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One of the most basic and general tasks faced by all nervous systems is extracting
relevant information from the organism’s surrounding world. While physical signals
available to sensory systems are often continuous, variable, overlapping, and noisy,
high-level neuronal representations used for decision-making tend to be discrete, specific,
invariant, and highly separable. This study addresses the question of how neuronal
specificity is generated. Inspired by experimental findings on network architecture in
the olfactory system of the locust, I construct a highly simplified theoretical framework
which allows for analytic solution of its key properties. For generalized feed-forward
systems, I show that an intermediate range of connectivity values between source- and
target-populations leads to a combinatorial explosion of wiring possibilities, resulting in
input spaces which are, by their very nature, exquisitely sparsely populated. In particular,
connection probability ½, as found in the locust antennal-lobe–mushroom-body circuit,
serves to maximize separation of neuronal representations across the target Kenyon
cells (KCs), and explains their specific and reliable responses. This analysis yields a
function expressing response specificity in terms of lower network parameters; together
with appropriate gain control this leads to a simple neuronal algorithm for generating
arbitrarily sparse and selective codes and linking network architecture and neural coding.
I suggest a straightforward way to construct ecologically meaningful representations from
this code.
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INTRODUCTION
Animals all use information about their surrounding world in
order to function within it. Nervous systems have specialized
in gathering, processing, storing, and retrieving such informa-
tion and in using it to make decisions necessary for survival. To
accomplish these tasks, the brain must disregard much of the
information made available by the senses, extracting only what
is relevant for the animal’s needs. Just as in drawing a map of a
newly discovered land, the brain, in so doing, creates a schematic
internal representation of the animal’s world—and it is over this
internal model that generalizations are drawn, categories are dis-
cerned, associations made, and behavior triggered [Marr, 1970,
1971; Barlow, 1985; von der Malsburg, 1986, 1990; Kanerva, 1988;
Földiák, 1990; reviewed in deCharms and Zador (2000)].

By virtue of the choice of what to keep in it, this internal neu-
ronal representation is tailored to the organism’s needs; and just
as a historian, geologist, and meteorologist would each draw a dif-
ferent map of the same piece of land, it too suggests alternate ways
of viewing and interpreting reality (Barlow, 1972; Kanerva, 1988;
Churchland and Sejnowski, 1990). In other words, a subjective
internal model of the world serves as a substrate for performing
computations which—by predicting the outcome of actions in the
real world—allow efficient decision-making, even in novel situa-
tions (von der Malsburg, 1986, 1990; Kanerva, 1988). This may be
the core of what the brain does.

Olfactory systems, which are in evolutionary terms ancient
and found even in simple animals, accomplish this task very effi-
ciently. The signals they analyze are plumes of airborne molecules
and complex mixtures thereof—variable signals occurring on
highly noisy background (Kadohisa and Wilson, 2006; Raman
and Stopfer, 2010; Raman et al., 2011)—and from this input they
extract meaning (such as “food,” “predator,” or “potential sex-
ual partner”), which is translated into behavioral output (actions
such as foraging, escape, or courtship, respectively).

How is this task accomplished by neural hardware? Circuit
architecture is a key to understand brain dynamics and function.
A full characterization of neural circuitry—including cell types
and their integrative properties (input–output functions), con-
nectivity between them (statistics, pattern, signs, and strengths)
and external input driving the network (rates, auto- and cross-
correlations, synchrony, etc.)—is necessary, though not sufficient,
for transcending the descriptive level and distilling the system’s
design principles (Churchland and Sejnowski, 1992). This in turn
yields a deeper understanding of how basic network features and
their interrelations give rise to its higher properties. Few bio-
logical neural systems, however, are presently characterized in
sufficient detail; most are riddled with complexity, knowledge
gaps, and high-dimensional parameter-spaces.

One example where detailed knowledge exists on network
parameters and coding schemes is the olfactory system of the
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Jortner Network architecture for separating representations

locust (Schistocerca americana) (Figure 1A). In this relatively sim-
ple system, 800 broadly tuned and noisy second-order neurons
(projection neurons, PNs) project directly onto 50,000 third-
order neurons (Kenyon cells, KCs), which are highly selective and
reliable in their odor responses (Perez-Orive et al., 2002). As the
system is feed-forward, small, well-defined, and displays a dra-
matic change in coding—from distributed to sparse—between
source- and target-populations, it seems well suited for studying
the origins of neuronal specificity.

The locust olfactory system (Figure 1A) receives odor input
through the antenna, via ∼90,000 olfactory receptor-neurons

(ORNs) which terminate in the antennal-lobe. The antennal-
lobe is a small network: ∼800 excitatory PNs which send their
axons to the next relays in the system (forming the antennal-lobe’s
sole output), and ∼300 inhibitory interneurons (not shown in
the diagram) which act locally within the network (Laurent and
Davidowitz, 1994; Leitch and Laurent, 1996). PNs each respond
to a wide array of odors with rich, complex spike-trains encod-
ing odor identity (Laurent and Davidowitz, 1994; Laurent, 1996;
Wehr and Laurent, 1996; Perez-Orive et al., 2002; Mazor and
Laurent, 2005) and concentration (Stopfer et al., 2003); PN-
spike-trains are additionally locked to a 20 Hz oscillatory cycle

FIGURE 1 | Framework for studying the separation of neuronal

representations. (A) Circuit diagram of the locust olfactory system. Odor
information reaches the antennal-lobe via ∼90,000 olfactory receptor-neurons
in the antenna. In the antennal-lobe, ∼800 projection neurons (PNs, yellow)
project it further to the mushroom body (onto ∼50,000 Kenyon cells (KCs),
blue; PN–KC connection probability ½) and the lateral horn (not shown). In
transition from PNs to KCs the odor code dramatically changes from broad
and highly distributed (in PNs) to sparse and specific (in KCs). KC axons split
into the α- and β-lobes, where they synapse onto α- and β-lobe extrinsic
neurons (green), respectively (KC–β-lobe-neuron connection probability
∼0.02). Red arrows indicate direction of information flow. See text for more

details. (B) Mathematical framework for studying transformation in coding.
Model represents the state of a theoretical network inspired by PN–KC
circuitry during a brief snapshot in time. Color code and information flow
same as in (A). A set of N source-neurons (activity of which is denoted by
binary-valued vector �S; i.i.d. with probability p) projects onto a set of M target
neurons (activity of which is denoted by vector �K ) via a set of feed-forward
connections (binary-valued connectivity matrix

↔
W ; i.i.d. with probability c).

The aggregate input to the target layer �K is the vector �k, a product of

source-neuron activity vector �S and connectivity matrix
↔
W . �K is obtained by

thresholding �k using the Heaviside function �

(
⇀

k − f

)
.
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which is synchronous across the PN population (Laurent and
Davidowitz, 1994; Laurent, 1996; Laurent et al., 1996) and is
reflected in local-field-potential oscillations. With no odor pre-
sented, PNs fire spontaneously at rates of 2.5–4 Hz (Perez-Orive
et al., 2002; Mazor and Laurent, 2005). Odors are represented
by a dynamic combinatorial code (Laurent et al., 1996; Wehr
and Laurent, 1996) which is broadly distributed across the
PN population (Perez-Orive et al., 2002; Mazor and Laurent,
2005).

Output from the antennal-lobe is projected, via PN axons,
onto two direct target-areas: the mushroom body, a structure
involved in learning and memory (Heisenberg, 1998), and the lat-
eral horn. The mushroom body contains∼50,000 small neurons,
the KCs (Laurent and Naraghi, 1994; Leitch and Laurent, 1996).
Individual KCs respond to specific odors (either monomolec-
ular odors or mixtures), their responses are characterized by
few spikes, are highly reliable across different presentations of
the same odor (Perez-Orive et al., 2002), and are often con-
centration invariant (Stopfer et al., 2003). KC responses occur
on a background of extremely little spontaneous firing (Laurent
and Naraghi, 1994; Perez-Orive et al., 2002; Mazor and Laurent,
2005; Jortner et al., 2007; Jortner, 2009). Mushroom body odor-
responses thus involve small, highly selective subsets of KCs
(Perez-Orive et al., 2002, 2004; Stopfer et al., 2003; Jortner, 2009).

Axons of KCs exit the mushroom body calyx in a tight bundle
(forming the mushroom’s stalk, or pedunculus), branching into
the mushroom body’s output nodes, the α- and β-lobes (Laurent
and Naraghi, 1994). There, KC output is integrated by smaller
populations of extrinsic neurons (called α- and β-lobe neurons,
respectively; Figure 1A) with large, planar dendritic trees which
intersect KC-axon bundles at neat right angles (Li and Strausfeld,
1997; MacLeod et al., 1998; Cassenaer and Laurent, 2007), sug-
gesting potential integration of precisely timed spikes over a wide
KC-subpopulation.

Several previous studies offer theoretical treatment of
the locust antennal-lobe–mushroom-body transformation (e.g.,
Garcia-Sanchez and Huerta, 2003; Theunissen, 2003; Huerta
et al., 2004; Sivan and Kopell, 2004; Finelli et al., 2008); these,
however, lack quantitative data regarding critical network param-
eters, such as connectivity values. More recent experimental work
quantified aspects of network architecture via electrophysiolog-
ical measurements of connectivity between PNs, KCs and β-
lobe-neurons (Jortner et al., 2007; Cassenaer and Laurent, 2007).
Results show that each KC receives synaptic connections from ½
of all PNs on average (∼400 out of ∼800 PNs); PN–KC synapses
are very weak [excitatory-postsynaptic-potential (EPSP) ampli-
tude is 85± 44 μV], and KC firing thresholds correspond to
simultaneous activation of∼100 PN–KC synapses (assuming lin-
ear summation) (Jortner et al., 2007). Connections between KCs
and some of their outputs (β-lobes neurons) are, on the other
hand, sparse (∼2% of pairs) and strong (EPSP amplitude 1.58±
1.1 mV), and exhibit Hebbian spike-timing-dependent plasticity
(Cassenaer and Laurent, 2007).

Can these findings explain the transformation in coding
schemes? What is the functional significance of this design? In
the present study I explore design principles by which the brain
constructs specific, sparse and high-level representations of the

surrounding world. A coding strategy both sparse and selective
would be one where only a small subset of neurons respond to any
given stimulus or external state (i.e., high population sparseness;
Willmore and Tolhurst, 2001), and only a small subset of stim-
uli or external states elicit response in each neuron (Jortner et al.,
2007; Jortner, 2009). Inspired by the network architecture of the
locust olfactory pathways, I suggest an exciting implementation
of neuronal hardware to this end. My central claim is that in a
feed-forward system with connectivity ½, target neurons differ
maximally from each other in information they contain about
the world (or external state); in this sense serving as an optimal
neural module for parsing the world of inputs, and a substrate
for sparse and specific neuronal-responses on the basis of which
learning, categorization, generalization, and other essential com-
putations can occur. The targets’ sparseness is set to a controlled,
arbitrary level by choice of a proper and adaptive firing thresh-
old. Next, I address these points through a straightforward yet
rigorous mathematical approach.

METHODS
The model I use is highly reduced, consisting of a layer of source-
neurons (equivalent to PNs), projecting onto a layer of target
neurons (equivalent to KCs) via a set of feed-forward connec-
tions (Figure 1B). Following several simplifying assumptions, I
describe the mathematical framework and proceed to solve some
of its behavior analytically—yielding predictions about function
and about how network design relates to coding.

MODEL ASSUMPTIONS
For the sake of tractability and predictive power, I make four
important simplifying assumptions. First, I choose to look at a
“snapshot” of the system in time; a brief-enough segment so that
for any given PN the probability for spiking more than once is
negligible. Within this time window, the PN population can be
treated as a vector of binary digits, one denoting the occurrence of
a spike and zero denoting none. As a second assumption, all PNs
are treated each as firing (or not) within this time window with
probability p which is identical across all PNs, and doing so inde-
pendently of each other (i.i.d.); this allows treating the PN activity
vector as binomial with a known parameter. Third, all synap-
tic connections are treated as equal in strength. As a fourth and
last assumption, connectivity between PNs and KCs is assumed
to be random, with i.i.d. statistics and probability c across all
PN–KC pairs.

These assumptions, and particularly those of i.i.d. statistics
of firing and connectivity, wield great predictive power; I will
revisit them in the Discussion (Section “Regaining Complexity:
Reexamining the Model’s Initial Assumptions”), examine their
validity with respect to experimental data on the locust olfactory
system, and assess, wherever biological reality deviates from them
(e.g., when some dependence and correlations are introduced),
how model results may be affected.

MODEL DESCRIPTION
A schematic cartoon of the network-model appears in Figure 1B.

There is a set of N source-neurons, denoted by vector
⇀

S (so
the neurons are S1, S2, . . . , SN ): these are analogous to PNs in
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the antennal-lobe. A second set of M target neurons, denoted by

vector
⇀

K (so neurons K1, K2, . . . , KM ), are analogous to KCs in

the mushroom body. Source-neurons (
⇀

S ) connect to target neu-

rons (
⇀

K) through randomly determined connections of uniform
strength; each PN can thus either connect to a given KC or not,

with probabilities c and (1− c), respectively.
↔
W is the connection

matrix, with Wij = 1 if the jth PN connects to the ith KC and 0

otherwise. Each row of
↔
W indicates the set of PNs physically con-

nected to a given KC (so there are as many rows as KCs), and each
column indicates the set of KCs receiving physical connections
from a given PN (so there are as many columns as PNs). The rows
I will refer to as the connectivity vectors to KCs.

