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Brain-computer interfaces (BCIs) require demanding numerical computations to transfer
brain signals into control signals driving an external actuator. Increasing the computational
performance of the BCI algorithms carrying out these calculations enables faster reaction
to user inputs and allows using more demanding decoding algorithms. Here we introduce
a modular and extensible software architecture with a multi-threaded signal processing
pipeline suitable for BCI applications. The computational load and latency (the time that the
system needs to react to user input) are measured for different pipeline implementations
in typical BCI applications with realistic parameter settings. We show that BCIs can
benefit substantially from the proposed parallelization: firstly, by reducing the latency and
secondly, by increasing the amount of recording channels and signal features that can
be used for decoding beyond the amount which can be handled by a single thread. The
proposed software architecture provides a simple, yet flexible solution for BCI applications.
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1. INTRODUCTION
Brain-computer interfaces (Wolpaw et al., 2002; Nicolas-Alonso
and Jaime, 2012; Shih et al., 2012) translate neural signals into
commands driving an external actuator (e.g. computer, prosthetic
arm). This way, BCIs can restore movement and communi-
cation abilities of paralyzed patients (Birbaumer et al., 1999;
Wolpaw and McFarland, 2004; Hochberg et al., 2006; Kim et al.,
2011).

Decoding neuronal activity typically involves multivariate sig-
nal processing (multiple channels and multiple signal features)
and linear or non-linear methods for classification and regression.
Therefore, the overall decoding process can be computation-
ally demanding. On standard desktop computers or laptops, the
amount of computations a processor core can execute per time is
limited and may be insufficient for BCI signal processing. One can
alleviate such limitations by distributing calculations among mul-
tiple cores. A higher amount of computational power available for
decoding can be beneficial for several reasons: (1) Processing of
neural activity measurements at a higher spatio-temporal resolu-
tion, i.e. more recording channels and higher sampling rates, can
potentially yield more accurate decoding of the subject’s inten-
tions (Carmena et al., 2003; Nicolelis et al., 2003; Gunduz et al.,
2009). Moreover, the decoding accuracy can be improved by using
multiple signal features from a single neuronal signal simulta-
neously, e.g. by decoding from multiple frequency bands of the
same local field potential or electroencephalogram (EEG) chan-
nel (Rickert et al., 2005; Woon and Cichocki, 2007; Ang et al.,
2008). In both cases, the computational demand increases with
the number of channels or the number of features per chan-
nel. (2) More complex classification or regression algorithms can

improve decoding accuracy, e.g. by incorporating non-linearities
(Gao et al., 2003; Shpigelman et al., 2009) or by adapting to non-
stationary neuronal signals (Rotermund et al., 2006; Blumberg
et al., 2007; Wu and Hatsopoulos, 2008; Shpigelman et al., 2009).
Such algorithms typically require a higher amount of compu-
tational power. (3) The computational load increases with the
number of degrees of freedom (DOF) of the external actuator.
For example, in the often used linear filter (Carmena et al., 2003;
Hochberg et al., 2006; Schalk et al., 2008; Collinger et al., 2012),
computational demand of the filter grows linearly with the num-
ber of DOFs. (4) Higher computational power can increase the
number of decoding steps per second. Hence, BCI users can
experience a smoother control and might, therefore, feel more
comfortable with the BCI. Furthermore, by reducing the time
between two decoding steps, the BCI user will receive faster feed-
back on the movements of the actuator, which can improve the
performance (Cunningham et al., 2011). In contrast, long delays
and low update rates can substantially decrease the user’s comfort
and performance while using the interface.

Here, we present an efficient BCI software architecture
designed for multi-core processing of neuronal signals. Using
a technique termed “independent substream parallelization”, we
can divide the processing of neuronal signals into independent
processing steps. Each of these steps can then be run as an indi-
vidual thread, thereby making adequate use of multi-threading,
prevailing protocol for parallel computations supported on desk-
top and laptop computers. Furthermore, we demonstrate that
the performance of multi-threaded processing of neuronal sig-
nals is highly dependent on the waiting strategy, i.e. the algorithm
used to exchange data between threads. Our results show a
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trade-off between the speed the data is exchanged (latency) and
the processor (CPU) usage: low latency comes at the cost of high
CPU usage and vice versa.

2. METHODS
2.1. ARCHITECTURE
We implemented our software architecture under C++
(Stroustrup, 2000) using the object-oriented programming
paradigm. Main design requirement for our software architecture
was to be modular, as this provides the following benefits: (1) it
can be extended more easily and quickly. (2) since classes interact
only via defined interfaces, all children of the same interface
type can be interchanged via configuration. (3) frequently used
modules, e.g. Fourier transformation or band pass filters, can be
reused. (4) it is easier to test complex software configurations by
first testing modules independently. These properties are partic-
ularly desirable for a BCI research software where modifications
are done continuously and requirements can change quickly.

The structure of our software architecture can best be
described through its domain model which describes our domain
of interest in terms of function and data (Fowler, 2002) and con-
sists of three central types of classes: (1) Data classes: classes that
represent data, e.g. neuronal activity measurements or measure-
ments of limb movements. One can also think of them as contain-
ers that serve to move values between other classes. (2) Processing
classes: classes that generate or manipulate data, e.g. devices used
to perform measurements (amplifiers, movement trackers, etc.)
and algorithms for processing neural signals (low-/band-/high-
pass filtering, classification, regression etc.). All processing classes
have “start” and “stop” methods used to start and stop the oper-
ation of the class, as well as a method for querying their unique
name, which is used to identify each object (the instantiation of a
class is called an object). (3) Connection classes: classes that move
data objects between processing objects. These connections are
realized using the observer pattern (Gamma et al., 1994), which
enforces flexible connections between processing objects, allowing
connections to be changed during runtime.

We define a mode as a set comprised of processing and connec-
tion objects. One can have multiple modes in one BCI application
instance and every mode can be selected, started and stopped.
A typical mode, used in the BCI application, would be “open-
loop calibration”, where movement data and neuronal signals
are recorded for subsequent calibration of decoding algorithms.
Another typical BCI mode would be “brain-control”, where the
previously calibrated decoding algorithm is used to translate the
subject’s neural activity into commands for the external actu-
ator. For practical purposes, all modes are configured using a
configuration file. Each mode is created by first creating all the
processing objects, and then, all the connection objects which
are used to connect the processing objects. Source and destina-
tion objects for every connection are identified by their unique
names. Connections (connection objects) between processing
objects can be modified at runtime without the need to recompile
the application.

