseline
activity and semi-saturation terms, respectively, (see Reynolds
and Heeger, 2009). Note that, as shown by Grossberg (1973),
the normalization computation described by Equation (2) can be
produced by the steady-state solution of Equation (1) if the exci-
tation term E is equal to V in and the inhibition term I is equal
to Vout (see Cohen and Grossberg, 1983, for a proof of Lyapunov
stability for a general class of such networks). In other words, divi-
sive normalization may result from the competitive interactions
within neural populations.

Louie et al. (2011) found that to explain their LIP data, the
parameter σ had to be large, implying incomplete normalization
such that LIP cells exhibited value-related modulation even with
a single target. In contrast, our results suggest that PMd exhibits
complete or nearly complete divisive normalization, because in
the 1T task we found no value-related modulation whatsoever
(Pastor-Bernier and Cisek, 2011), as if the σ parameter is zero.
This raises the intriguing question of whether partial divisive nor-
malization is the trend in parietal cortex, which is still far from
overt execution, while activity is more fully normalized in regions
closer to motor output, such as PMd. This would make good sense
if PMd is most closely related to the process of final arbitration
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between potential actions, but a deeper understanding of these
differences between LIP and PMd requires further investigation.

To summarize, we found evidence that PMd neurons, which
appear to be involved in the competition determining the initial
selection of action, continue to take part in action selection after
MO, reflecting a change of plan when a selected target becomes
unavailable. This finding is compatible with previous studies of
plan changes during the delay period (Wise and Mauritz, 1985)
and during target jump paradigms (Georgopoulos et al., 1983;
Archambault et al., 2009, 2011), as well as with the suggestion that
PMd activity may be causally involved in the voluntary inhibition
of movement (Mirabella et al., 2011). Taken together, these results

provide support for the general hypothesis that the brain mecha-
nisms for selecting between actions involve the same circuits that
guide the execution of the actions during overt behavior.
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