As pointed out in the assumptions, the model looks at a snap-
shot of the neural system during a brief time window. Within it,
each of the PNs can either fire a spike or not, and does so with

probabilities p and (1− p), respectively, so
⇀

S also takes binary

values. I call
⇀

S the activity vector of the PN population, and S will

be the set of all possible activity vectors, so
⇀

S∈ S.
Formally, then (Figure 1B):

Sj =
{

1
0

with probabil. p
with probabil. 1− p

j = 1, . . . , N

Wij =
{

1
0

with probabil. c
with probabil. 1− c

i = 1, . . . , M; j = 1, . . . , N

During our given time window each of the M KCs receives
PN inputs, which additively determine its “membrane-potential.”
The input to each KC, to which I refer throughout this work as
its aggregate input (denoted by ki for the ith KC) is the sum of
all PNs connected to it which fire during that time window, or
formally

�k = ↔W · �S

ki =
N∑

j = 1

WijSj

Thus, �k is a vector which takes natural values between 0 and N
(according to how many of the PNs converging onto the KC fire).
Each KC then fires a spike if and only if its aggregate input equals
or exceeds the firing threshold, f, or

�K = �
(�k− f

)
= �

(↔
W · �S− f

)

Ki = �
(
ki − f

) = �

⎛
⎝ N∑

j = 1

WijSj − f

⎞
⎠

where �(X) denotes the Heaviside function:

�(X) =
{

1 if X ≥ 0
0 otherwise

So �K is a binary-valued vector, Ki indicating whether or not the
ith KC fires, and K is the set of all possible target-neuron activ-

ity vectors, so
⇀

K∈ K. Thus, in this model, for a network with
N PNs and M KCs (with threshold f ) and a fixed connectivity

matrix
↔
W , a given state of the PN population (denoted by activity

vector
⇀

S ) unambiguously determines the activity vector of the KC

population,
⇀

K .

MATHEMATICAL CONVENTIONS, SYMBOLS, AND ABBREVIATIONS
While the mathematics used throughout this work is mostly ele-
mentary, some of the derivations are nonetheless rather tedious.
For the sake of clarity, they appear in shortened form within
the text; I provide commented step-by-step derivations in the
Appendix.

All but the most standard mathematical symbols used are
defined the first time they appear. For quick reference, they are
also listed in Table 1.

RESULTS
MODEL RESULTS I: EXPLORING PROPERTIES OF THE CONNECTIVITY
MATRIX
Examining the set of connections between the neuronal popu-

lations �S and �K (connectivity matrix
↔
W), we may ask to what

extent two connectivity vectors (rows of
↔
W) differ from each

other. Let us calculate how many binary digits will, on aver-
age, differ across two such connectivity vectors (which I call
�U and �V). This difference-measure is the Hamming distance
between the two vectors, denoted by H( �U, �V). Since all ele-
ments of the connectivity matrix are independent from each
other, we can simply calculate the probability that an element of
�U differs from the matching element in �V(detailed derivation in
Appendix A1):

Pr(Uj �= Vj) = Pr(Uj = 1, Vj = 0)+ Pr(Uj = 0, Vj = 1)

= c(1− c)+ (1− c)c = 2c(1− c)

and multiply by the total number of elements N to get the
Hamming distance:

〈
H( �U, �V)

〉
�U, �V = N ·Pr(Uj �= Vj) = 2Nc(1− c)

As this expression shows, when viewed as a function of the con-
nection probability, c, the Hamming distance between two rows

of
↔
W is maximal for c =½, and drops symmetrically around

it (Figure 2A, for N = 800). Thus, under the model assump-
tions, PN–KC connectivity vectors will on average be maximally
different (as measured by Hamming distance) from each other
when each pair of cells (PN and KC) is equally likely to be con-
nected or not. This already suggests some special property of
the experimentally observed connectivity matrix (Jortner et al.,
2007).

If we now pick two connectivity vectors at random, what is
the probability that they are identical? In other words, what is the
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Table 1 | Mathematical symbols used throughout the paper.

c Probability of PN–KC connection (scalar, real within
interval [0,1])

CDF Cumulative Distribution Function

CLT Central Limit Theorem

D(x, y ) Absolute difference between x and y, |x – y | (For
binary values: (x – y )2)

f Kenyon-cell firing threshold (in units of PN
inputs)—(scalar, non-negative)

H( �X , �Y ) Hamming distance between binary-valued vectors
�X , �Y ; number of bits by which they differ (scalar, real,
non-negative)

i.i.d. independent and identically distributed
�K Activity vector of the Kenyon-cell population (vector,

Mx1, binary values)
�k vector of aggregate inputs to Kenyon cells (vector,

Mx1, natural values)

K Set of all possible Kenyon-cell activity vectors

M Total number of Kenyon-cells (scalar, natural)

N total number of PNs (scalar, natural)

p PN-firing probability within characteristic time window
(scalar, real within interval [0,1])

PDF Probability Density Function

Pr(x) Probability of x

Q; Q(x) The Standard Normal cumulative distribution function;
its value at x

�S Activity vector of the PN population (vector, Nx1,
binary values)

S Set of all possible PN activity vectors
�U, �V Random PN–KC connectivity vectors; rows of

↔
W

(vectors, 1 x N, binary values)

u,v Random subsets of PNs
↔
W Connectivity matrix between PNs and KCs (Matrix,

M x N, Binary values)

� variance of aggregate input to a KC (scalar,
non-negative)

�(x) The Heaviside (step) function; producing 1 if x ≥ 0
and 0 otherwise

� Mean aggregate input to a KC (scalar, real)

ρ(x, y ) Pearson’s correlation coefficient between x and y

∼ Equals in distribution

≡ Equals by definition

A
⋂

B Intersection of sets A and B (objects which belong to
both A and B)

A
⋃

B Union of sets A and B (objects which belong to A or
B, inclusive or )

A�B Symmetric difference of sets A and B (objects belong
to A or B, but not both)∥∥A

∥∥ Number of elements in set A

A\B Relative complement of sets A and B (objects belong
to A and not to B)

x! Factorial of x

|x| Absolute value of x〈
X

〉
Y Expected value of X over all possible values of Y

(with their respective probabilities)[
x

y

]
x-choose-y, the number of ways to pick y elements
out of x

probability that two randomly chosen KCs sample the exact same
ensemble of PNs?

Pr
(
H

( �U, �V) = 0
) = Pr

⎛
⎝ N∑

j = 1

(Uj − Vj)
2 = 0

⎞
⎠

= Pr
(
Uj = Vj|∀j

)
= (

Pr
(
Uj= 1, Vj= 1

)+ Pr
(
Uj= 0, Vj= 0

))N

= (
c2 + (1− c)2)N = (

2c2 − 2c + 1
)N

Similarly, the probability that the two connectivity vectors differ
from each other by exactly d PNs is:

Pr
(
H

( �U, �V)=d
) = Pr

⎛
⎝ N∑

j=1

(Uj − Vj)
2=d

⎞
⎠=(

Pr
(
Uj=1, Vj=1

)+ . . .

+ Pr
(
Uj=0, Vj=0

))N−d · (Pr
(
Uj=1, Vj=0

)+ . . .

+ Pr
(
Uj = 0, Vj = 1

))d ·
[

N

d

]

= (
2c2 − 2c + 1

)N−d · (2c(1− c))d · N!
d!(N − d)!

This yields a theoretical probability-density function (PDF)
for the Hamming distance between connectivity vectors
(Figures 2B–D). Note that for all values of c the PDFs are always
rather narrow (Figure 2B), with most of their mass concentrated
close to their mean value. This is a key property of binomial
distributions with large values of N, and implies that most
pairs of connectivity vectors in a system obeying our basic
assumptions will differ by similar values, well predicted by their
mean Hamming distance. Note also, that the PDF centered on
the highest value is for c = ½, the connectivity value measured
between PNs and KCs in the locust. Figures 2C,D provide a
closer look at this particular case (see next section).

Connectivity ½ thus maximizes differences between PN–KC
connectivity vectors. I demonstrate this graphically in Figure 3
using elementary Venn diagrams. Two different KCs, each of
which samples PNs randomly and independently with probability
c, thus define two sets of PNs (I call these sets u and v). Each large
(open) circle in Figure 3A represents the entire PN set (with area
N), the two smaller circles within it mark the PN subsets u and v
sampled by our two KCs (with average area N · c each; the value
of c is indicated above each diagram).

The set of PNs sampled by both KCs (the overlap of the two PN
sets) is the intersection of u and v, the number of PNs it includes
on average is

〈‖u ∩ v‖〉u,v =
〈

N∑
j = 1

UjVj

〉
�U, �V
= Nc2

as demonstrated by the dark-shaded areas in Figures 3A,B.
Similarly, the set of PNs sampled by exactly one of the two KCs
(the non-overlapping portion of inputs to the two KCs, or their
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FIGURE 2 | Analysis of Hamming distances between PN–KC

connectivity vectors. (A) Analytic solution for mean Hamming distance
between PN–KC connectivity vectors as a function of connectivity, c (for
N = 800 PNs). Hamming distance is a parabola in c with maximum at
c = ½. (B) Probability-density functions (PDFs) of Hamming distances
between PN–KC connectivity vectors, Pr

(
H(U, V ) = j

)
, calculated as a

function of connectivity. Each row corresponds to one PDF (with PN–KC
connectivity value on ordinate); color represents probability. N = 800 PNs
assumed in all cases. Note narrow distribution of Hamming distances

around their mean for all values of c. Note PDF centered around highest
value (400) is for c = ½. (C) Theoretically calculated PDF of Hamming
distances between PN–KC connectivity vectors for parameters measured
in the locust olfactory system (N = 800, c = ½). Note most common
Hamming distance value, 400 (as each of two KCs samples on average
200 PNs that the other does not, see text). Shaded area, interval [350,450]
in which most probability-density (0.9997) is concentrated. (D) Linear-log
plot of same PDF as in (C). Shaded area, interval [350,450]. Note
miniscule values away from the mean (outside shaded area).

symmetric difference, �, in set theory terms) is the union of u and
v minus their intersection; the average number of PNs it includes:

〈‖u�v‖〉u,v = 〈‖(u ∪ v)\(u ∩ v)‖〉u,v

=
〈

N∑
j = 1

Uj +
N∑

j = 1

Vj−2
N∑

j = 1

UjVj

〉
�U, �V
=2Nc(1− c)

which corresponds to the light-shaded area in Figures 3A,B. This
tells us how much these two KCs differ on average in PN ensem-
bles they sample (or in their “receptive fields” in terms of input).
This area is small when c is very low or very high, and maxi-
mal when c = 0.5 (as seen in Figure 3A, and more clearly in the
bar graphs in Figure 3B). In fact, this expression is also precisely
the result we got for Hamming distance between connectivity
vectors (see above and Figure 2A). The white areas (“None” in
Figures 3A,B) correspond to PNs not sampled by either of two
KCs. Both the average union and average intersection of the two
PN ensembles increase monotonically with connectivity, but the

difference between them (the non-overlapping ensemble) peaks
at ½ (Figure 3C).

Differences between receptive ranges (or “receptive fields”) of
two target neurons are thus large when they each sample an inter-
mediate proportion of the source-population—sampling either
a very small or very large proportion yields much smaller non-
overlapping ensembles, hence source-populations less different
from each other.

PROPERTIES OF THE CONNECTIVITY MATRIX: PLUGGING IN
REAL-DATA VALUES
To sense how the above translates into biological reality, let us
apply these calculations to the connectivity matrix of the locust
olfactory system. For values relevant to the locust (N = 800 PNs
and c = ½) the mean Hamming distance between two PN–KC
connectivity vectors is 400; two randomly chosen KCs will thus
overlap by 200 connected PNs on average, and each of the KCs
will on average sample 200 PNs which the other does not. There
will be an additional 200 PNs which are not sampled by either of
the two KCs.
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FIGURE 3 | Connection probability ½ maximizes differences between

KC input-populations. (A) Schematic representation of two KC inputs
using Venn diagrams. Each large (empty) circle represents the entire PN
population; the shaded circles within it represent two average KCs
receiving connections from subsets of these PNs (with probability indicated
above each diagram). Total shaded area (light-shaded + dark-shaded)
represents the union of the two KC input-ensembles (or “receptive fields”),
while the dark-shaded area alone is their intersection. The light gray area
thus corresponds to the non-overlapping portion of the input-ensembles
(union minus intersection), or to how different KCs are from each other in
terms of input. (B) Same as in (A) using bar graphs. Each large rectangle
represents the entire PN population; shaded areas use same color code and
same connection probabilities as in (A). (C) Analytically calculated curves of
the union (dotted line), intersection (solid gray) and their difference (red) for
two KCs in terms of PN input, as a function of PN–KC connection
probability c. While the two former are both monotonically increasing, the
latter is maximized at c = ½. Representations of the outside world are thus
spread maximally across the target neuron population for connectivity ½.