In our software architecture, each processing object is able to
run in a separate thread. Therefore, data objects can potentially be
shared between threads, which can, if not handled properly lead

to undefined behavior. One could make the access to data objects
thread-safe by using synchronization data structures. This adds
further complexity to the testing of data objects, as one would
have to verify that no synchronization-related errors like dead-
locks (Roscoe et al., 1997) and racing conditions (Roscoe et al.,
1997) occur. To resolve this issue, one could apply a “copy on
write” convention, i.e. requiring all processing objects to first cre-
ate a copy of a shared data object and then apply modifications
only to the copy. Although this approach can be implemented,
we refrained from it for reasons of stability: if only one process-
ing objects omits the copy step, e.g. because of a yet undiscovered
programming error, the behavior of all other processing objects
using the same shared object is undefined. We therefore resolved
this problem by not sharing data objects at all. Instead, every pro-
cessing object owns its own copy of the data object that is being
modified. As consequence, every data object is derived from an
interface requiring its heirs to implement a method that returns
an identical copy of them. This approach simplifies the design
of data objects since they do not need to handle multi-threaded
access and modifications. In addition, the steps of copying and
thread-safe passing of data objects can be performed identi-
cally by all processing objects. Thus, these operations had to be
implemented only once and could subsequently be reused.

2.2. DEGREES OF BCI PARALLELIZATION
The process of neural decoding used in BCIs can be seen as a
sequence of signal processing steps applied to a stream of neural
data. The processing steps vary depending on the signal type
(EEG, electrocorticogram, spiking activity of individual neurons,
etc.) and the BCI application. We call a single processing step
a “filter” and the whole sequence of processing steps a “filter
pipeline”. A “filter” is, therefore, a transformation (linear or non-
linear) of an n-dimensional input signal to an m-dimensional
output signal. With this terminology, low-pass, band-pass, or
high-pass filters are included in the definition of “filters”, as well
as the short-time Fourier transform (Allen, 1977) or classification
and regression methods, such as linear discriminant analysis
(Hastie et al., 2011), support vector regression (Vapnik and
Chervonenkis, 1974) and Kalman filter (Kalman, 1960; Haykin,
2001).

If all computations are executed in one thread, there is no par-
allelization, see Figure 1A. Such configuration can be used if no
parallelization is needed, i.e. all computations are fast enough to
be carried out by one thread before a new set of computations is
requested. A first level of parallelization would divide the main
processing steps, i.e. signal acquisition, feature extraction, decod-
ing (classification or regression), and the generation of feedback,
into separate threads (Figure 1B). This degree of parallelization
can use as many cores as there are processing steps, since every
thread can occupy only one separate core at any time. Existing
facilities of the operating system, in our case the Windows sched-
uler, are used to distribute the workload of the threads among
CPU cores. However, since each step depends on the result of the
previous step, most computations are not carried out in paral-
lel. In BCI software applications, many processing steps transform
the signal on one channel independently from the signal on other
channels (e.g. Fourier transformation or band-pass filters). This
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FIGURE 1 | Degrees of parallelization for a typical BCI software

application. Figure shows processing steps applied by a BCI application to
a stream of neural data. (A) No parallelization, i.e. all processing steps are
executed sequentially in one thread on a single CPU core. (B) Each
processing step is executed in a separate thread. The computations of each
thread can be handled by a different core. (C) Independent substream
parallelization. Feature extraction and movement decoding steps are split
into functionally independent computations, e.g. by computing the features
for each channel in a different thread.

can be exploited for a higher degree of parallelization, where a
processing step can be separated into functionally independent
substreams, each processing a subset of channels. Each data sub-
stream can then be processed by a separate thread (Figure 1C, see
Wilson and Williams (2009) for an example). We termed this level
of parallelization as “independent substream parallelization”. The
same principle can be extended to the processing of the decoding
step. For example, if the BCI application is decoding the intended
movement and each DOF of the movement can be computed
independently from the other movement DOF (e.g. in a linear
filter) then the decoding algorithms for each DOF can be run on
a separate thread. There are ways to achieve even higher degrees
of parallelization. In principle, all functionally independent parts
of a processing step can be run on separate threads. However,
such “fine grain” parallelization requires exploitation of the spe-
cific processing algorithm used. Therefore, there are no general
ways to explore such ways of parallelization. Furthermore, current
BCI systems process recordings from a large number of channels.
Therefore, even by using “independent substream parallelization”,
one can divide the processing into a number of substreams that
far exceed the number of available CPUs used to run BCI software
applications. We show that, when the number of threads is much
greater than the number of available CPUs, one cannot expect
additional gains in performance. For all these reasons, we did not
consider parallelization on a degree finer than the “independent
substream parallelization”.

2.3. FILTER PIPELINE IMPLEMENTATION
In this subsection we describe how we implemented the algorith-
mic concept of a filter in terms of software.

Every filter has a set of input and output ports and an
algorithm implementation which defines its function (Figure 2).
Input ports are objects where the incoming data objects are
handled in a thread-safe manner while preserving the order in
which they arrived. In the output ports, data objects are sent to

FIGURE 2 | Scheme of the filter implementation showing the main

working steps of a filter. After a filter is started, its worker thread collects
the input data objects from all input ports. Then an exchangeable algorithm
processes the data objects and its results are distributed to the output
ports. This is repeated until the filter is stopped.

FIGURE 3 | Class diagram of the filter pipeline in unified markup

language notation (Booch et al., 2005). Every IFilter implementation can
have zero or more instances of CInputPort or COutputPort.
IOutputPortListener is the interface from which connection classes inherit
in order to receive data from an output port [cf. observer pattern in Gamma
et al. (1994)].

each connection object connected to the respective output port.
A filter iterates three steps: (1) fetch one set of data objects from
each input port, (2) process the data according to the algorithm
implemented in the filter (filter algorithm in the remainder of
the text), and (3) distribute resulting data objects through all
output ports. To change the function of the filter, one only needs
to exchange the filter algorithm. To facilitate the implementation
of new filter algorithms, we implemented the IFilter 1 interface
with a class whose algorithm part is exchangeable through the
IFilterAlgorithm interface. This design encapsulates all threading
related functions, i.e. copying of data objects and passing them
to other processing objects, in the surrounding filter class. From
the developer’s point of view, one can exclusively focus on the
implementation of the actual filter algorithms, without having to
care about the rest of the filter’s functionality. Furthermore, our
design allows developers to separately test their filter algorithms
(IFilterAlgorithm). They can rely that the extensively tested
remainder of the filter works properly and reliably. A more
detailed class diagram of the key interfaces of the filter pipeline is
shown in Figure 3.

1In our class naming convention, interfaces start with an “I” and normal
classes with “C”.
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There are different strategies on how a filter can check whether
a complete set of data objects are available at each of the input
ports (waiting strategies). We evaluated four waiting strategies.
(1) Polling: repeatedly poll (i.e. query) the input ports for the new
set of data objects, (2) Wait0: wait for the next time slice2 to check
for the new set of data objects, (3) Wait1: wait for one period of
the system event timer (16 ms in our system) to check for the new
set of data objects and, (4) Waitevent: wait until an event signal,
sent by the input ports, is received and indicates that the new set
of data objects is available. The source code of the filter pipeline
with all waiting strategies is provided at the CorTec Homepage
(2013) and can be used under the GNU General Public License
version 3. We have successfully applied this software framework
in a recent BCI study using the decoding of movement direction
from the human electrocorticogram for closed-loop BCI control
(Milekovic et al., 2012).

