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INTRODUCTION

The relationship of the structural integrity of white matter tracts and cortical activity to
motor functional outcomes in stroke patients is of particular interest in understanding
mechanisms of brain structural and functional changes while recovering from stroke. This
study aims to probe these underlying mechanisms using diffusion tensor imaging (DTI) and
fMRI measures. We examined the structural integrity of the posterior limb of the internal
capsule (PLIC) using DTl and corticomotor activity using motortask fMRI in stroke patients
who completed up to 15 sessions of rehabilitation therapy using Brain-Computer Interface
(BCI) technology. We hypothesized that (1) the structural integrity of PLIC and corticomotor
activity are affected by stroke; (2) changes in structural integrity and corticomotor activity
following BCl intervention are related to motor recovery; (3) there is a potential relationship
between structural integrity and corticomotor activity. We found that (1) the ipsilesional
PLIC showed significantly decreased fractional anisotropy (FA) values when compared to
the contralesional PLIC; (2) lower ipsilesional PLIC-FA values were significantly associated
with worse motor outcomes (i.e., ipsilesional PLIC-FA and motor outcomes were positively
correlated.); (3) lower ipsilesional PLIC-FA values were significantly associated with greater
ipsilesional corticomotor activity during impaired-fingertapping-task fMRI (i.e., ipsilesional
PLIC-FA and ipsilesional corticomotor activity were negatively correlated), with an overall
bilateral pattern of corticomotor activity observed; and (4) baseline FA values predicted
motor recovery assessed after BCI intervention. These findings suggest that (1) greater
vs. lesser microstructural integrity of the ipsilesional PLIC may contribute toward better
vs. poor motor recovery respectively in the stroke-affected limb and demand lesser vs.
greater cortical activity respectively from the ipsilesional motor cortex; and that (2) PLIC-
FA is a promising biomarker in tracking and predicting motor functional recovery in stroke
patients receiving BCl intervention.

Keywords: DTI, FA, fMRI, motor recovery, stroke rehabilitation, BCI

white matter structural integrity and functional cortical activity of

Studies have suggested that motor recovery after stroke is related
to the structural remodeling of white matter tracts (Liu et al.,
2008; Schaechter et al., 2009) and the reorganization of corti-
cal activity (Dijkhuizen et al., 2001; Jaillard et al., 2005; Grefkes
et al., 2008) in the ipsilesional and contralesional hemispheres.
Little is known, however, about the relationship between the

the sensorimotor region and how these two factors interact with
motor recovery in stroke patients. Therefore, a multimodal assess-
ment of structure-function relationships may provide insights for
examining factors influencing stroke recovery. Noninvasive brain
imaging methods have been widely applied for understanding
brain recovery following stroke. Diffusion tensor imaging (DTI)
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is one of these imaging methods, which allows for quantitative
evaluations of the structural integrity of white matter tracts after a
stroke (Werring et al., 2000; Stinear et al., 2007; Yu et al., 2009).
DTI-derived measures have been shown as potential biomark-
ers used for tracking motor impairment (Schaechter et al., 2009;
Lindenberg et al., 2010; Sterr et al., 2010; Yeo et al.,, 2010;
Borich et al., 2012; Chen and Schlaug, 2013) and motor recovery
(Liang et al., 2009) after stroke. DTI has also been investigated
for its prognostic potential, with DTI measures assessed dur-
ing the acute and sub-acute stages of stroke shown to predict
motor impairments observed 1-7 months later (Cho et al., 2007;
Koyama et al., 2012, 2013a,b; Groisser et al., 2014). A recent
study shows evidence that DTI measures may be used as poten-
tially predictive of individual recovery in stroke patients receiving
newer neurorehabilitative therapies, such as transcranial direct
current stimulation (Lindenberg et al., 2012). Besides DTT, fMRI
is another non-invasive neuroimaging technique that has been
used to gain better understanding of the processes of brain func-
tional reorganization accompanying motor recovery after stroke
(Calautti and Baron, 2003; Riecker et al., 2010; Garrison et al.,
2013; Havsteen et al., 2013; Favre et al.,, 2014; Zhang et al,,
2014). Measures derived from fMRI have also been shown as
potential biomarkers to track recovery, with correlations between
functional changes and fMRI measures demonstrated with treat-
ments such as Brain-Computer Interface (BCI) therapy (Mukaino
et al., 2014), constrain-induced movement therapy (Murayama
et al., 2011; Kononen et al., 2012) and motor imagery therapy
(Sun et al., 2013).