Figures 2C,D show the predicted distribution of Hamming
distances between PN–KC connectivity vectors in the locust. Note
the mean Hamming distance between two KC connectivity vec-
tors (400) is also by far the most common value; it occurs with
probability 0.028. The main mass of the distribution is tightly
concentrated around the mean value (Figure 2C): 0.9997 out of
a total mass of 1 of the PDF lies within ±50 PN inputs from the
mean (shaded area in Figure 2C); randomly chosen pairs of KCs
will thus almost always (in 99.97% of cases) have input-ensembles
differing by 350–450 PNs. The PDFs take extremely small values

further away from the mean, as better seen on a semi-logarithmic
scale (Figure 2D, shaded area is same interval): note the minis-
cule probabilities outside the interval 350–450. The probability
that two different KCs will sample the exact same PN ensem-
ble is ∼10−241, and the probabilities that their input-ensembles
will differ by 1, or 2, or 3 inputs are 10−238, 10−235, and 10−233,
respectively—vanishingly small numbers in all these cases.

MODEL RESULTS II: NEURONAL ACTIVITY AND PROPERTIES OF INPUT
TO KCs
Up until now, we only considered the properties of the connec-

tivity matrix,
↔
W . To see what happens when neural activity is

added in, let us put some flesh on the dry skeleton, and proceed to

explore the aggregate input to KCs (
⇀

k ) during network activity—
corresponding to their sub-threshold membrane-potential. The
symbol � denotes the mean aggregate input to a KC, averaged
over all possible PN-population states and across all KCs. Then

� ≡ 〈ki〉�S,i =
〈〈

N∑
j = 1

WijSj

〉
�S

〉
i

=
〈

N∑
j = 1

Wij
〈
Sj

〉
�S

〉
i

= p ·
N∑

j = 1

〈
Wij

〉
i = Npc

the mean aggregate input to a KC during our arbitrary time
window is thus a simple product of the number of PNs, proba-
bility of spiking in a single PN during this snapshot and PN–KC
connection probability (Figure 4A).

� will denote the variance of ki, averaged across all KCs and
over all possible PN-population states (Figure 4B) (see Appendix
A2 for full derivation):

� ≡ 〈var(ki)〉i=
〈〈(

ki − 〈ki〉�S
)2

〉
�S

〉
i

=
〈〈⎛

⎝ N∑
j = 1

WijSj − �

⎞
⎠

2〉
�S

〉
i

=
N∑

j = 1

N∑
k= 1, j �= k

〈
WijWik

〉
i

〈
SjSk

〉
�S + . . .

+
N∑

j = 1

〈
W2

ij

〉
i

〈
S2

j

〉
�S − 2� ·

N∑
j = 1

〈
Wij

〉
i

〈
Sj

〉
�S + �2

= Npc(1− pc)

So we have explicitly expressed the mean and variance of the
aggregate input ki (Figures 4A,B) as a function of basic network
parameters. Note that variable ki is a product of two mutually
independent, binomially distributed variables: the momentary
vector of spiking in the PN population [a binomial with parame-
ters (N, p)], and the vector of connections between the PN set and
the KC [a binomial with parameters (N, c)]. Their dot product,
ki, is also a binomial variable, with parameters N and p · c, as
indicated by the calculations of � and �.
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FIGURE 4 | Theoretical properties of network input to KCs.

(A–D) Analytically calculated properties of the aggregate input to KCs (k)
during network activity. Aggregate input is also analogous to KC
membrane-potential (see text). Each property plotted as a function of
PN-spiking probability p and PN–KC connectivity c, and averaged over all
antennal-lobe states. N = 800 PNs is assumed in all cases. Left, surface
plot; right, contour plot. Contour intervals are identical within each plot.

Dash-dot lines indicate ridge contours. For clarity, isoline values are
sometimes indicated beside plot (when contour lines are too dense for
inline labeling). (A) Mean aggregate input per KC, � [units of PNs]; contour
interval, 40. (B) Variance of aggregate input per KC, � [units of PNs];
contour interval, 10. (C) Covariance between aggregate inputs to two KC
[units of PNs]; contour interval, 10. (D) Correlation coefficient between
aggregate inputs to two KC [unitless]; contour interval, 0.05.
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To what extent are aggregate inputs to two KCs correlated
with each other? Calculating their covariance (Figure 4C) we get
(Appendix A3):

〈cov(kr, kt)〉r �= t =
〈〈(

kr − 〈kr〉�S
) (

kt − 〈kt〉�S
)〉
�S
〉
r �= t

=
〈〈(

N∑
i = 1

WriSi−�

)⎛
⎝ N∑

j = 1

WtjSj−�

⎞
⎠〉
�S

〉
r �= t

=
N∑

i= 1

N∑
j= 1, i �= j

〈
WriWtj

〉
r �= t

〈
SiSj

〉
�S + . . .

+
N∑

i = 1

〈WriWti〉r �= t

〈
S2

i

〉
�S − . . .

−�

N∑
i = 1

〈Wri〉r �= t 〈Si〉�S − . . .

−�

N∑
j = 1

〈
Wtj

〉
r �= t

〈
Sj

〉
�S +�2 = Nc2p(1− p)

and their correlation coefficient (Figure 4D) is:

〈ρ(kr, kt)〉r �= t =
〈

cov(kr, kt)√
var(kr) · var(kt)

〉
r �= t
= Nc2p(1− p)√(

Npc(1− pc)
)2

= c − pc

1− pc

Note that both covariance and correlation coefficient have non-
negative values in our model (as p and c are probabilities,
1 ≥ p, c ≥ 0, and N is the number of PNs, N ≥ 0); this is
expected in a network with architecture as described—with all
connections feed-forward and excitatory—and with no correla-
tions assumed between external inputs to the system. For c = 1,
the correlation coefficient is 1 (as all KCs see the exact same
input); for c = ½ the correlation coefficient is 1− p

2− p , ranging

between 0 and ½.

MODEL RESULTS III: INTER-KC DIFFERENCE IS MAXIMAL FOR
CONNECTIVITY ½
We now touch a fundamental question: for given network param-
eters, how much do target neurons differ from each other in
their aggregate inputs? This will tell us how much two KCs dif-
fer in sub-threshold membrane-potentials within a given cycle
in the active network (earlier we asked how connectivity vec-
tors differ; Section “Model Results I: Exploring Properties of the
Connectivity Matrix”). Let us calculate the difference, D(X, Y) ≡
|X − Y |, between aggregate inputs to two KCs (see Appendix A4
for alternative derivation):

D(kr, kt) ≡
〈〈|kr − kt |〉�S

〉
r �= t = N · 〈〈(WriSi −WtiSi)

2〉�S〉r �= t

= N · 〈〈(WriSi)
2 − 2WriWtiS

2
i + (WtiSi)

2〉�S〉r �= t

= N ·
(
〈Wri〉r �= t · 〈Si〉�S− 2 〈WriWti〉r �= t ·

〈
S2

i

〉
�S + . . .

+〈Wti〉r �= t · 〈Si〉�S
)

= N · (cp − 2c2p+ cp
) = 2pNc (1− c)

It is straightforward to see that when taken as a function of
PN–KC connection probability, D is maximal for c=½; this holds
for any positive p and N (i.e., for all biologically relevant cases,
with non-zero PN-firing probability and more than zero PNs in
the network). The behavior of D as a function of p and c is shown
in Figure 5A, and in normalized form in Figure 5B.

The above proves that when each target-cell samples half of
the source-neurons, the mean difference between inputs to any
two targets is maximized. Stated differently, each KC is on aver-
age maximally different from all other KCs in the information it
carries about the external state.

INTER-KC DIFFERENCE: PLUGGING IN REAL-DATA VALUES
We can now introduce the values measured experimentally in the
locust into our model. At baseline, PNs typically fire at∼2.5–4 Hz
(Perez-Orive et al., 2002; Mazor and Laurent, 2005). The rele-
vant integration time window for KCs is the 50 ms odor-induced
oscillation cycle (Perez-Orive et al., 2002); even in the lack of
oscillations EPSPs in KCs have a time course of several tens of
milliseconds (Jortner et al., 2007). This provides a crude estimate
of p, the probability of spiking within the relevant time window:

p ≈ 0.125–0.2 (Perez-Orive et al., 2002; Mazor and Laurent,
2005);
c ≈ 0.5 (PN–KC connectivity measurements; Jortner et al.,
2007);
N ≈ 800 (axon count in the PN–KC tract; Leitch and Laurent,
1996).

Introducing these numbers into D = 2pNc (1− c), the mean
difference between two KCs is equivalent to 50–80 PN inputs
(Figure 5C). If only 100 PNs converged onto each KC (c = 0.125),
the mean difference would be 22–35 PNs, and with only 10
PNs per KC (c = 0.0125, as previously estimated; Perez-Orive
et al., 2002), it would be equivalent to only 2.4–4 PNs at baseline
(Figure 5C)!

During odor presentation, average PN firing-rates do not
change significantly over the population (Mazor and Laurent,
2005). However, as PN-spikes are now confined to about half
the oscillation cycle (the rising phase; Laurent and Davidowitz,
1994; Laurent et al., 1996; Wehr and Laurent, 1996), p effectively
increases by ∼factor 2 (by virtue of the time window “shrink-
ing”). The mean difference between two KCs thus increases to
100–160 PNs during odor; if the fan-in were 100 PNs per KC
(c = 0.125), or 10 PNs per KC (c = 0.0125), the mean difference
would become 44–70 PNs, or 5–8 PNs, respectively.
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FIGURE 5 | Distance between KC inputs (or membrane-potentials).

(A) Difference (D) between aggregate inputs to two different KCs (averaged
over all pairs of different KCs and over all antennal-lobe states) as a function
of PN-firing probability p and PN–KC connection probability c. D is a parabola
in c (with maximum at c =½) and increases linearly with p and with N.
N = 800 PNs is assumed. D is in PN inputs. Left, surface plot; right, contour

plot, contour interval is 20. (B) Normalized difference and covariance
between KCs as a function of connectivity c; normalized D and cov are
unitless, independent of N and p and vary between 0 and 1. (C) Predicted
difference between two KCs for PN-firing parameters measured of in the
locust olfactory system (at both extremes of the range): N = 800, p = 0.125
(2.5 Hz, red), and p = 0.2 (4 Hz, magenta).

MODEL RESULTS IV: ESTIMATING FIRING THRESHOLD AND
SPARSENESS
The above observations do not yet relate to KC response prop-
erties, as we up to now ignored membrane non-linearities and
spiking. What happens when we impose a firing threshold,
and assume the KC spikes once it is crossed? We now use the
assumption of independence across PNs, and the fact that many
of them respond to each odor and during each cycle (accord-
ing to this model N · p per time window, or 100–160 PNs for
values N = 800, p = 0.125–0.2. According to experimental data,
100–150 PNs fire per cycle; Mazor and Laurent, 2005). With these
assumptions, we can apply the Central Limit Theorem (CLT) to
the summation of inputs onto a KC: we can treat k as a Gaussian
random variable, fully defined by its mean (�) and variance (�)
which we calculated (Section “Model Results II: Neuronal Activity
and Properties of Input to KCs”):

ki =
N∑

j = 1

WijSj

ki ∼ Norm(�,�) = Norm(Npc, Npc(1− pc))

where Norm(X, Y) stands for a Normal distribution with mean
X and variance Y. So for a given threshold f (in units of PN
inputs), the probability of the ith KC crossing the threshold
(i.e., spiking) is:

Pr(ki ≥ f ) = 1√
�2π

+∞∫
f

e
−(x − �)2

2� dx

= 1− 1√
�2π

f∫
−∞

e
−(x − �)2

2� dx = 1− Q
(

f−�√
�

)

where Q(z) denotes the Normal cumulative distribution function
(CDF) of variable z (Figure 6A). If the firing threshold of KCs f is
set to:

f = � + z · √�

this will result in a known and defined fraction of all KCs—
equal to the area of the tail of the Gaussian [given by the CDF,
1− Q(z)]—crossing the firing threshold for a given PN-
population state. Similarly, a given KC will cross threshold f in
response to a known fraction [again, the area of the tail 1−
Q(z)] of all PN-population states. This function, illustrated in
Figure 6A, thus links the KC firing threshold with both the sparse-
ness and the selectivity of the mushroom body neural code (as
described in the Introduction).

To demonstrate the usage of this function: a hypothetical
feed-forward network which satisfies our assumptions (Section
“Model Assumptions”) has parameters N = 100, p = 0.5, and
c = 0.2. If we wish to “design” a population of target neurons
with a particular level of sparseness (say we want each respond-
ing to 2.3% of external states), we will set their firing thresholds
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FIGURE 6 | Linking KC firing threshold and response properties.