2.4. SIMULATION SETUP
We evaluated the performance of our BCI software architecture
on a standard desktop personal computer (PC) with an Intel Core
i7 970 computer with 3.2 gigahertz and 24 gigabyte memory run-
ning 64-bit Microsoft Windows 7 Enterprise operating system.
The performance values will vary on different hardware and soft-
ware configurations. However, we believe that the conclusions we
draw from our quantitative results will be valid for a wide range of
commonly used desktop and laptop computer systems. To mea-
sure the performance, we simulated a source of data that passed
data objects to the filter pipeline. The artificial data source was
a software simulation of a neurophysiological recording system,
which, in real BCI applications, might record EEG, electrocor-
ticogram signals, spike trains or other neuronal signals. In each
simulation session, the data source provided 120 s of recordings
from 256, 512, 768, or 1024 channels, sampled at a frequency
of 256, 512, 768, or 1024 Hz. The filter pipeline consisted of one
or more filters that processed the data (described in more detail
below). The performance of the filter pipeline was quantified
by three measures: (1) Median latency; For each waiting strat-
egy w ∈ W := {Polling, Wait0, Wait1, Waitevent} and number of
threads, we measured the time required for the processing of a
data object as the latency, i.e. the time between the injection of the
data object into the filter pipeline and the reception of the result-
ing data object at the output of the filter pipeline. Since some
of the algorithms considered in this study use a sliding window
with a step size of n sample points, only every n-th input packet
yields an output data packet and thus a latency value. Latency is
denoted as Li,j, where i is the number of threads and j ∈ {1, . . . , k}
is the j-th measurement of the latency. Due to computational
processes initiated by the operating system, the processors used
for simulations would occasionally be used for other computa-
tions. This would cause latencies much higher than expected for
one or more consecutive measurement time points. To reduce the
effect of such outliers, we reported median latency over all mea-
surements. In addition, in each simulation, we removed the first

2A time slice is a certain amount of execution time a thread gets allocated
from a scheduling algorithm. When this time is used up, the thread has to
stop execution until it gets a new time slice allocated.

16 latency values (corresponds to 0.5 s of data) from each sim-
ulation in order exclude transient latency values at the start of
the simulation. (2) Relative latency reduction (RLR); We define
N1 := minw∈W

(
medianj∈{1,...,k}

(
L1,j

))
as the median latency of

the waiting strategy with the minimum median latency when only
one thread was used and use it as normalization factor to which
we compare all other latencies to. For each latency Li,j, we further
define RLRi,j := N1/Li,j. By construction, RLRi,j equals 1 if the
latency measurement equals median latency of the fastest wait-
ing strategy with one thread, is above 1 if Li,j is smaller than
N1 indicating an increase of performance relative to the fastest
waiting strategy with one thread and is below 1 if Li,j is greater
than N1. To capture the general dependence of the latencies as
a function of the number of threads, we define the median of
relative latency reduction as MRLRi := medianj∈{1,...,k}

(
RLRi,j

)
.

Thus, MRLRi is larger than 1 if the computations are performed
faster than with the fastest waiting strategy with one thread. (3)
CPU load; measured once per second as the median percentage
of the total possible load of one core (100%). We started CPU
load measurement some time before the simulation started and
thus initially measured CPU load from a period of inactivity. To
exclude this period, we removed the first 2 CPU load measure-
ments (corresponds to 2 s of data). Our test system contained six
cores with Hyper Threading, which can allow two threads being
processed in parallel on one core (Marr et al., 2002), so the max-
imum number of parallel threads, which can run at 100% CPU
load, is 12. However, during our simulations, one thread simu-
lated the data source and one thread was used to receive the results
of the filter pipeline. In addition, some processing is required by
the operating system. Therefore, the real number of threads that
can be used exclusively by the simulated filter pipeline in parallel
is lower than 12. We assumed that at least nine threads are avail-
able for full 100% CPU load, assuming that the operating system,
the data source simulation and the acquisition of results from the
simulation each occupy one thread at most.

A minimum requirement for a BCI application is that the fil-
ter can process the input data at least at the rate it is coming in.
If processing is not fast enough, the data objects will accumulate
at the input ports of a filter. Consequently, the latencies will add
up, making the application unable to react to inputs. Additionally,
the memory usage will grow until it reaches the limit of avail-
able memory, which will cause the application to terminate. We
refer to this scenario as stall. During our simulations, a test run is
considered to be stalled if one of the following conditions is true:
(1) memory consumption exceeded a threshold of 750 megabytes
(Mb) or (2) the overall calculation time exceeded the expected
time by more than 1.2 s. The memory limit of 750 Mb is exceeded
if more than 5 s of data is accumulated at the input port of one
of the filters. We chose the memory limit big enough to reduce
the number of falsely detected stalls as much as possible while
giving the application sufficient remaining memory to shut down
normally. If our system takes more than 1.2 s (1%) beyond the
expected execution time of 120 s, it is fairly safe to conclude that
the latency of the processing is too high. If the application would
be allowed to continue to run, the data would accumulate and
the program would eventually stall. While there is some necessary
arbitrariness in the time limit of 1.2 s, it was chosen to reduce
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falsely detected stalls due to temporal jitter caused by other pro-
cesses. Algorithms used in the BCI applications mostly fall into
two groups: (1) feature extraction algorithms and (2) decoding
(classification and regression) algorithms. In most BCI applica-
tions, these algorithms will take most of the computational time.
Therefore, to evaluate the performance of our software architec-
ture, we tested several feature extraction and decoding algorithms
frequently used in BCI applications.

2.4.1. Feature extraction algorithms
In our context, feature extraction algorithms are algorithms used
to calculate features from neuronal signals. We used two fre-
quently used feature extraction algorithms: short-time Fourier
transform (Allen, 1977) and Savitzky–Golay filter (Savitzky and
Golay, 1964; Milekovic et al., 2012) as an example of a lin-
ear filter for smoothing signals. Our implementation of the
Savitzky–Golay filter is more demanding than our implementa-
tion of the short-time Fourier transform, since it uses one forward
Fourier transform and one inverse Fourier transform in each
calculation step.

2.4.2. Classification and regression algorithms
BCI related decoding algorithms can be grouped into algorithms
for inference of continuous variables (regression) and algorithms
for inference of discrete variables (classification). For classifica-
tion, we tested filter pipelines implementing linear discriminant
analysis (LDA) (Hastie et al., 2011) and support vector machines
(SVM) (Vapnik and Chervonenkis, 1974). For regression we
tested the linear filter (LF), support vector regression (SVR) and
the Kalman filter (KF) (Kalman, 1960; Haykin, 2001). We used
libsvm library (Chang and Lin, 2011) to implement SVM and
SVR, and the GNU Scientific Library (Gough, 2009) for linear
algebra operations. For all tests of classification/regression algo-
rithms, we kept the sampling frequency fixed at 1024 Hz and
decoded one DOF, i.e. a one-dimensional movement. In the con-
text of classification or regression algorithms, the computational
complexity regarding the inputs is best measured by the number
of features that have to be processed in each decoding step, rather
than by the number of channels, as each channel might provide
multiple features, e.g. data from multiple delays in respect to the
current time or from multiple frequency bands. In addition to the
computational complexity arising from the number of features,
the computational complexity of the SVR and SVM algorithms
depends on the number of support vectors. Therefore, we varied
the number of support vectors for all tests involving the SVR and
SVM algorithms. All feature extraction and decoding algorithms
were executed 32 times per second (in steps of 31.25 ms).