(A) Dependence of Kenyon cell response sparseness on firing threshold.
Kenyon cell aggregate input, or membrane-potential, k, behaves as a
Gaussian random variable with mean � and variance � under model
assumptions; KC-response probability is the probability of aggregate input
crossing firing threshold f (red shaded area). This defines both
single-neuron selectivity (i.e., the average fraction of states which evoke
firing in a given cell) as well as population sparseness (i.e., the fraction of
KCs responding to an average state). (B) KC responses to partially
overlapping PN activity patterns. Pairs of PN activity vectors differing from
each other by exactly d bits present a KC with quantifiably different
aggregate inputs. The summed probabilities of the KC responding to the
first pattern and not the second (brown) or vice versa (violet) reflect the
Hamming distance between KC activity vectors. This function thus
expresses the difference between target-states given the difference
between source-states. (C–D) Difference between Kenyon cell activity
vectors as a function of difference between PN activity vectors. Difference
is expressed as Hamming distance normalized by the vector-length (or
number of neurons in the population). The nine different curves represent
different KC firing thresholds, equivalent to (left to right) [0, 1, 2, . . . , 8]
standard deviations above the mean aggregate input. Above the diagonal
(stippled line) are regimes where Kenyon cell activity vectors differ from
each other more than the corresponding PN activity vectors: i.e., where
pattern-separation occurs. Below the diagonal are regimes where different
PN activity vectors evoke relatively close KC activity vectors: i.e.,
generalization/retrieval occurs. Parameters of the locust olfactory system
are used, and (C) and (D) differ by PN-firing rate: (C), p = 0.2,
corresponding to PNs firing at 4Hz; (D), p = 0.125, corresponding to PNs
firing at 2.5 Hz; Note how increasing threshold affects curve shape and
relative regimes of generalization vs. discrimination.

to be equivalent to 2 standard deviations above their mean
aggregate-input (as 1− Q(2) = 0.023), or:

f = Npc + 2 · √Npc(1 − pc)

= 10+ 2
√

9 = 16 simultaneous inputs.

A basic, gross prediction which naturally emerges from the
threshold-sparseness function is that when the target neurons’
threshold is equal to their mean aggregate input (�), each tar-
get neuron responds to half of all external states [as Q(0) =
1− Q(0) = 0.5]; this is the most-distributed code possible (also
known as a holographic code; Földiák, 2002), and thus sparse
coding is conditional on a threshold significantly higher than that,
requiring f >> � .

THRESHOLD ESTIMATION: PLUGGING IN REAL-DATA VALUES
Let us now test the predictions on firing threshold and sparseness
using experimental parameters from the locust. Section “Inter-
KC Difference: Plugging in Real-Data Values” shows the network
parameters for PN-firing rates (p ≈ 0.125–0.2), PN–KC connec-
tivity (c ≈ 0.5) and PN number (N ≈ 800). Given these, the
aggregate input a KC gets is on average

� = Npc ≈ 50–80 PN inputs per cycle

and its standard deviation is:
√

� = √
Npc(1 − pc) ≈ 7–8 PN inputs per cycle

So for KCs to each respond to ∼1% of all PN-population states,
their threshold has to be ∼2.5 SDs above the mean aggregate
input: f ≈ 98–101 PN-inputs for firing rate of 0.2 PN-spikes/cycle
(4 Hz), or f ≈ 67–69 PN inputs for 0.125 PN-spikes per cycle
(2.5 Hz).

This result is in good agreement with experimental measure-
ments of KC-response sparseness (∼1–2% using intracellular
recordings; Jortner, 2009) and their firing threshold (f ≈ 100
assuming linear summation and full PN-synchrony; Jortner et al.,
2007). The estimate’s deviation toward the higher end of the pre-
dicted range may be due to supra-linear summation in KCs at
depolarized membrane-potentials (Laurent and Naraghi, 1994;
Perez-Orive et al., 2002, 2004).

MODEL RESULTS V: NOISE TOLERANCE AND GENERALIZATION
Olfactory stimuli are by nature noisy and variable. PNs show sig-
nificant trial-to-trial variability when presented with the same
odor repeatedly, yet in KCs noise is considerably reduced. Another
issue is that some stimuli are similar to each other (either because
of chemically related odorant molecules, or because they are
mixtures with overlapping components) and others are differ-
ent. Both points—the way the system tolerates noise and the
way it encodes similar or different inputs—are closely related, in
that both require us to examine how two overlapping PN-firing
patterns are transformed into KC firing patterns.

Recall S, the set of all possible activity vectors of the source-

population. Let us define {
⇀

Ṡ ,
⇀

S̈ } as the subset of vector-pairs in S

which differ from each other by exactly d-bits. Formally then:

{
⇀

Ṡ ,
⇀

S̈∈ S|H(
⇀

Ṡ ,
⇀

S̈ ) = d}

The aggregate-input vectors to the target-neuron population

which are evoked by
⇀

Ṡ ,
⇀

S̈ will be
⇀

k̇ ,
⇀

k̈ , respectively; vec-

tors
⇀

K̇ and
⇀

K̈ will be the resulting activity vectors of the
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target-population. Aggregate inputs which a single KC gets in

response to
⇀

Ṡ ,
⇀

S̈ will differ by:

〈
D(k̇r, k̈r)

〉
{
⇀

Ṡ ,
⇀

S̈ }
= 〈∣∣k̇r − k̈r

∣∣〉
r,{

⇀

Ṡ ,
⇀

S̈ }

= N ·
〈(

WrjṠj −WrjS̈j
)2

〉
r,{

⇀

Ṡ ,
⇀

S̈ }

= N ·
(〈

Wrj
〉
r ·

〈
Ṡj

〉
{
⇀

Ṡ ,
⇀

S̈ }
− 2

〈
Wrj

〉
r ·

〈
Ṡj S̈j

〉
{
⇀

Ṡ ,
⇀

S̈ }
+ . . .

+ 〈
Wrj

〉
r ·

〈
Sj

〉
{
⇀

Ṡ ,
⇀

S̈ }

)

= Nc ·
(〈

Ṡj
〉
{
⇀

Ṡ ,
⇀

S̈ }
− 2

〈
ṠjS̈j

〉
{
⇀

Ṡ ,
⇀

S̈ }
+ 〈

Sj
〉
{
⇀

Ṡ ,
⇀

S̈ }

)

= Nc
(

p− 2p
(

1− d
N

)
+ p

)
= 2cpd

and so

k̈r = k̇r ∓ 2cpd

Earlier we linked KC aggregate input and firing threshold to their
firing probability (Section “Model Results IV: Estimating Firing
Threshold and Sparseness”; Figure 6A); let us use the same for-
malism now. The probability that a single KC responds differently
to two PN-states is simply the probability one of these states
drives it across the threshold and the other does not. This is
demonstrated graphically in Figure 6B and is exactly the rationale
behind the following calculation:〈

D(K̇i, K̈i)
〉
{
⇀

Ṡ ,
⇀

S̈ }
= 〈∣∣K̇i − K̈i

∣∣〉
{
⇀

Ṡ ,
⇀

S̈ }
= Pr

(
K̇i = 1, K̈i = 0

)+ Pr
(
K̇i = 0, K̈i = 1

)
= Pr

(
k̇i ≥ f , k̈i < f

)+ Pr
(
k̇i < f , k̈i ≥ f

)
= Pr

(
k̇i ≥ f , k̇i < f + 2cpd

) + . . .

+ Pr
(
k̇i < f , k̇i ≥ f − 2cpd

)

= 1√
�2π

f+2cpd∫
f

e
−(x − �)2

2� dx + . . .

+ 1√
�2π

f∫
f−2cpd

e
−(x − �)2

2� dx

= Q
(

f + 2cpd − �√
�

)
− Q

(
f − 2cpd − �√

�

)
What about the activity vectors for the KC population, given
similar PN input? The mean Hamming distance between two
KC activity-patterns given Hamming distance d between the PN
activity patterns will simply be the above expression multiplied by
the number of KCs, M. We can thus write:〈

H(
⇀

K̇,
⇀

K̈)

∣∣∣∣H(
⇀

Ṡ ,
⇀

S̈ ) = d

〉

= M
(

Q
(

f + 2cpd−�√
�

)
− Q

(
f − 2cpd−�√

�

))

NOISE TOLERANCE AND GENERALIZATION: PLUGGING IN REAL-DATA
VALUES
So how well does the locust olfactory system tolerate noise? The
results are shown in Figures 6C,D, where I feed into the rela-
tion derived in the previous section the parameters from the
locust circuitry. Two PN activity-patterns, differing by 0–800 bits
(x axis, normalized to 0–1) evoke KC activity-patterns differing by
0–50,000 bits (y axis, normalized to 0–1). The diagonal (stippled
lines) in both figures shows where the hypothetical curve would
pass if normalized distance between representations would not
change in transition from PNs to KCs. In fact, the relation has a
sigmoid shape, meaning PN patterns close to each other become
even closer in the KC population; whereas PN patterns which are
different become more different (note that distances are normal-
ized to the population size). The nine different sigmoid curves
show the relation between input- and output-overlap when the
firing threshold is varied (left to right: 0–8 standard deviations
above the mean aggregate input). The setting of the firing thresh-
old clearly controls the boundary between generalization and
discrimination; a boundary which is surprisingly sharp.

In the locust olfactory system, the KC threshold is located
∼2.5 SDs above the mean aggregate input (commensurate with
a sparseness of ∼1% as observed; see Section “Threshold
Estimation: Plugging in Real-Data Values”). As seen in
Figures 6C,D, for this value the Kenyon cell population
generalizes (or, tolerates noise) for PN patterns which are within
up to ∼50–100 bits away from the PN–KC connectivity vectors,
and discriminates for ones which are farther. This means, that
with parameters from the locust, the boundary between discrim-
ination and generalization lies in a biologically realistic regime
for highly sparse coding (recall that for binary 800–dimensional
vectors, over 99.9% of space is removed 350–400 bits from any
given vector; Figure 2).

SUMMARY OF MODEL RESULTS AND PREDICTIONS
This analytic model produces several insights and predictions,
applicable to both the locust olfactory circuitry as well as to
feed-forward systems in general. As the model was designed
with generality in mind, its results depend only minimally on
particular parameter values. Here is a brief summary:

(1) In a feed-forward system with random connectivity, pairs of
connectivity vectors from source- to target-population have
a maximal Hamming distance for connection probability ½.

(2) Hamming distances between connectivity vectors are
mostly very similar to each other and to their mean value;
connectivity vectors significantly more similar to each other
(or, more different from each other) will be extremely rare
(negligible).

(3) Differences in aggregate input (or sub-threshold
membrane-potential) between target neurons are maximal
for c = ½. In the locust antennal-lobe–mushroom-body
circuit, where such connectivity is realized, pairs of KCs thus
differ from each other by an equivalent of 50–80 PN-inputs
during baseline, and of 100–160 PN-inputs when odor is
presented. These differences decrease significantly when
connectivity shifts away from ½ (in either direction): with
connectivity of 10 PNs per KC (as previously estimated;
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Perez-Orive et al., 2002) differences between KCs would be
equivalent to only 2.4–4 PN inputs (∼factor 20 lower than
for c =½).

(4) The standard deviation of sub-threshold membrane-
potential in target neurons is maximal when the prod-
uct of spiking probability in the source-neurons (p) and
connectivity between the source- and target-populations (c)
is ½. In locust KCs, the standard deviation of membrane-
potential is predicted to be equivalent to the sum of 7–8
PN-inputs, or∼0.6–0.7 mV, in good agreement with exper-
imental measurements.

(5) The covariance of aggregate inputs to two different target
neurons will be maximal for p=½, and will increase as∼c2.

(6) Both the covariance and correlation coefficient between tar-
get neurons are predicted to be always positive under the
assumptions taken. This is intuitive, given that no correla-
tions were assumed in the external input driving the system,
and only feed-forward excitatory connections exist.

(7) The correlation coefficient between target neuron
membrane-potentials is expected to range within 0–0.5
for c = ½. Particularly, in the locust, where c = ½ and
PN-spiking probability is 0.125–0.2 per cycle (2.5–4 Hz),
correlation coefficients between KCs are predicted to
be 0.4–0.5. This remains to be tested experimentally
with dual-intracellular KC recordings. A related test—
namely measurements of correlations between single-KC
membrane-potentials and local-field-potentials—yielded
correlation coefficients around 0.3 (Jortner et al., 2007).

(8) The response probability (and sparseness) of target neurons
in a feed-forward system with parameters N, p, c is deter-
mined by their firing threshold, and is well approximated by
the area of a Gaussian tail. The threshold-sparseness func-
tion predicts the fraction of states a target cell responds
to, and the fraction of target cells responding to any given
state. It generates the basic prediction that for a threshold
equivalent to the target neurons’ mean aggregate input, � (a
product of source-neuron firing rate, source-neuron num-
ber and connectivity), target neurons will respond to ½ of
all source-population states; so to produce sparse coding the
threshold must exceed that value: f >> � .

(9) Applying the threshold-sparseness function to the locust
olfactory system, the firing threshold measured (∼100
inputs, assuming perfect synchrony and linear summation)
well predicts the measured KC sparseness level (∼1–2%)
and vice-versa (1% sparseness predicts a threshold of
∼70–100 inputs, depending on PN-firing rate).