2.4.3. Complexity of classification and regression algorithms
For each algorithm, we derived parametric models of the latency
as a function of feature dimension. For SVR and SVM, latency
was also a function of the number of support vectors. These
models were fitted to the measured latency values (see section
3.3) to estimate the parameter values. In each model descrip-
tion, L denotes the latency and nf the number of features and
ns the number of support vectors. LF/LDA: One DOF decod-
ing using LF models or binary classification using LDA models

is equivalent to a scalar product between a feature vector and
a vector of fixed coefficients (obtained by calibrating the model
on the training data). Therefore, the computation time is linear
in the number of features (Hastie et al., 2011). For LF and LDA
decoders, we, therefore, modeled the latencies as L = b · nf + a.
KF: In the limit of high number of features, the computation time
of the Kalman filter algorithm is dominated by the inversion of
a symmetric matrix. We used Cholesky factorization algorithm
for matrix inversion (as the matrix to be inverted is symmet-
ric) and the computational complexity of Cholesky factorization
is a cubic function of a number of features (Santos and Chu,
2003). All other operations have linear or quadratic dependence
on the number of features. Profiling our implementation of the
Kalman filter revealed that, with nf = 128 and decoding one DOF,
around 94% of the computation time in each iteration was used
for the matrix inversion. Thus, all of our simulations were made
in the regime of high number of features. Therefore, we neglected
the contributions of all other Kalman filter calculations in our
model of the Kalman filter latencies: L = c · n3

f + a. SVR/SVM:
Computational costs of SVM/SVR scale as O(nf · ns) (Burges,
1998). Latencies were therefore modeled as L = d · nf · ns + a.

2.5. STATISTICAL ANALYSIS
We considered four different waiting strategies for the filter
pipeline (see section 2.3) and measured their performance using
three different measures: median latency, median of relative
latency reduction and CPU load. Performance was examined as a
function of the number of threads and across a range of sampling
frequencies and numbers of channels (Figures S1–S3, Figure 4).
For each combination of waiting strategy, number of threads,
sampling frequency and number of channels, we ran ten simu-
lations yielding 38,240 latency measurements and 1180 CPU load
measurements in total. To assess the significance of the perfor-
mance increase with increasing number of threads we compared
the performance measures between one and nine threads by a
Wilcoxon rank sum test (Hollander and Douglas, 1999; Gibbons
and Chakraborti, 2011). The Wilcoxon rank sum test of MATLAB
R2010a uses an approximation to compute p-values in the case of
large samples. Given potential inaccuracies of this approximation
we simply report “p < 0.0001” even if actual p-values were much
smaller. We considered the null hypothesis as rejected if p < 0.05.
This test was carried out for different sampling frequencies and
number of channels (see section 3 and supplementary material).

3. RESULTS
3.1. PERFORMANCE OF PARALLELIZATION
Figure 4 shows latencies, MRLR and CPU load at the extreme
points of our investigated parameter range (256 Hz/256 chan-
nels and 1024 Hz/1024 channels) for different number of threads.
For all waiting strategies, except for Wait1, the latency generally
decreased and the MRLR generally increased with more threads.
Data was processed significantly faster when nine instead of
one thread were used (p < 0.0001, Figure 4 and Figures S1, S2).
Among all four waiting strategies, Wait1 yielded the poorest over-
all performance gain when more than one thread was used.
This was particularly pronounced for low sampling frequen-
cies and low channel numbers (see Figures S1, S2). The inferior
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FIGURE 4 | Performance of the filter pipeline implementing the

short-time Fourier transform algorithm for different waiting strategies

and different number of threads. Lines show median of latencies (A,B),
median of relative latency reduction (C,D), and median CPU load (E,F).
The latencies, MRLR and CPU load of the waiting strategies Polling and
Wait0 are very similar, so that their graphs mostly coincide. Error bars
show the 25% and 75% percentiles. Panels on the left (A,C,E) show

results for simulations with 256 Hz and 256 channels, while panels on the
right (B,D,F) show results for simulations with 1024 Hz and 1024
channels. In addition, panels (B,D,F) (simulations with 1024 Hz and 1024
channels) show median latencies, MRLR and CPU load for 10, 15, 20,
and 25 threads. For high number of threads a diamond symbol indicates
that at least one out of ten simulations stalled when the corresponding
waiting strategy was used.

performance of Wait1 is due to querying for data at fixed inter-
vals of 16 ms, which can be highly suboptimal if the data arrived
at the input port just after the last query, thereby causing a
higher latency increase compared to the other waiting strate-
gies. Waitevent performs better for higher sampling frequencies
and number of channels (Figures 4B,D and Figures S1, S2).
Compared to Wait0 and Polling, Waitevent performed worse for
256 Hz and 256 channels (p < 0.0001), whereas for 1024 Hz and
1024 channels Waitevent performed similar for up to four threads
(median latency of Waitevent differs at most 0.15 ms, p < 0.0001),
better for five threads (p < 0.0001) and slightly worse for up to
nine threads (p < 0.0001, Figures 4A–D). Our latency and MRLR
measurements show a drop in performance for five threads for
Polling and Wait0 and for six threads for Waitevent and Wait1

waiting strategies. We suspect that the combination of the system
hardware and the scheduler of Windows 7 caused the system to
perform slower for some particular number of threads (e.g. five
threads for Polling and Wait0 waiting strategies and six threads
for Wait1 and Waitevent strategies), depending on the number
of available cores. To test this hypothesis we reran our sim-
ulations on a four-core machine and indeed found the same
drop in performance for three and four threads, respectively.

A further test using the same hardware running Windows XP
instead of Windows 7 revealed that the performance drop disap-
peared under Windows XP. Taken together, these additional tests
support our initial presumption that the performance drop of
Polling and Waitevent is caused by Windows 7 when the number
of used threads is equal or one less than the number of avail-
able cores. We further explored the possible improvements in
performance for the number of filter threads of up to 25, well
above the total number of threads that can be used in parallel
exclusively for filter pipeline simulation on our six-core Hyper
Threading system. In this regime, several threads will compete for
the use of different cores. We ran these simulations for a sampling
frequency of 1024 Hz and 1024 channels to get a lower bound esti-
mate of MRLR and an upper bound estimate of latency and CPU
load (Figures 4B,D,F). While the performance of Waitevent and
Wait1 further increased, MRLR of Wait0 decreased when num-
ber of threads was greater or equal to 15 and simulations stalled
when 25 threads were used. Polling performance decreased for
more than 10 threads and simulations stalled for 15, 20, and 25
threads (Figures 4B,D,F). CPU load of Polling and Wait0 strate-
gies increased linearly with the number of threads until for 10 and
more threads, where the maximum CPU load was observed. For
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the Waitevent and Wait1 strategies, CPU load remained at its low
level of below 200%, even for up to 25 threads (Figures 4E,F).
Therefore, for 10 and more threads, performance of the system
may be influenced by the insufficient processing resources.