(10) Given a network with parameters N, p, and c = ½, if target

neurons have a firing threshold of f (z) = Np+ z · √Np(2− p)
2

(see Appendix A5), then each target neuron will respond
to 1− Q(z) of source-population states, and different tar-
get neurons will respond to maximally different states. The
difference between the target neurons will on average be
N · p

2 . Combined with adaptive gain control to ensure that
f is changed appropriately when p changes (Papadopoulou
et al., 2011), this yields a simple way to design a network
with an arbitrarily sparse level of activity, and with specific
and reliable neural responses to external states.

DISCUSSION: LINKING NETWORK ARCHITECTURE
AND NEURAL CODING IN THE
ANTENNAL-LOBE–MUSHROOM-BODY CIRCUIT
Integrating theory and experiment, I here discuss how the archi-
tecture of the locust olfactory system gives rise to Kenyon cell
coding properties: specificity, reliability, low firing rates, corre-
lations, and sparseness, and how these can be utilized to build
higher-level representations of the animal’s world. Several predic-
tions with potentially broader implications will follow.

CONNECTIVITY ½ MAXIMIZES DIFFERENCES BETWEEN TARGET
NEURONS
The key experimental finding motivating this study was that each
KC in the mushroom body receives synaptic connections from
antennal-lobe PNs with probability ½, each thus sampling 400
of the 800 PNs (Jortner et al., 2007). At first, this result may seem
very surprising—because it seems counterintuitive that KC speci-
ficity could arise from such broad PN inputs. It makes sense,
however, when viewed from a combinatorics perspective: the
number of ways to pick n elements out of N is given by the
binomial coefficient:

[
N
n

]
= N!

n!(N − n)!

This expression is maximal for n = N/2, decreasing sharply
and symmetrically around it. The fundamental realization that
choosing half the elements maximizes the number of possi-
ble combinations has dawned independently on several thinkers
throughout history—from Pingala (India, 2nd–5th century BC,
commentated by Halayudha, 10th century AD), through Al Karaji
(Persia, 953–1029), Omar Khayyam (Persia, 1048–1131), Yang
Hui (China, 1238–1298), Niccolo Tartaglia (Italy, 1500–1557) to
Blaise Pascal (France, 1655).

How is this relevant to the olfactory system? Think of each KC
as if picking the PNs it will listen to. If each KC sampled only
n = 1 of N = 800 PNs, there would be exactly 800 ways to pick
which PN to sample (similarly, if each KC sampled 799 out of the
800 PNs; where there would be exactly 800 ways to pick which PN
not to sample). However, when sampling half the PNs, n = 400,
the number of ways to do so is maximal, and equals 800!/400!400!
≈10240. This is an immense number—beyond astronomical—
and way too large for any example from nature to demonstrate
it. It is roughly equivalent to the number of atoms in the known
universe (estimated at∼1079) taken to the power of three. . .

But as there are only 50,000 KCs in the locust mushroom
body, only 5 · 104 combinations are realized out of this vast pool
of possibilities. What is the probability that two randomly cho-
sen KCs sample the exact same PN-ensemble? The answer is
≈10−240, which is for all practical purposes zero. And what is
the probability that two KCs sample very similar PN-ensembles—
that is, ensembles differing from each other by just one, or
2 or 3 inputs? The answers are 10−238, 10−235, and 10−233,
respectively—all vanishingly small. In fact, the average pair of KCs
will differ by∼400 PN inputs (Figure 2C), which also constitutes
the most common case (occurring with probability 0.028), and
99.97% of KC pairs will deviate from it by less than 50 inputs
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(Figures 2C,D). This stems from a key property of binomial dis-
tributions with large N: most of their mass occupies a very narrow
band around their mean.

By this reasoning (proven for generalized cases in Sections
“Model Results I: Exploring Properties of the Connectivity
Matrix” and “Model Results III: Inter-KC Difference is Maximal
for Connectivity ½” for connection vectors and membrane-
potentials, respectively) each target neuron receives a unique set
of source-neuron inputs, very different from that of all other
target neurons. KCs are maximally different from each other in
what they tell us about the world of inputs, because their con-
nectivity vectors are drawn from a pool which is maximal. This
feature of the KC population results directly from combinatorics,
and from the probability ½ of receiving connections from their
source-neurons (Figure 3).

A critical comment raised by several colleagues against the
above argument is that while this architecture indeed maximizes
input separation, this optimum cannot reflect on biological real-
ity. The brain, they argue, could not come so close to it, because
the numbers in question are too large to be distinguished from
each other by a biological system. In other words, realizing 50,000
combinations of “only” 1022 (the number of ways to pick 10 PNs
from 800, corresponding to connection probability c = 0.0125)
would be already immensely sparse; and for all practical purposes
10240 (the number of ways to pick 400 from 800) is not “sparser.”
Moreover, since the mathematical optimum is not necessary, evo-
lution of such connectivity couldn’t have possibly been guided by
biological selection pressures.

The results presented here (Section “Inter-KC Difference:
Plugging in Real-Data Values”; Figure 5) refute this criticism.

While indeed the binomial coefficient

[
800
m

]
rises very steeply

with m and soon produces vast numbers, these numbers directly
translate into state-dependent differences in aggregate input, or
membrane-potential, produced across KCs (Figure 5B, normal-
ized difference; Figure 5C difference in inputs). If 80 PNs were to
connect to each KC (corresponding to c = 0.1), the amount by
which aggregate inputs to different KCs would differ—and the
system’s ability to discriminate between external states—would
drop approximately to a third of the optimum, and for 10 PNs
per KC (c = 0.0125) it would drop by a factor of 20. When
translated to membrane-potential differences between KCs, this
may be critical for readout, especially in the presence of noise.
This maximum is thus likely to be meaningful after all, and may
account for the exquisitely clean performance of sparse neural
systems feeding on noisy input.

WHAT DETERMINES HOW SPARSE THE CODE WILL BE?
KC aggregate inputs differ maximally as a result of the PN–KC
connectivity; yet while this property paves the road toward sparse
coding, it does not in itself suffice to explain the KCs’ rare fir-
ing: it is eventually their firing threshold which determines firing
probability and response sparseness (Section “Model Results IV:
Estimating Firing Threshold and Sparseness”). With such high
convergence ratio (400:1), target cells can afford to have a very
high firing threshold, which can account for KC specificity, reli-
ability, and low firing rates. Experimental measurements show

that KC firing threshold is equivalent to simultaneous activation
of ∼100 PN inputs assuming linear summation (Jortner et al.,
2007). An estimate based on intracellular recordings (and thus
less biased than extracellular studies, as it also captures cells fir-
ing rarely or not at all) suggests KCs respond to 1–2% of odors
tested (Jortner, 2009). Here, a theoretical function was derived
which links firing threshold and response probability (Section
“Model Results IV: Estimating Firing Threshold and Sparseness”):
it closely predicts the experimental results, estimating the firing
threshold necessary to achieve ∼1% KC sparseness at ∼67–
101 inputs, depending on PN-firing rates (Section “Threshold
Estimation: Plugging in Real-data Values”).

The threshold-sparseness function is quite sensitive to activ-
ity levels of the input network (Huerta et al., 2004; Jortner et al.,
2007; Nowotny, 2009). Since PN population activity produces a
range (100–150) of spikes per cycle (Mazor and Laurent, 2005),
this can result in instability of the code—causing some external
states to activate a large number of KCs and others to activate
none at all (Papadopoulou et al., 2011). This requires adaptive
gain control of the KC firing threshold to fit the actual activ-
ity level of the input; one mechanism shown to maintain output
sparseness over a wide range of input conditions in the locust
takes place via a large, non-spiking GABAergic interneuron with
extensive connectivity and graded release properties; it forms a
negative-feedback loop onto KCs and adaptively regulates their
population output on a cycle-to-cycle basis (Leitch and Laurent,
1996; Papadopoulou et al., 2011).

In a theoretical exploration of the hippocampus, O’Reilly and
McClelland (1994) also find that a “floating threshold” (as they
phrase it) is highly useful for determining response sparseness
under different input conditions and postulate that adjustment
of the threshold can be useful for shifting between pattern-
separation (or discrimination, or new-category formation) and
pattern-completion (or generalization, or recall).

It should be noted that the threshold-sparseness function
derived here is independent from the results on connectivity, and
it can be applied to systems with any parameters.

EFFECTS OF PN–KC CONVERGENCE: RELIABILITY AND CORRELATIONS
While overall PN–KC circuit-architecture is highly divergent due
to the increase in dimensionality, the connectivity scheme makes
single KCs receive massively convergent input (from 400 PNs).
Together with the high and adaptive KC-threshold, this con-
vergence sub-serves the KCs’ reliable, low-noise performance:
summing many PN-inputs prior to KC threshold (f ) crossing is
equivalent to massive averaging of PN activity. This reduces the
significant variability (i.e., noise) present in individual, cycle-wise
PN responses by a factor of 1/

√
f ; in locust KCs, where f ≈100,

noise is thus reduced∼10-fold.
Another interesting effect of this convergence is the coexis-

tence of correlations and differences in the mushroom body.
While membrane potential-differences between different KCs are
maximized, they are still predicted by the model to co-vary sig-
nificantly (Figure 5B), with correlation coefficients of 0.4–0.5
[see Section “Summary of Model Results and Predictions”;
Prediction (7)]. Indeed, while the mushroom body code is highly
sparse and specific (Perez-Orive et al., 2002; Jortner, 2009), a

Frontiers in Neuroengineering www.frontiersin.org January 2013 | Volume 5 | Article 19 | 14

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Jortner Network architecture for separating representations

salient property of KC intracellular membrane potentials is their
strong correlations with the mushroom body local field potential
(Laurent and Naraghi, 1994; Jortner et al., 2007), implying that
they are also highly correlated with each other. How can strong
correlations between cells, which we naturally tend to associate
with similarity, exist side by side with maximal difference between
them?

To answer this apparent paradox we examine the inputs
KCs receive vs. the outputs they produce. Correlations between
membrane-potentials of two KCs result from massive overlap in
their aggregate input: they share on average ∼200 incoming PN-
synapses, and 25–40 active PN-inputs per oscillation cycle. The
relevant feature for the system is, however, the number of inputs
by which they do not overlap (Figure 3): each also receives on
average ∼200 PN synapses (25–40 active ones per cycle) which
the other does not; so they differ by 400 synapses (50–80 active
inputs per cycle). The non-linearity imposed by the KC-threshold
makes the two properties—correlations and difference—strongly
diverge at this point: two KCs can get highly correlated inputs, yet
may easily sit across different sides of the threshold, which in turn
determines who will fire and who won’t; both correlations and
differences can thus coexist between them.

The general message is that while sub-threshold correlations
naturally arise from input overlap in highly interconnected sys-
tems, they do not necessarily imply similarity in function (or
output) between neurons; depending on network design and
on the parameter taken as readout, the non-overlapping input
may outweigh the overlap (as shown for KCs). Eventually, the
non-linearity of thresholding enables brains to parse the world
into percepts and build representations from them. Membrane-
potential correlations between KCs may in this case be side effects
of the interconnected architecture, rather than a computational
feature of the code.

NEURAL DESIGN-PRINCIPLES FOR GENERATING A SPARSE CODE
As pointed out in the Introduction, a prerequisite for understand-
ing a neural system is characterizing its basic features—individual
components, connectivity and external input. Formulating higher
properties in terms of these features bridges levels of descrip-
tion and thus constitutes deeper understanding. This approach
was used here link network design and sparse coding in the
antennal-lobe–mushroom-body circuit. The experimentally mea-
sured parameters f, c, p—corresponding exactly to the individ-
ual unit input–output function, connectivity and input—were
used to express distance-measures between connectivity vectors
and between target neurons, sub-threshold behavior and coding
sparseness.

Three main principles govern the design of the antennal-lobe–
mushroom-body circuit: First, there are many more target cells
than source cells (∼50,000 vs. ∼800); a factor ∼102 increase in
dimensionality between the two odor-representations. Second,
the probability of connection between the principal neurons of
both relays is ∼½; each target thus samples ∼400 of 800 sources.
Third, target-cell firing threshold is high, equivalent to simulta-
neously activating ∼100 of their inputs, and can be fine-tuned to
fit different activity-levels of the source network.

Due to the high threshold, each external state (or here, PN
activity pattern) activates only a small subset of KCs. However,

due to the connectivity scheme, different external states activate
different KC-subsets. The activation of very small, very different
subsets of cells in response to different external states suffices to
produce a sparse and selective neural code as we defined it (see
“Introduction”, and Jortner et al., 2007). At the same time, the
high PN convergence onto individual KCs explains why KCs are
so reliable on the one hand, and on the other hand why their
membrane-potentials are noticeably correlated with the local-
field potential (Laurent and Naraghi, 1994; Perez-Orive et al.,
2002; Jortner et al., 2007), an observation that initially seemed
paradoxical (Jortner et al., 2007). Finally, with thresholds so
high, it is not surprising that the chances of “accidental” spik-
ing are very small, and that KC spontaneous-firing rates are
extremely low.

The design principles described here thus lead to reliable,
specific—sparse as well as selective—representations of random
olfactory-percepts in the mushroom body, and form a simple way
to make a sparse code spontaneously emerge, with no need for a
“guiding hand” such as learning or predetermined connections.