3.2. STALLS OF THE FILTER PIPELINE
If the processing of one decoding step exceeds the amount of time
available during two consecutive decoding steps, data will accu-
mulate at the input ports of the filter pipeline and, therefore, the
system will eventually get increasingly delayed and run out of
memory. We will call this incident a stall (see section 2.4). We
investigated under which circumstances a stall can occur, when
the application requires the complete translation of the neuronal
signals to control signals (i.e. feature extraction and decoding)
to be performed every 32 ms. Such a decoding rate is typical for
continuous control BCI applications and lets the BCI user expe-
rience a smooth and virtually instantaneous control. For each
number of channels and sampling frequency, 10 simulations were
run. We assumed that a certain combination of number of chan-
nels and sampling frequency can be handled if no stalls were
detected in all ten repetitions. For all tested sampling frequen-
cies and for all tested numbers of channels, Fourier transform
algorithm could be handled by only one thread. Due to the com-
putationally more demanding Savitzky–Golay filter algorithm,
implemented as a forward and inverse FFT, the Savitzky–Golay
filter resulted in stalls for various parameter settings (Figure 5).
Stalls already occurred for moderate sampling frequencies and
for realistic number of channels if only one thread was used.
However, by increasing the number of threads, independent sub-
stream parallelization allowed us to handle an increasing number
of channels and higher sampling rates without stalls.

3.3. PERFORMANCE OF CLASSIFICATION/REGRESSION ALGORITHMS
We measured latencies for filter pipelines that implemented either
1 DOF regression (LF, KF and SVR) or binary classification

FIGURE 5 | Stalls for a filter pipeline implementing the Savitzky–Golay

algorithm and using the Waitevent waiting strategy, shown for different

channel number/sampling frequency combinations and different

numbers of threads (1–9). A black square indicates combinations for which
at least one out of ten simulations stalled, while white square stands for no
stalls. Numbers in black squares indicate how many stalls out of ten
simulations occurred.

(LDA and SVM) algorithms (see section 2.4.2 for details).
Measurements were made for different number of features, while
the sampling frequency was fixed at 1024 Hz. The Waitevent fil-
ter implementation was used for all of these simulations, since
it provides a good compromise between performance (latency
reduction) and efficient CPU usage (cf. section 3.1).

The latencies of the LF and the LDA algorithms stayed below
0.1 ms for up to 1024 features, increasing slowly with the num-
ber of features (Figures 6A,B) with a linear model fitting the
latencies well. The computation time of LF and LDA decoders
was negligible compared to the short-time Fourier transform fea-
ture extraction (which required a computation time of more than
15 ms with one thread, 1024 Hz sampling frequency and 1024
channels) when our test system is used. The measured latencies
of SVR increased linearly with the number of features and with
the number of support vectors (Figures 6D,E). The measured
latencies of SVM were almost identical to the latencies of SVR
(Figure S4). The latency values for SVM and SVR (Figures 6D–F)
were below 4 ms for all tested values of the number of features
(up to 1024) and support vectors (up to 1000), far below the time
needed for feature extraction. In summary, the parallelization of
LF, LDA, SVM and SVR is, at least with the parameters and hard-
ware considered here, not required. In contrast, the computation
times of the KF algorithm reached values similar to the feature
extraction for about 200 features (Figure 6C). For about 200 fea-
tures and more the latency of the KF algorithm is in the range
of the total time that is available for the decoding in a contin-
uous BCI applications. In such cases, parallelization of the KF
might thus be desirable. Due to the nature of the algorithm, KF
cannot be parallelized using the independent substream paral-
lelization suggested here. However, more complex parallelization
schemes of the underlying computations could be employed (e.g.
see Santos and Chu, 2003).

To estimate the latencies of the classification/regression algo-
rithms for parameter values (e.g. number of features or support
vectors) beyond the investigated values, we analyzed the com-
putations that underlie each algorithm and derived for each
algorithm a model that relates the latencies to the number of fea-
tures and support vectors (see section 2.4.3 for details). The free
model parameters were fitted to the measured latencies (Table 1,
Figure 6, Figure S4). Using these models, we predicted the max-
imum number of features that can be handled within a given
maximally allowed time by a tested decoding algorithm running
in a single thread. Assuming that the maximal latency of the
overall filter pipeline (feature extraction and decoding) should
not exceed 32 ms for a smooth control, we allowed 10 ms (about
one third) for the decoding algorithm, and allotted the remain-
ing 22 ms for the feature extraction, other computations and
as a safeguard against stalls. In these conditions, we can use
up to 5.7 · 106, 4.5 · 106, and 286 features for LF, LDA, and
KF, respectively and 57,625 and 57,958 features for SVR and
SVM, if 100 support vectors are used for decoding. This fur-
ther corroborates our finding that, in most currently realistic
scenarios, all decoding algorithms except the Kalman Filter do
not require parallelization. If the Kalman filter is used with hun-
dreds of features, parallelization of the KF algorithm will increas-
ingly become necessary to ensure smooth and instantaneous BCI
control.
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FIGURE 6 | Latencies for classification/regression algorithms. (A) LF, (B)

LDA, (C) KF, and (D–F) SVR. Crosses depict median latencies and error bars
show 25% and 75% percentiles. Solid lines show fits of algorithm specific
models to the measured values. (D) Latencies for the SVR algorithm as a

function of the number of features for ns = 1, 250, 500, 750, and 1000. (E)

Latencies for the SVR algorithm as a function of the number of support
vectors for nf = 32, 256, 512, 768, and 1024. (F) Latencies given by the model
of the SVR algorithm as a function of nf and ns.

Table 1 | Fitted parameter values of the models describing the

latencies of different classification/regression algorithms together

with their lower and upper 5% confidence interval (CI) bounds.