The total number of KCs, their fraction activated per external
state, the levels of noise, and the cost function of classification
errors will together determine how state-space is tiled—or how
many odors can be reliably encoded by the mushroom bodies
(and also, how many KCs are needed to encode a certain number
of odors). A meaningful estimate is beyond the scope of this work,
as a critical parameter—how distant KC representations must be
from each other within noise constraints—is unknown.

Directly from the above principles emerges a simple recipe
for designing networks with optimal separation of representa-
tions and arbitrarily specific responses. If two neuronal pop-
ulations have feed-forward connectivity with probability ½, N
source-neurons firing p spikes per characteristic time, and target

neuron firing threshold is equivalent to f (z) = Np+ z · √Np(2− p)
2

(Appendix A5), then each target neuron will respond to a known
proportion of source-population states (the area under Gaussian
tail 1− Q(z)), and different neurons will respond to maximally
different states. Adaptive gain control should be implemented to
ensure f changes appropriately when p changes (Papadopoulou
et al., 2011). At any given time, target neurons’ aggregate inputs

(momentary membrane-potentials) will on average differ by N · p
2 .

GENERALIZATION vs. DISCRIMINATION
An inherent dilemma when parsing sensory input is where to
draw category-lines. Sometimes a stimulus must be recognized—
i.e., grouped into an already-existing category—even if it has
never been previously encountered in the exact same form. This
allows recognition of sensory stimuli in the presence of noise, as
well as grouping things together into meaningful categories (i.e.,
generalization), both of which are essential requirements for the
brain to perform its tasks.

In other cases, stimuli which may be very close to each other
need to be told apart. Discrimination is critical when selecting
food, for example. An extreme case is when the system needs
to decide that something is completely novel and merits a new
category of its own.

It is important to recognize that these tasks—discrimination
and generalization—contradict each other to some extent, yet
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sensory systems need to be able to do both, and sometimes on the
very same stimulus: something smells like a fruit (generalization),
but clearly does not smell like an apple, though (discrimination).

The model presented here provides some intuition on how this
may happen. As shown in Figures 6C,D, the same network can
perform both tasks: with the sigmoid-shaped relation between
source- and target-separation, stimuli close to each other at the
source-layer will be generalized by the population, whereas stim-
uli farther from each other will be discriminated. The boundary
between discrimination and generalization is rather sharp; and
its location is determined by the firing threshold, which can be
adapted (Papadopoulou et al., 2011).

KENYON CELLS CAN SERVE AS BUILDING BLOCKS FOR MEANINGFUL
(AND PLASTIC) REPRESENTATIONS AT THEIR TARGETS
The basic question we began our journey with is how the brain
creates specific, high-level, and eventually ecologically meaning-
ful percepts. The antennal-lobe–mushroom-body transformation
described above achieves a major step in this direction by sep-
arating representations and giving rise to specific and random
responses. However, it remains to be discussed how these ran-
dom response properties lead to ecologically relevant percepts,
and how this fits into the mushroom body’s widely accepted role
in learning [reviewed in Heisenberg (1998)].

The distribution of connection strengths between PNs and
KCs is rather narrow (Jortner et al., 2007); in addition PN–KC
synapses show no short-term plasticity, such as homo- or hetero-
synaptic facilitation or depression (Jortner et al., 2007). While
these observations do not rule plasticity out altogether, they def-
initely do not support plasticity playing a key role at PN–KC
synapses.

What happens at the transformation to the next relay?
Dendritic trees of β-lobe neurons (one of the main classes of
mushroom body outputs) are planar and oriented perpendicular
to the KC-axon tract; this structure suggests that β-lobe neurons
can integrate precisely timed neural activity over a potentially
wide subpopulation of KCs (Li and Strausfeld, 1997; MacLeod
et al., 1998). Cassenaer and Laurent (2007) showed that connec-
tivity from KCs to β-lobe neurons is low (∼2%), individual active
synapses are relatively strong (1.58± 1.11 mV) and exhibit salient
spike-timing dependent plasticity, which is sensitive even to single
action-potentials.

It is thus attractive to imagine the transformation of informa-
tion from the antennal-lobe to the mushroom body as happening
via widespread, random (or partially random) and largely fixed
connections—designed to spread neuronal information opti-
mally and create discrete, specific and reliable representations of
random features. This would prepare it for further computation
in downstream areas, such as the β-lobe—where more complex
ideas can then be constructed from these elementary building
blocks, much like words and phrases are constructed from an
alphabet (Barlow, 1972; Stryker, 1992). Hence as different KCs
respond specifically to various and different chemicals (or classes
of chemicals), proper wiring of connections and selection/tuning
of their strengths can generate high-level, invariant and “mean-
ingful” representations. For example, a hypothetical downstream
neuron responding only to odors associated with locust foods

could easily be constructed by connecting onto it only KCs firing
in response to various 5- and 6-carbon chained alcohols, alde-
hydes, and esters which are common odorants in grassy plants
(cheerfully nicknamed “green odors”; Hopkins and Young, 1990;
Bernays and Chapman, 1994). Similarly, some downstream neu-
rons can respond to odors indicating plant toxicity (for examples
of such chemical cues see Cottee et al., 1988).

At this downstream stage, learning (i.e., tweaking of incom-
ing synapses from KCs) can shape and tune these represen-
tations, molding them to the animal’s specific surroundings.
Locusts, as many other generalist animals, readily adapt their
food-preferences to seasonal- and regional-variation of plants,
their nutritional value and the animal’s needs (see Cooper-
Driver et al., 1977; Bernays et al., 1992; Bernays and Chapman,
1994), and learning plays an important role in this (Dukas and
Bernays, 2000; Behmer et al., 2005). It is likely, that learn-
ing a different food-preference is accomplished by changes
at KC–β-lobe synapses, based on positive- and/or negative-
reinforcement signals—originating, for example, from the diges-
tive system (Behmer et al., 1999) and relayed via neuromodula-
tory reward/punishment signals, as shown in a variety of insect
species (Hammer and Menzel, 1995, 1998; Schwaerzel et al., 2003;
Unoki et al., 2005).

Learning can thus sculpt and tune higher neuronal represen-
tations, bringing neurons downstream of the mushroom body
to respond to “meaningful” stimuli; i.e., stimuli with ecological
importance for the animal (Barlow, 1972, 1985). Wiring each of
these β-lobe neurons further, to directly trigger a relevant motor-
program (e.g., for eating, avoidance, escape, etc.) would close the
loop from perception to action. This would result in a simple neu-
ral system which receives complex, high-dimensional and noisy
input and produces reliable animal behavior in response to it—
in other words, a simple brain that works—and where we are
approaching a deeper mechanistic understanding of the process.

SWITCHING BETWEEN CODING SCHEMES
A large body of work is focused on sparse codes, pointing out
their many benefits (e.g., Barlow, 1972; Palm, 1980; Baum et al.,
1988; Kanerva, 1988, 1993; Földiák, 1990, 2002). Sparse codes are
attractively easy to read out, as few spikes from few neurons trans-
late to meaning, eliminating the need to integrate over an entire
population or over a long time (Földiák, 1990, 2002). Forming
associations is easy, as learning has to act on few nodes; in the
theoretical limit-case (one-neuron-per-percept) tuning a single
synapse suffices to (asymmetrically) link two percepts (Palm,
1980; Baum et al., 1988; Kanerva, 1993). Complex, meaningful
ideas can be constructed by wiring-together basic random per-
cepts (see Section “Kenyon Cells Can Serve as Building Blocks
for Meaningful (and Plastic) Representations at their Targets”).
Finally, sparse codes are metabolically economical, although an
energetic trade-off exists between firing few spikes and main-
taining many cells (Levy and Baxter, 1996; Attwell and Laughlin,
2001). Sparse codes are thus attractive and economical substrates
for computation.

On the other hand, sparse coding has several serious draw-
backs. It is wasteful in hardware, as each neuron participates
only in a small fraction of representations (each percept requires
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devoted neurons and representations rarely share the same cells).
It is also extremely sensitive to neuronal damage, as losing neu-
rons results in loss of precepts or memories (Földiák, 2002).

Sparse codes thus seem unlikely candidates for applications
such as long-term memory storage, but they are very well suited
for applications such as short-term memory formation and asso-
ciative learning. I find it attractive to envision the brain as
functioning by transitioning back and forth between sparse and
distributed coding schemes across different regions, according
to the computations needed (Baum et al., 1988; Földiák, 1990,
2002). The design principles emerging from the present study
suggest a neural algorithm, or a recipe, of how such transition
may be (biologically and algorithmically) accomplished.

REGAINING COMPLEXITY: RE-EXAMINING THE MODEL’S INITIAL
ASSUMPTIONS
The model I presented here relies on several rather crude
approximations and assumptions (set forth in Section “Model
Assumptions”). I now re-examine them in light of experimen-
tal data, and wherever they deviate from biological reality, try to
assess how the model’s predictions are affected. In other words,
it’s time to make things complicated again.

My first assumption was using discrete time windows, dur-
ing which PN-spiking is treated as binary (firing or not). The
locust olfactory system operates with an internal 20-Hz clock
imposed on it (Laurent and Davidowitz, 1994; Laurent and
Naraghi, 1994; Perez-Orive et al., 2002, 2004); PNs rarely fire
more than once per 50 ms cycle (Perez-Orive et al., 2002, 2004),
with odor-evoked spikes confined to the 25 ms rising-phase of the
local field-potential oscillation (Laurent and Davidowitz, 1994;
Laurent et al., 1996; Wehr and Laurent, 1996). The assumption
is thus justified, at least for odor conditions. During baseline the
coherence of the PN population is much reduced (as reflected
by local-field potentials), yet most PNs retain a 20-Hz oscilla-
tory component, as spike-autocorrelations show (Jortner et al.,
2007). On average, the minimal PN-inter-spike-interval during
baseline is ∼22 ms; so there are definitely sometimes two spikes
per arbitrary 50-ms window, although rarely more than two
(Jortner, 2009). This deviation from model assumptions could
increase the number of EPSPs summing per time window in a
KC during baseline, and reduce the number of inputs needed
for threshold-crossing. Having said this, the proportion of spikes
with inter-spike-intervals below 50 ms is small, and as PN–KC
synapses show no homo-synaptic facilitation on these time scales
(Jortner et al., 2007), biases resulting from two spikes per window
are expected to be small and linear (at most) with spike number.

A second assumption was i.i.d. spiking across different PNs
over the course of the integration time—in other words, that
PN activation-patterns are entirely random. This assumption
simplified calculations and allowed applying the CLT to the sum-
mation of inputs. In reality, however, not all antennal-lobe states
are equally probable given that the animal operates in a natural
olfactory environment; in fact each individual locust is likely to
experience in its lifetime only a miniscule fraction of the enor-
mous number of possible PN activation patterns. Furthermore,
during odor presentation PNs are affected by common excita-
tory input from ORNs and common inhibitory input from local

interneurons, making randomness and mutual independence
even less likely. In a nutshell, caveats of dependences and corre-
lations between PNs may bias my analyses.

Several points support the model’s conclusions despite this
potential bias. First, simultaneous recordings show that spikes
from different PNs are not correlated over short time scales at
baseline (Jortner et al., 2007); this does not establish mutual inde-
pendence but takes a step in that direction. Second, no direct
synaptic connections were ever found between PNs (Jortner
and Laurent, in preparation), which eliminates causality from
contributing to statistical dependence. Finally, the classical CLT
was extended for cases with dependences between variables
(Bernstein, 1922, 1927), yielding modern versions of the theo-
rem which hold under various mutual dependences and correla-
tions (e.g., French and Wilson, 1978; Wilson, 1981; Reichert and
Schilling, 1985; Pinske et al., 2007). The deviation from i.i.d. firing
statistics needs, however, to be borne in mind.

As a third assumption, all PN–KC synaptic connections were
treated as equal in strength. Experiments show PN–KC-EPSP
amplitudes are distributed narrowly, but they are by no means
uniform (86± 44 μV, with half of them within 60–110 μV;
Jortner et al., 2007). Can ignoring the weights’ distribution be
justified? All calculations throughout this study were based on

summation of rows of the connectivity matrix
←→
W . If the number

of summed elements n is large enough, the CLT justifies treating
them as uniform (assuming i.i.d. between connections and finite
variance, which is reasonable). This holds for “large enough”
n, but is the length of a connectivity vector, or the number of
EPSPs summating in a target neuron “large enough”? While the
CLT strictly applies only when n approaches infinity, it in fact
converges to Normality very fast as n starts to increase, then slows
down asymptotically (established by the Berry–Esseen theorem:
the difference between any CDF with finite variance and the
Normal CDF decreases as 1/√

n ; Feller, 1972). The number of
summated connections in the model is on the order of N · c for
connection vectors, and on the order of N · c · p for aggregate
inputs—so for large N (800, in our case) the assumption is
justified for all but very small values of c or of c · p (with locust
parameters, N · c lies within the hundreds, and N · c · p is on the
order of tens).

The last point has also been addressed directly with simula-
tions in which sets of EPSPs from the experimental amplitude
distribution were randomly drawn and summed (Jortner et al.,
2007); for numbers≥50, a Gaussian hypothesis for the sum could
no longer be rejected, and differences between the actual sum
and its estimate assuming uniformity were minute (Jortner et al.,
2007, Supplementary Material). In conclusion, the model results
are only minimally biased by the assumption of uniform connec-
tion strengths because the numbers are sufficiently high; this must
be reexamined, however, if applying this framework to different
systems where parameter values may be lower.

Fourth and last, PN–KC connectivity was treated as random.
Previous work showed no obvious pattern in the pairs tested
positive for connections; in fact, most KCs tested simultane-
ously with several PNs were found to be connected to about
half of them (Jortner et al., 2007). Anatomically, the mush-
room body calyx shows no simple patterning (e.g., layered- or
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columnar-organization) for either PN axons or KC dendrites
(Farivar, 2005). Thus, no data has suggested patterning in the
connectivity matrix. This having been said, it is very difficult
(in fact, impossible) to establish true randomness in experimen-
tal data, and some patterns may have evaded my analysis. Even
in such case, however, due to the huge number of combina-

tions

([
800
400

]
≈ 10240

)
suggested by the data, any component

of randomness in the connectivity matrix would still yield a
combinatorial explosion of wiring possibilities—so very dramatic
connection biases would be required to alter the conclusions of
this study.

RELATED MODELS AND ALTERNATIVE DESIGNS
In this study I took the gross structure of the locust olfactory sys-
tem as starting point and basis for exploration; I did not explore
all possible architectures or parameters, and by no means claim
to offer the only solution for constructing specific representations
from noisy input. A number of theoretical studies have tackled
similar problems using different approaches, and have come up
with a variety of designs. Here I briefly survey some of these mod-
els and their key properties, comparing and contrasting them with
mine.

One example is Kanerva’s (1988) Sparse Distributed Memory
model. Its central idea—that memories can be represented as
binary vectors in a high-dimensional space—stems from a key
property of such spaces: points in them tend to differ from
each other—and from most of the remaining space—along many
dimensions. With this inherent sparseness in mind, a hyper-
sphere is drawn around each point of interest (memory), and the
memory is activated whenever an input vector falls within the
hyper-sphere’s boundaries; this grants the model noise-tolerance
and flexibility more characteristic of brains than of most com-
puters. As different hyper-spheres may partially overlap, input
vectors often activate multiple memories. While performance
depends on dimensionality, number of memories stored and
activation radii, the model’s main results are the feasibility and
robustness of sparse-distributed storage and retrieval.

The Sparse Distributed Memory model is fully connected,
meaning that when classifying an input, its values along all
dimensions are taken into account; zeros as well as ones. This
conveys the model its robustness, capacity, and noise tolerance.
The threshold (the radius of the hyper-sphere) can be adapted if
needed: for example, to ensure that state-space is tiled, or that
each output responds with a particular probability. The high-
dimensional space is thus filled with many partially overlapping
hyper-spheres of the same dimension as the space; each represents
one memory and its noise-tolerant envelope.

At another end of the spectrum of connectivity values is
Jaeckel’s (1989) Selected-Coordinate Design. In this model inputs
also reside in a binary, high-dimensional space, yet each out-
put samples just a handful of inputs (10 of 1000; corresponding
to connection probability 0.01). For a memory to be activated,
all of its sampled inputs (or selected coordinated) must take
particular binary values; the rest of the inputs do not matter.
Jaeckel’s model thus attains its noise tolerance via invariance to
most of the input’s dimensions: it only takes into account 10

and ignores the rest. The threshold is thus fixed, and is equal to
the number of selected coordinates (they all need to be active).
In the Selected-Coordinate Design the high-dimensional space
is thus inhabited by subspaces of lower dimensionality, each
corresponding to a memory. To think in three dimensions, if
input space were a cube, memories would be faces (squares) of
this cube.

To compare my model with these, it is useful to speak a com-
mon language. In the locust, input space has 800 dimensions
(one for each PN), so it is also high-dimensional and binary (as I
treat each PN as spiking or not within each time window); PN–
KC connectivity vectors correspond to points of interest in this
space. The interesting properties of my model rely precisely on the
inherent sparseness of high-dimensional binary spaces as formu-
lated by Kanerva: PN–KC connectivity vectors populate a space
so vast (containing roughly 10240 potential points) that the actual
5× 104 points realized tend to populate it extremely sparsely,
each sitting on average very far from all others.

What does the portion of space which KCs respond to look like
in my model, and how does their threshold affect it? In Kanerva’s
model each KC samples all the dimensions and is rather tolerant
to errors in any of them (via the threshold); in Jaeckel’s model it
samples only very few dimensions, but is very strict about per-
fectly matching these. For comparison, in my model each KC
samples half of the dimensions (corresponding to c = ½) and is
invariant to the rest. This means that in 800-dimensional space,
around half of the dimensions—those PNs which the KC is con-
nected to—are treated as spherical, with a threshold, and the
others are ignored, thus treated as cubical. The receptive range
of a KC will thus be an 800-dimensional hyper-cylinder: spheri-
cal along some dimensions and invariant to the others. Adapting
the threshold will only affect the spherical dimensions: the larger
the radius, the lower the threshold, and thus the more states of
the PN population activate the KC. The model suggested here
thus combines the high-dimensionality and dense connectivity
of Sparse Distributed Memory, the invariance to non-connected
inputs from the Selected-Coordinate Design, and elements of
noise-tolerance from both.

WHERE ELSE MAY THESE PRINCIPLES APPLY?
Neuronal specificity and sparse coding are widespread phenom-
ena; relevant way beyond olfaction or sensory systems. The
design principles discussed here are general in nature, relying
on general assumptions and independent of particulars of the
system. It is attractive to hypothesize that they may apply in
a variety of other interconnected systems. While detailed data
on network architecture—especially connection probabilities—
is unfortunately still scarce for most biological networks, I point
out several candidates which merit comparison.

What happens in other olfactory systems? In Drosophila, KCs
are concentration invariant and much more specific than PNs
(Turner et al., 2008; Honegger et al., 2011). KCs each seem to
receive connections from around 10 PNs (corresponding to con-
nectivity of ∼5%), and have high firing thresholds (Turner et al.,
2008). Differences in design and coding between locusts and
flies may relate to their ecology: fruit flies occupy highly spe-
cialized ecological niches whereas locusts are generalist feeders.
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KC numbers also differ greatly across these species (50,000 in
locust vs. 2500 in Drosophila); this could merely reflect size con-
straints, but may also relate to the extent of odor space the
mushroom body needs to tile, or to the resolution required at
different regions of the space.

Mammalian pyriform (olfactory) cortex shows similarities
with the mushroom body: pyriform pyramidal neurons respond
to odors with few spikes locked to respiratory oscillations and
have low baseline firing rates (Poo and Isaacson, 2009). Pyriform
cortex shows no evidence for spatial organization by odor tuning
(Illig and Haberly, 2003; Rennaker et al., 2007; Stettler and Axel,
2009), and axons from individual mitral cells—its input neu-
rons, analogous to insect-PNs—project onto it diffusely, without
apparent spatial preference (Friedrich, 2011; Ghosh et al., 2011;
Miyamichi et al., 2011; Sosulski et al., 2011). Connection prob-
abilities between mitral cells and pyriform pyramidal cells are
unknown; however, as these synapses are strong, coincident input
from just a few may suffice to elicit spiking (Franks and Isaacson,
2006). This implies—albeit indirectly—that connection probabil-
ities from second- to third-order neurons in rodents may be lower
than in the locust. The level of sparseness of pyriform pyramidal
neurons is 3–15%—also considerably lower than in locust KCs
(Poo and Isaacson, 2009; Stettler and Axel, 2009; Isaacson, 2010).
It remains to be seen how the various network parameters work
in concert to yield coding solutions in this system.

One system often treated as a benchmark for decorrelation
of representations is the cerebellum. Theoretical work by Marr
(1969) and Kanerva (1988) suggests that the transformation from
mossy fibers onto cerebellar granule cells is designed to decor-
relate input representations and reduces the number of nodes
learning would have to act on; operations precisely suited for a
neural architecture such as described here. Measurements, how-
ever, indicate that convergence ratios of mossy fibers onto granule
cells are much lower (Chadderton et al., 2004); the architecture
described here may thus not apply to those neurons.

A fascinating candidate for comparison is the mammalian
hippocampus. The ability to build meaningful representation
from discrete random percepts makes sparse codes attractive for
memory formation (Palm, 1980; Baum et al., 1988; Kanerva,
1988, 1993). This is a well-established role of both hippocam-
pus (Scoville and Milner, 1957; Squire, 1992; Tulving and
Markowitch, 1998) and mushroom body [reviewed in Heisenberg
(1998)], and the analogy between the two has been previously
drawn (Strausfeld et al., 1998). Indeed, similarly to KCs, some
hippocampal neurons use extremely sparse codes: spiking specif-
ically and reliably in response to complex, high-level stimuli
and very rarely at baseline (Kreiman et al., 2000; Barnes et al.,
2003; Quian Quiroga et al., 2005), with a majority silent at any
given time (Thompson and Best, 1989). Topologically, hippocam-
pus is largely feed-forward (Andersen et al., 1971; O’Reilly and
McClelland, 1994; Andersen et al., 2000), and while its cytoarchi-
tecture is extensively studied with classical anatomical techniques
(e.g., Amaral and Witter, 1989; Patton and McNaughton, 1995),
quantitative functional connectivity-data at single-cell resolution
is just emerging (e.g., Brivanlou et al., 2004).

O’Reilly and McClelland (1994) provide in-depth theoretical
analysis of hippocampal circuitry. They modeled feed-forward
components of the circuit (entorhinal cortex, dentate gyrus,

and CA3), exploring the effects of network parameters on
pattern-separation and pattern-completion. Testing three values
of feed-forward connectivity (equivalent to connection prob-
ability ∼0.0001, 0.02, and 0.1), they indeed find that con-
trary to their intuition, the lowest connectivity value—which
they had presumed to outperform the higher ones in pattern-
separation—actually performed worse. They found performance
similar between the higher values, suggesting a diminishing-
returns effect; they did not, however, test higher connectivity-
values approaching ∼0.5. It would be tempting to test whether
architecture within or among some hippocampal sub-regions (for
example CA3–CA1) may follow similar design to the locust PN–
KC circuitry, to maximize input separation as a basis for memory
formation.

As the design discussed largely relies on random connectivity,
it is not inherently suitable for circuits where the input’s spatial
relations must be retained, such as early visual- or auditory-areas.
It may, however, apply well locally within spatially dependent
modules, such as cortical columns (Mountcastle, 1997), or in
higher processing areas, where representations become object-
based and spatially invariant—such as infero-temporal cortex
(Gross et al., 1972; Perrett et al., 1982; Fujita et al., 1992; Tanaka,
1996, 2003).

Optimal input-space separation may be useful even when
sparse coding is not the goal: the targets’ firing threshold deter-
mines response probability; if it is low, neurons will respond
broadly. For example, connectivity ½ and a low firing threshold
can generate distributed representations from sparse ones.

Core mechanisms elucidated here may still apply even
with connectivity somewhat removed from the optimum: large
enough cell-numbers, intermediate connectivity and some inher-
ent randomness lead to a combinatorial explosion of wiring
possibilities. This in turn naturally results in input spaces which
are (by virtue of their mere size) extremely sparsely populated.
A central message of this study is that to attain efficient input-
spread, a suitable source–target connectivity regime is neither
very dense, nor very sparse, but rather within an intermediate
range.

CONCLUDING REMARKS: ORIGINS OF NEURONAL
SPECIFICITY AND THE PARSING OF THE OLFACTORY WORLD
Neuronal specificity and sparse neural coding have continu-
ously attracted attention over several decades of brain research
(e.g., Attneave, 1954; Marr, 1969, 1970; Willshaw and Longuet-
Higgins, 1970; Barlow, 1972; Palm, 1980; Baum et al., 1988;
Kanerva, 1988; Tsodyks and Feigel’Man, 1988; Perez-Vicente
and Amit, 1989; Földiák, 1990; Rolls and Tovee, 1995; Vinje
and Gallant, 2000; Willmore and Tolhurst, 2001; Simoncelli and
Olshausen, 2001; Hahnloser et al., 2002; Laurent, 2002; Perez-
Orive et al., 2002; Garcia-Sanchez and Huerta, 2003; DeWeese
et al., 2003; Olshausen and Field, 2004; Huerta et al., 2004;
Quian Quiroga et al., 2005; Jortner et al., 2007). One reason
may be that they highlight a truly fundamental property of
the brain: the ability to parse the surroundings and to extract
meaning from them. Indeed, it seems that once a network of
neurons can—through integration of external sensory inputs and
a series of computations—bring single target-cells to respond
differentially and reliably to particular objects, combinations of
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features or classes of stimuli, a significant part of the way towards
performing the brain’s tasks has already been made. A set of
such “meaningfully responding” cells constitutes the very inter-
nal model of the world in the organism’s brain—molded to its
ecologically dictated requirements and reflecting the world as the
animal views it. For example, characterization of a cell ensem-
ble which represents a complex percept, such as an Apple, puts
a handle on what thinking of an Apple is (Barlow, 1972); and
strengthening a set of connections between this cell ensemble and
another representing the concept of Cake creates both an associa-
tive link, and a higher, more complex idea. Mechanistic insights
into how such representations come into being can open an inti-
mate window onto the brain’s subjective world-view and what
forms it.