Decoder Coefficient Lower CI Value Upper CI

LF a (µs) 44.22 44.26 44.30

b (µs/feature) 0.00376 0.00382 0.00388

LDA a (µs) 44.92 44.96 45.01

b (µs/feature) 0.00478 0.00484 0.00490

KF a (µs) 236.82 238.74 240.66

c (µs/feature3) 0.0009230 0.0009231 0.0009233

SVR a (µs) 12.03 12.36 12.69

d (µs/(feature · vector)) 0.0038148 0.0038156 0.0038165

SVM a (µs) 12.66 12.98 13.31

d (µs/(feature · vector)) 0.0037928 0.0037936 0.0037945

4. DISCUSSION
In this article, we proposed a software architecture for BCI appli-
cations and evaluated its performance. The modular design of the
proposed architecture makes it easy to parallelize typical process-
ing steps of BCI applications by making use of multi-core com-
puter processors and multi-processor configurations, which are
nowadays available on standard desktop and laptop computers.
The proposed domain model makes the integration of any type

of processing algorithm simple. Algorithms are housed in a filter
implementation, general and reusable modules of our architec-
ture that enable immediate use of the parallelized data processing.
We showed that, by using the proposed software architecture, it
is simple to parallelize many time-consuming parts of the neu-
ronal data processing in typical BCI applications. Our results
demonstrate that using multiple threads in BCI signal process-
ing leads to a substantial reduction of computing time required
for one decoding step, further corroborating the findings of
Wilson and Williams (2009). Wilson et al. evaluated the effects of
multi-threading on computation time for two feature extraction
algorithms, in one case using independent substream paralleliza-
tion. We examined different implementations of multi-threading
for BCI systems, i.e. different waiting strategies, and showed that
the choice of the waiting strategy is crucial for CPU load and
latency reduction. This reduction in latency determines how fast
a BCI reacts to the user’s input, which can directly affect the BCI
performance: lower latencies can lead to improved performance,
while higher latencies can lead to deterioration of performance
(Cunningham et al., 2011). In addition, BCI user may himself
experience a control latency, which might reduce his motivation
and convenience. In contrast, experience of a quickly reactive,
smooth control may motivate the user. Moreover, by reducing the
latency, the remaining time allotted for one processing step can be
used to process recordings from additional channels, more signal
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features, signals recorded at higher sampling frequencies and to
decode using computationally more complex algorithms. All of
these possibilities can lead to an improvement in performance
(Bansal et al., 2012; Milekovic et al., 2013) and, therefore, might
substantially increase the user’s convenience with the BCI system.
Our findings also show that, for realistic number of channels and
a realistic sampling frequency, the BCI signal processing task can
already be too demanding for a standard desktop computer if no
parallelization is used. Hence, without parallelization the delay of
the BCI feedback would need to be increased, resulting in a less
smooth and delayed control.

By using the proposed software architecture, one can easily
split the time consuming parts of the processing into separate
threads: This is particularly straightforward for feature extrac-
tion algorithms, which often can be applied independently to each
channel (e.g. low-/band-/high-pass filter, Fourier transform). In
this case, each channel or different groups of channels could
be contained in separate filters and run in separate threads.
Our results show that among all waiting strategies Polling and
Wait0 provide overall the best scaling of latency reduction with
increasing number of threads. However, these two waiting strate-
gies result in the highest CPU load, leaving less computational
resources for additional applications to run in parallel. Moreover,
the number of threads has to be chosen carefully for these strate-
gies as the BCI application can stall if the number of threads
exceeds the number of available cores. In contrast, the waiting
strategy Waitevent is not stalling and performance is still increas-
ing even if the number of threads is higher than the number
of cores. Therefore, fine tuning of the number of threads to the
hardware specifications of the computing system is not neces-
sary for Waitevent (at least up to twice the number of threads than
the number of cores). In addition, Waitevent achieves the highest
latency reduction among all waiting strategies. While the scaling
of the latency with numbers of threads is slightly less good com-
pared to Polling and Wait0 this maximal latency reduction can be
obtained by using more threads than cores. As a further advantage
of Waitevent, the CPU load remains low even if high numbers of
threads were used. The Waitevent waiting strategy might therefore
be the preferred choice for many applications as it combines low
latencies, with low CPU usage and robustness against stalls.

In our study we improved BCI performance by applying
different waiting strategies to multi-threaded neuronal signal
processing and decoding. The proposed software architecture
is also useful for improving BCI performance as follows. (1)
For multi-DOF regression multiple LFs and SVRs can be used.
This increases the computation time approximately by a fac-
tor of the number of DOF. However, as the computations of
these separate LFs and SVRs are independent for each dimension,
they can, therefore, be parallelized in a straightforward way by
using the proposed independent substream parallelization with
each thread computing the LF/SVR for one dimension. Similarly,
multi-class classification with C classes using SVM can be handled
by C independent one-vs.-rest SVMs or by C · (C − 1)/2 pairwise
SVMs which are also independent. Multi-class LDA requires the
computation of C − 1 decision functions, all of which can be cal-
culated independently. Therefore, LF and SVM algorithms can
also be efficiently parallelized, using our software architecture.

(2) A boosting approach (Hastie et al., 2011), where many, even-
tually weak, decoders are combined into one stronger decoder,
promises to be suitable for BCI scenarios with noisy signals. As the
individual decoders process the signals independently, the boost-
ing approach can also directly be parallelized with our software
architecture. (3) Another scenario might be an adaptive decoder
(e.g. Shpigelman et al., 2009) where time-consuming adaptation
operations are run in one or more background threads in addition
to the thread running the decoder. (4) Neuronal signal decoding
can also be temporally independent, i.e. separate and indepen-
dent computations have to applied to the signals at different time
points and these computations could be carried out by separate
threads, see Wilson and Williams (2009).

It is possible to further parallelize the BCI application beyond
the parallelization approaches presented here. For example, the
processing on the level of the algorithm itself could be paral-
lelized, e.g. by using OpenMP (2013). Such approaches are more
complex than the solutions proposed here and require custom-
made solutions for each filter. Further optimization could also
be achieved by integrating computations on graphics process-
ing units into our software architecture, which provide fast and
optimized algorithms for matrix and vector operations (Wilson
and Williams, 2009). Some algorithms, for example the Kalman
filter, cannot directly benefit from independent substream par-
allelization as their most time-consuming computations are not
substream independent. For these algorithms, custom solutions
have to be implemented like using parallelized code for the
required matrix/vector operations, e.g. Cholesky factorization as
described in Santos and Chu (2003).

In summary, the proposed software architecture substantially
increases the computational power available for BCI signal pro-
cessing while reducing latency. The architecture runs on standard
desktop PCs and laptops and makes use of their multi-core/multi-
processor hardware. The effects of waiting strategies on latency
and CPU load were evaluated. The proposed software architec-
ture’s modular design enables BCI researchers to quickly modify,
extend and reuse existing algorithms, as well as to implement
new algorithms for neuronal signal processing. The algorithms
immediately benefit from parallelization without requiring the
programmer to possess any knowledge about multi-threaded
programming.
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SUPPLEMENTARY MATERIAL
The following Figures S1–S3 depict median latencies, MRLR and
CPU load as a function of the number of threads for differ-
ent sampling frequencies (256–1024 Hz) and different number of
channels (256–1024). All graphs show the results for the short-
time Fourier transform algorithm. Independent of sampling rate
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and channel count, performance increased with increasing num-
ber of threads. Additionally, for all investigated sampling frequen-
cies and number of channels the waiting strategy Waitevent yielded
the best compromise between low-latency and low CPU usage.
Hence, these figures demonstrate that the results presented in
section 3.1 are valid for a wide range of different sampling fre-
quencies and number of channels. Figure S4 demonstrates that
the computing times of support vector machines (SVM; for classi-
fication) are very similar to the computing times of support vector
regression (SVR; for regression) shown in Figures 6D–F.

The Supplementary Material for this article can be
found online at: http://www.frontiersin.org/journal/
10.3389/fneng.2014.00001/abstract

Figure S1 | Latency of the filter pipeline implementing short-time Fourier

transform algorithm for different waiting strategies and numbers of

threads. Each subplot shows median of latencies (lines) with 25% and

75% percentiles (error bars) for one combination of sampling frequency

and number of channels.

Figure S2 | MRLR for the filter pipeline implementing the short-time

Fourier transform algorithm for different waiting strategies and numbers

of threads. Each subplot shows MRLR (lines) with 25% and 75%

percentiles (error bars) for one combination of sampling frequency and

number of channels.

Figure S3 | CPU load of our test computer running data source simulator,

module that receives the processed data and the filter pipeline

implementing the short-time Fourier transform algorithm for different

waiting strategies and number of threads. Each subplot shows median of

CPU load (lines) with 25% and 75% percentiles (error bars) for one

combination of sampling frequency and number of channels.

Figure S4 | Latencies for the filter pipeline implementing the SVM

algorithm. Markers show median of measured latencies with error bars

showing the 25% and 75% percentiles. Solid lines show latencies

predicted by algorithm specific models. Models in (A) used the SVM

algorithm with 1, 250, 500, 750, and 1000 support vectors. Models in (B)

used the SVM algorithm with 32, 256, 512, 768, and 1024 features as

input. (C) Model prediction of SVM latencies in milliseconds (numbers on

the solid lines) as a function of number of features and number of support

vectors. Model assumes a linear increase of latency with the product of ns

and nf.

REFERENCES
Allen, J. (1977). Short term spectral analysis, synthesis, and modification by discrete

fourier transform. IEEE Trans. Acoust. Speech Signal Process. 25, 235–238. doi:
10.1109/TASSP.1977.1162950

Ang, K. K., Chin, Z. Y., Zhang, H., and Guan, C. (2008). “Filter bank
common spatial pattern (fbcsp) in brain-computer interface,” in IEEE
International Joint Conference on Neural Networks, 2008. IJCNN 2008. (IEEE
World Congress on Computational Intelligence) (Hong Kong), 2390–2397. doi:
10.1109/IJCNN.2008.4634130

Bansal, A. K., Arjun, K., Truccolo, W., Vargas-Irwin, C. E., and Donoghue, J. P.
(2012). Decoding 3D reach and grasp from hybrid signals in motor and premo-
tor cortices: spikes, multiunit activity, and local field potentials. J. Neurophysiol.
107, 1337–1355. doi: 10.1152/jn.00781.2011

Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kubler,
A., et al. (1999). A spelling device for the paralysed. Nature 398, 297–298. doi:
10.1038/18581

Blumberg, J., Rickert, J., Waldert, S., Schulze-Bonhage, A., Aertsen, A., and
Mehring, C. (2007). “Adaptive classification for brain computer interfaces,”
in Conference Proceedings: Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. IEEE Engineering in Medicine

and Biology Society. Conference (Lyon), 2536–2539. doi: 10.1109/IEMBS.2007.
4352845

Booch, G., Rumbaugh, J., and Jacobson, I. (2005). Unified Modeling Language
User Guide. Addison-Wesley object technology series, 2nd Edn. Reading, MA:
Addison-Wesley.

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recogni-
tion. Data Min. Knowl. Discov. 2, 121–167. doi: 10.1023/A:1009715923555

Carmena, J. M., Lebedev, M. A., Crist, R. E., O’Doherty, J. E., Santucci, D. M.,
Dimitrov, D. F., et al. (2003). Learning to control a brain-machine interface
for reaching and grasping by primates. PLoS Biol. 1:193–208. doi: 10.1371/jour-
nal.pbio.0000042

Chang, C., and Lin, C. (2011). LIBSVM: a library for support vector machines.
ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27. Available online at: http://www.

csie.ntu.edu.tw/~cjlin/libsvm
Collinger, J. L., Wodlinger, B., Downey, J. E., Wang, W., Tyler-Kabara, E. C., Weber,

D. J., et al. (2012). High-performance neuroprosthetic control by an individual
with tetraplegia. Lancet 381, 557–564. doi: 10.1016/S0140-6736(12)61816-9

CorTec Homepage (2013). CorTec homepage, source code example from the
Freiburg BCI software. Available online at: http://cortec-neuro.com/unternehm
en/fe/fe-literatur/filter-pipeline. Accessed 30 May 2013.

Cunningham, J. P., Nuyujukian, P., Gilja, V., Chestek, C. A., Ryu, S. I., and Shenoy,
K. V. (2011). A closed-loop human simulator for investigating the role of feed-
back control in brain-machine interfaces. J. Neurophysiol. 105, 1932–1949. doi:
10.1152/jn.00503.2010

Fowler, M. (2002). Patterns of Enterprise Application Architecture. Boston, MA:
Addison-Wesley Longman Publishing Co., Inc.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. M. (1994). Design Patterns:
Elements of Reusable Object-Oriented Software. Boston, MA: Addison-Wesley
Professional.

Gao, Y., Black, M. J., Bienenstock, E., Wu, W., and Donoghue, J. P. (2003).
“A quantitative comparison of linear and non-linear models of motor
cortical activity for the encoding and decoding of arm motions,” in
First International IEEE EMBS Conference on Neural Engineering, 2003.
Conference Proceedings (Providence, RI), 189–192. doi: 10.1109/CNE.2003.
1196789

Gibbons, J. D., and Chakraborti, S. (2011). Nonparametric Statistical Inference,
Fourth Edition: Revised and Expanded, 5th Edn. Boca Raton, FL: Chapman &
Hall/CRC Press, Taylor & Francis Group.

Gough, B. (2009). GNU Scientific Library Reference Manual, 3rd Edn. Bristol:
Network Theory Ltd.

Gunduz, A., Sanchez, J. C., Carney, P. R., and Principe, J. C. (2009). Mapping
broadband electrocorticographic recordings to two-dimensional hand trajec-
tories in humans: motor control features. Neural Netw. 22, 1257–1270. doi:
10.1016/j.neunet.2009.06.036

Hastie, T., Tibshirani, R., and Friedman, J. (2011). The Elements of Statistical
Learning. Springer series in statistics. New York, NY: Springer.

Haykin, S. S. (2001). Kalman Filtering and Neural Networks. New York, NY: John
Wiley & Sons, Inc. doi: 10.1002/0471221546

Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan,
A. H., et al. (2006). Neuronal ensemble control of prosthetic devices by a human
with tetraplegia. Nature 442, 164–171. doi: 10.1038/nature04970

Hollander, M., and Douglas, A. W. (1999). Nonparametric Statistical Methods.
Wiley series in probability and statistics, 2nd Edn. New York, NY: John Wiley
& Sons.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems.
J. Basic Eng. 82, 35–45. doi: 10.1115/1.3662552

Kim, S. P., Simeral, J. D., Hochberg, L. R., Donoghue, J. P., Friehs, G. M., and Black,
M. J. (2011). Point-and-click cursor control with an intracortical neural inter-
face system by humans with tetraplegia. IEEE Trans. Neural Syst. Rehabil. Eng.
19, 193–203. doi: 10.1109/TNSRE.2011.2107750

Marr, D. T., Binns, F., Hill, D. L., Hinton, G., Koufaty, D. A., Miller, A. J., et al.
(2002). Hyper-threading technology architecture and microarchitecture. Intel
Technol. J. 6, 1–12.