The system I have analyzed here does not yet offer direct access
to this level of meaningful representations, but it does highlight
the principles on the basis of which they can emerge. The princi-
ples along which the olfactory circuitry between the antennal-lobe
and mushroom body is designed in the locust are an increase
in dimensionality between source- and target-populations, feed-
forward connectivity with probability of ½, maximizing sepa-
ration between representations; and a high and adaptive firing
threshold. This leads to specific, reliable, and sparse represen-
tations of random olfactory percepts in the mushroom body.
Specificity is explained by a high enough threshold, only crossed
when the KC encounters an appropriate input vector (from a set
of vectors which lie within a particular radius of Hamming dis-
tances from an “ideal” central vector); very different from vectors
which drive other KCs. Reliability results from the combination
of strong convergence of PNs onto KCs (400:1) and cycle-by-
cycle adjustment of the KC firing threshold (Papadopoulou et al.,
2011).

In the following relay subsets of KCs are sampled by extrinsic
β-lobe cells through sparse and strong synapses which are highly
plastic (Cassenaer and Laurent, 2007); this can be used to build
and learn meaningful representations for β-lobe neurons, con-
structed from the sparse discrete percepts randomly assigned to
KCs (Barlow, 1972; Földiák, 2002). Cells responding to “mean-
ingful” stimuli (for example, plants with high protein-content, or
toxic plants) can directly activate motor programs—causing the
insect to respond to the stimulus with an appropriate behavior
(for example foraging or avoidance, respectively).

The locust olfactory circuitry emerges from this study as
general-purpose machinery for information processing: a neu-
ral module which receives highly distributed and noisy inputs,
spreads them maximally, and creates from them an arbitrar-
ily sparse and selective set of representations—to be used
as a substrate for learning, memory formation, categoriza-
tion/generalization, triggering behavioral programs, and poten-
tially a variety of other computations. These principles are suited
to process any input where spatial relations need not be con-
served, as they depend only to a limited extent on the nature
of the signals to be processed. These mechanisms are therefore
potentially of broad applicability and interest; where else they may
apply remains to be seen.
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APPENDIX (JORTNER, 2012)
A1. HAMMING DISTANCE BETWEEN PN–KC CONNECTIVITY

VECTORS—FULL DERIVATION
Let
−→
U ,
−→
V be two arbitrary connectivity vectors, or rows of

the connectivity matrix
←→
W (where 1 denotes connection, with

probability c, and 0 none, with probability 1− c) between the

populations
−→
S and

−→
K . The Hamming distance, H(

−→
U ,
−→
V ),

counts the number of bits different across the two vectors. I derive〈
H

(−→
U ,
−→
V

)〉
U,V

, the average Hamming distance between
−→
U ,
−→
V

over all their possible values:

〈
H

(−→
U ,
−→
V

)〉
U,V
=

〈
N∑

i = 1

(Ui − Vi)
2

〉
U,V

=
〈

N∑
i = 1

(
U2

i − 2UiVi + V2
i

)〉
U,V

as the average of a sum is the sum of the averages,

=
〈

N∑
i = 1

U2
i

〉
U

−
〈

N∑
i = 1

2UiVi

〉
U,V

+
〈

N∑
i = 1

V2
i

〉
V

=
N∑

i = 1

〈
U2

i

〉
U − 2

N∑
i = 1

〈UiVi〉U,V +
N∑

i = 1

〈
V2

i

〉
V

Finishing the calculation now requires the expected values of the
expressions U2

i , V2
i , UiVi. The following table gives all possible

values of Ui, U2
i and their respective probabilities:

Ui U2
i Probability

1 1 c

0 0 (1− c)

So the expected value of
〈
U2

i

〉
U = 1 · c + 0 · (1− c) = c ; the

same holds for
〈
V2

i

〉
V .

Here are all possible values of Ui, Vi, UiVi and their respective
probabilities:

Ui V i Ui V i Probability

1 1 1 c2

1 0 0 c · (1− c)

0 1 0 (1− c) · c
0 0 0 (1− c)2

So the expected value is

〈ViUi〉U,V = 1 · c2 + 0 · (c · (1− c)+ (1− c) · c + (1− c)2) = c2

Finishing the calculation:〈
H( �U, �V)

〉
U,V = N · c − 2N · c2 + N · c = 2N · c · (1− c)

A2. VARIANCE OF INPUT TO A KC (�)—FULL DERIVATION
I substitute the mean input to a KC by � , which was already calcu-
lated (Section “Model Results II: Neuronal Activity and Properties
of Input to KCs”):

� ≡ 〈var(ki)〉i =
〈〈(

ki − 〈ki〉�S
)2

〉
�S

〉
i
= 〈〈

(ki − �)2〉�S〉i
=

〈〈⎛
⎝ N∑

j = 1

SjWij −�

⎞
⎠

2〉
�S

〉
i

=
〈〈⎛

⎝ N∑
j = 1

SjWij

⎞
⎠

2

− 2�

N∑
j = 1

SjWij + �2

〉
�S

〉
i

=
〈〈

N∑
j = 1

N∑
k = 1

SjSkWijWik − 2�

N∑
j = 1

SjWij + �2

〉
�S

〉
i

=
〈

N∑
j = 1

N∑
k = 1

〈
SjSk

〉
�S WijWik − 2�

N∑
j = 1

〈
Sj

〉
�S Wij +�2

〉
i

Next, I’ll separate the first-term into its non-diagonal (i �= j) and
diagonal (i = j) components and treat them each separately:

� =
〈

N∑
j = 1

N∑
k=1, j�=k

〈
SjSk

〉
�S WijWik +

N∑
j = 1

〈
S2

j

〉
�S W2

ij − . . .

− 2�

N∑
j = 1

〈
Sj

〉
�S Wij +�2

〉
i

To calculate the expected values of the non-diagonal terms
Si, Sj, SiSj, the table below provides all possible values and their
respective probabilities:

Si Sj Si Sj Probablity

1 1 1 p2

1 0 0 p · (1− p)

0 1 0 (1− p) · p
0 0 0 (1− p)2

So the expected value is

〈
SiSj

〉
�S,i�=j = 1 · p2 + 0 · (

p · (1− p)+ (1− p) · p+ (1− p)2) = p2

For the diagonal terms: Sj, S2
j and their respective probabilities:

Sj S2
j Probability

1 1 p

0 0 (1− p)
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The expected value of 〈S2
j 〉�S = 1 · p+ 0 · (1− p) = p, the

same holds for 〈Sj〉�S = 1 · p+ 0 · (1− p) = p
Continuing the calculation:

� = p2 ·
N∑

j = 1

N∑
k = 1, j�=k

〈
WijWik

〉
i + p ·

N∑
j = 1

〈
W2

ij

〉
i
− . . .

−2� · p ·
N∑

j = 1

〈
Wij

〉
i + �2

All possible values for 〈WijWik〉i,j�=k, 〈W2
ij 〉i,j, 〈Wij〉i,j and their

respective probabilities:

W ij W ik W ij W ik Probability

1 1 1 c2

1 0 0 c · (1− c)

0 1 0 (1− c) · c
0 0 0 (1− c)2

So the expected value is

〈
WijWik

〉
i,j�=k = 1 · c2 + 0 · (c · (1− c)+ (1− c) · c + (1− c)2) = c2

W ij W 2
ij Probability

1 1 c

0 0 (1− c)

the expected value of
〈
W2

ij

〉
i,j
= 1 · c + 0 · (1− c) = c

and the same holds for
〈
Wij

〉
i,j = 1 · c+ 0 · (1− c) = c

There are exactly (N2 − N) non-diagonal terms, and N diago-
nal terms, so

� = p2 · (
N2 − N

) · c2 + p · N · c− 2� · p · N · c +�2

I will now substitute back � = N · p · c (as shown in Section
“Model Results II: Neuronal Activity and Properties of Input to
KCs”), and get:

� = �2 − p2 · N · c2 + p · N · c − 2�2 +�2

= N · p · c · (1− p · c) = N · p · c · (1− p · c)

A3. COVARIANCE OF THE INPUTS TO TWO KCs—FULL DERIVATION
To calculate the covariance between inputs (or between sub-
threshold membrane potentials) of two KCs, I substitute the mean
input to a KC by � , which was already calculated (Section “Model
Results II: Neuronal Activity and Properties of Input to KCs”).

〈cov(kr, kt)〉r �= t =
〈〈(

kr − 〈kr〉�S
) (

kt − 〈kt〉�S
)〉
�S
〉
r �= t

=
〈〈(

N∑
i = 1

SiWri −�

)⎛⎝ N∑
j = 1

SjWtj −�

⎞
⎠〉
�S

〉
r �= t

=
〈〈

N∑
i = 1

N∑
j = 1

SiSjWriWtj −�

N∑
i = 1

SiWri − . . .

−�

N∑
j = 1

SjWtj +�2

〉
�S

〉
r �= t

=
〈

N∑
i = 1

N∑
j = 1

〈
SiSj

〉
�S · WriWtj − . . .

−�

N∑
i = 1

〈Si〉�S · Wri −�

N∑
j = 1

〈
Sj

〉
�S · Wtj +�2

〉
r �= t

separating the first-term into non-diagonal and diagonal compo-
nents:〈

N∑
i = 1

N∑
j=1,i�=j

〈
SiSj

〉
�S · WriWtj +

N∑
i = 1

〈
S2

i

〉
�S · WriWti − . . .

−�

N∑
i = 1

〈Si〉�S · Wri −�

N∑
j = 1

〈
Sj

〉
�S · Wtj +�2

〉
r �= t

I calculate the expected values of the terms SiSj, S2
i , Si exactly as

in Appendix A2:

〈
p2 ·

N∑
i = 1

N∑
j= 1, i �= j

WriWtj + p ·
N∑

i = 1

WriWti− p · �
N∑

i = 1

Wri − . . .

−p · �
N∑

j = 1

Wtj +�2

〉
r �= t

= p2 ·
N∑

i = 1

N∑
j=1,i �=j

〈
WriWtj

〉
r �= t + p ·

N∑
i = 1

〈WriWti〉r �= t − . . .

−p · �
N∑

i = 1

〈Wri〉r �= t − p · �
N∑

j = 1

〈
Wtj

〉
r �= t +�2

and because of the condition r �= t, the expected value of the term〈
WriWtj

〉
r �=t,i �=j is identical to that of 〈WriWti〉r �= t , both equal to c2.

The rest of the terms are calculated exactly as in A2, so:

p2 · (N2 − N) · c2 + p · N · c2 − p · � · N · c − p · � · N · c + �2

= �2 − p2 · N · c2 + p · N · c2 −�2 −�2 +�2

= N · c2 · p · (1− p)

A4. DIFFERENCE BETWEEN TWO KC INPUTS (OR SUB-THRESHOLD
MEMBRANE POTENTIALS)

Here I follow the exact same lines of reasoning as in Appendix
A1–A3. First, I express the difference between KC inputs, second,
I split it into its non-diagonal and diagonal components, and third,
I average each class of terms separately:

Frontiers in Neuroengineering www.frontiersin.org January 2013 | Volume 5 | Article 19 | 24

http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive


Jortner Network architecture for separating representations

D(kr, kt) ≡
〈〈
(kr − kt )

2〉�S〉r �= t
=

〈〈⎛
⎝ N∑

i = 1

SiWri −
N∑

j = 1

SjWtj

⎞
⎠

2〉
�S

〉
r �= t

=
〈〈⎛

⎝ N∑
i = 1

SiWri −
N∑

j = 1

SjWtj

⎞
⎠ ·

(
N∑

m = 1

SmWrm −
N∑

n = 1

SnWtn

)〉
�S

〉
r �= t

=
〈〈

N∑
i = 1

N∑
m = 1

SiSmWriWrm

〉
�S

〉
r �= t

−
〈〈

N∑
i = 1

N∑
n = 1

SiSnWriWtn

〉
�S

〉
r �= t

− . . .

−
〈〈

N∑
j = 1

N∑
m = 1

SjSmWtjWrm

〉
�S

〉
r �= t

+
〈〈

N∑
j = 1

N∑
n = 1

SjSnWtjWtn

〉
�S

〉
r �= t

=
〈〈

N∑
i = 1

N∑
m= 1, i �=m

SiSmWriWrm

〉
�S

〉
r �= t

+
〈〈

N∑
i = 1

S2
i · W2

ri

〉
�S

〉
r �= t

− . . .

−
〈〈

N∑
i = 1

N∑
n= 1, i �= n

SiSnWriWtn

〉
�S

〉
r �= t

−
〈〈

N∑
i = 1

S2
i WriWti

〉
�S

〉
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A5. FIRING THRESHOLD WHEN CONNECTIVITY IS 1/2
A threshold designed to be crossed for a particular fraction of states
1− Q(z), where Q is the CDF of the standard Normal distribution,

should be equal to the mean (�) plus the appropriate times the
standard deviation (

√
�).

Assuming c = ½, we get:

f (z) = � + z
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√
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