Milekovic, T., Ball, T., Schulze-Bonhage, A., Aertsen, A., and Mehring, C. (2013).
Detection of error related neuronal responses recorded by electrocorticog-
raphy in humans during continuous movements. PLoS ONE 8:e55235. doi:
10.1371/journal.pone.0055235

Milekovic, T., Fischer, J., Pistohl, T., Ruescher, J., Schulze-Bonhage, A., Aertsen, A.,
et al. (2012). An online brain-machine interface using decoding of movement

Frontiers in Neuroengineering www.frontiersin.org January 2014 | Volume 7 | Article 1 | 10

http://www.frontiersin.org/journal/10.3389/fneng.2014.00001/abstract
http://www.frontiersin.org/journal/10.3389/fneng.2014.00001/abstract
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive
http://cortec-neuro.com/unternehmen/fe/fe-literatur/filter-pipeline
http://cortec-neuro.com/unternehmen/fe/fe-literatur/filter-pipeline


Fischer et al. Low-latency processing for BCIs

direction from the human electrocorticogram. J. Neural Eng. 9, 046003. doi:
10.1088/1741-2560/9/4/046003

Nicolas-Alonso, L. F., and Jaime, G. G. (2012). Brain computer interfaces, a review.
Sensors 12, 1211–1279. doi: 10.3390/s120201211

Nicolelis, M. A. L., Dimitrov, D., Carmena, J. M., Crist, R., Lehew, G.,
Kralik, J. D., et al. (2003). Chronic, multisite, multielectrode recordings
in macaque monkeys. Proc. Natl. Acad. Sci. U.S.A. 100, 11041–11046. doi:
10.1073/pnas.1934665100

OpenMP (2013). OpenMP, the OpenMP API Specification for Parallel Programming.
Available online at: http://openmp.org. Accessed 30 May 2013.

Rickert, J., Cardoso de Oliveira, S., Vaadia, E., Aertsen, A., Rotter, S., and
Mehring, C. (2005). Encoding of movement direction in different frequency
ranges of motor cortical local field potentials. J. Neurosci. 25, 8815–8824. doi:
10.1523/JNEUROSCI.0816-05.2005

Roscoe, A. W., Hoare, C. A. R., and Bird, R. (1997). The Theory and Practice of
Concurrency. Upper Saddle River, NJ: Prentice Hall PTR.

Rotermund, D., Ernst, U., and Pawelzik, K. (2006). Towards on-line adaptation of
neuro-prostheses with neuronal evaluation signals. Biol. Cybernet. 95, 243–257.
doi: 10.1007/s00422-006-0083-7

Santos, E. E., and Chu, P. Y. P. (2003). Efficient and optimal parallel algo-
rithms for cholesky decomposition. J. Math. Modell. Algor. 2, 217–234. doi:
10.1023/B:JMMA.0000015832.41014.ed

Savitzky, A., and Golay, M. J. E. (1964). Smoothing differentiation of data
by simplified least squares procedures. Anal. Chem. 36, 1627–1639. doi:
10.1021/ac60214a047

Schalk, G., Miller, K. J., Anderson, N. R., Wilson, J. A., Smyth, M. D., Ojemann,
J. G., et al. (2008). Two-dimensional movement control using electrocortico-
graphic signals in humans. J. Neural Eng. 5, 75. doi: 10.1088/1741-2560/5/1/008

Shih, J. J., Krusienski, D. J., and Wolpaw, J. R. (2012). Brain-computer interfaces in
medicine. Mayo Clin. Proc. 87, 268–279. doi: 10.1016/j.mayocp.2011.12.008

Shpigelman, L., Lalazar, H., and Vaadia, E. (2009). “Kernel-arma for hand tracking
and brain-machine interfacing during 3d motor control,” in Advances in Neural
Information Processing Systems 21, eds D. Koller, D. Schuurmans, Y. Bengio, and
L. Bottou (Cambridge, MA: The MIT Press), 1489–1496.

Stroustrup, B. (2000). The C++ Programming Language, 3rd Edn. Boston, MA:
Addison-Wesley Longman Publishing Co., Inc.

Vapnik, V. N., and Chervonenkis, A. Y. (1974). Theory of Pattern Recognition [in
Russian]. Moscow: Nauka.

Wilson, J. A., and Williams, J. C. (2009). Massively parallel signal pro-
cessing using the graphics processing unit for real-time brain-computer
interface feature extraction. Front. Neuroeng. 2:11. doi: 10.3389/neuro.16.
011.2009

Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., and Vaughan,
T. M. (2002). Brain-computer interfaces for communication and control. Clin.
Neurophysiol. 113, 767–791. doi: 10.1016/S1388-2457(02)00057-3

Wolpaw, J. R., and McFarland, D. J. (2004). Control of a two-dimensional move-
ment signal by a noninvasive brain-computer interface in humans. Proc. Natl.
Acad. Sci. U.S.A. 101, 17849–17854. doi: 10.1073/pnas.0403504101

Woon, W. L., and Cichocki, A. (2007). Novel features for brain-computer interfaces.
Intell. Neurosci., 2007, 7. doi: 10.1155/2007/82827

Wu, W., and Hatsopoulos, N. G. (2008). Real-time decoding of nonstationary
neural activity in motor cortex. IEEE Trans. Neural Syst. Rehabil. Eng. 16,
213–222. doi: 10.1109/TNSRE.2008.922679

Conflict of Interest Statement: Jörg Fischer is employed by CorTec GmbH and
owns shares of this company. The other authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Received: 16 August 2013; accepted: 07 January 2014; published online: 28 January
2014.
Citation: Fischer J, Milekovic T, Schneider G and Mehring C (2014) Low-latency
multi-threaded processing of neuronal signals for brain-computer interfaces. Front.
Neuroeng. 7:1. doi: 10.3389/fneng.2014.00001
This article was submitted to the journal Frontiers in Neuroengineering.
Copyright © 2014 Fischer, Milekovic, Schneider and Mehring. This is an open-
access article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neuroengineering www.frontiersin.org January 2014 | Volume 7 | Article 1 | 11

http://dx.doi.org/10.3389/fneng.2014.00001
http://dx.doi.org/10.3389/fneng.2014.00001
http://dx.doi.org/10.3389/fneng.2014.00001
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive

	Low-latency multi-threaded processing of neuronal signals for brain-computer interfaces
	Introduction
	Methods
	Architecture
	Degrees of BCI Parallelization
	Filter Pipeline Implementation
	Simulation Setup
	Feature extraction algorithms
	Classification and regression algorithms
	Complexity of classification and regression algorithms

	Statistical Analysis

	Results
	Performance of Parallelization
	Stalls of the Filter Pipeline
	Performance of Classification/Regression Algorithms

	Discussion
	Acknowledgments
	Supplementary Material
	References