Fewer studies have taken a multimodal approach to charac-
terize brain recovery after stroke by combining information from
both DTT and fMRI measures, with a few attempts existing only as
case studies (Jang et al., 2005; Caria et al., 2011). One recent study
found that DTI-derived measures correlated more strongly with
clinical outcomes than measures derived from fMRI (Qiu et al.,
2011) and another study reported both DTI and fMRI derived
measures correlated with motor outcomes (Chen and Schlaug,
2013). Correlations have also been identified between DTI and
fMRI measures, with greater damage to white matter tracts show-
ing an association with increased bilateral recruitment of motor
areas and poorer motor performance in stroke patients (Wang
et al., 2012), although there is also evidence that such correla-
tions may be modulated after the functional electrical stimulation
(FES) training (Wei et al., 2013).

In this study, one main goal is to investigate the relation-
ship between DTI and fMRI measures and further investigate
the relative contribution of each to the tracking and predicting
of motor functional recovery in a group of stroke patients with
persistent upper extremity impairment receiving BCI therapy.
In the majority of stroke patients, the upper extremity is more
severely involved than the lower limb, as most strokes occur in
the territory of the middle cerebral artery (Shelton and Reding,
2001). Stroke that affects the posterior limb of the internal cap-
sule (PLIC) has been reported to be significantly associated with
poor recovery of isolated upper-limb movements (Shelton and
Reding, 2001) and overall motor outcomes (Puig et al., 2011).
Given the significance of PLIC involved in motor recovery, one
specific aim of this study is to evaluate the stroke-induced changes

in structural integrity of the PLIC using DTI fractional anisotropy
(FA) and to investigate if these changes are related to motor
recovery. Corticomotor activation is a fMRI way to examine the
“Integrity” of corticomotor functions. In this study corticomo-
tor activity is evaluated using motor-task fMRI and quantified by
counts of statistically significantly active voxels within the ipsile-
sional and contralesional motor cortices. Another specific aim of
this study is to evaluate the changes in corticomotor activity, and
to further examine if these changes are related to motor recov-
ery. Combining both DTI and fMRI analysis, we examine the
potential relationship between structural integrity of PLIC and
functional integrity of motor cortex, and examine how this rela-
tionship interact with motor recovery in patients receiving BCI
intervention.

MATERIALS AND METHODS

STUDY DESIGN

A permuted-block design accounting for gender, stroke chronic-
ity and severity of motor impairment was used to randomize
patients to either a BCI intervention group or a crossover con-
trol group. Neuroimaging data and motor outcome assessments
were acquired at four time points: before the start of interven-
tion (i.e., pre-intervention), at the midpoint of intervention (i.e.,
mid-intervention), upon completion of intervention phase (i.e.,
immediately post-intervention), and 1 month following the last
session of BCI intervention (i.e., 1-month-post-intervention).
Patients in the BCI intervention group began to receive BCI inter-
vention soon after recruitment. Patients in the control group first
received three additional neuroimaging scans and motor outcome
assessments during the control phase in which no BCI interven-
tion was administered. These three additional assessments were
acquired at intervals analogous to those administered during the
BCI intervention phase. Upon completion the final-control neu-
roimaging and motor outcome assessment, these patients were
crossed over to complete the BCI intervention phase. Table 1
illustrates the time frame of the study design. All current find-
ings are based on neuroimaging and motor outcome measure-
ments acquired from 9 patients during the BCI intervention

phase.

PATIENT CHARACTERISTICS

Sixteen patients with persistent upper extremity motor impair-
ment resulting from first-ever ischemic or hemorrhagic stroke
were contacted regarding study participation in an on-going
study investigating effects of EEG-BCI driven FES therapy of
the impaired hand in stroke patients. This report is based on 9
patients who have completed the study (6 M, mean age of 61.9
years, chronicity of stroke range 2-23 months).

The inclusion criteria were: (1) ages 18 years and above; (2)
no known neurologic, psychiatric or developmental disability;
(3) persistent upper-extremity motor impairment resulting from
ischemic or hemorrhagic stroke. The exclusion criteria were: (1)
contraindications for MRI; (2) allergy to electrode gel, surgical
tape and metals that would be used in BCI intervention; (3) under
treatment for infectious disease or having apparent oral lesions
or inflammation. This study was approved by the University of
Wisconsin-Madison’s Health Sciences Institutional Review Board.
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Table 1| Study design.
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Table 2 | Patient profiles (age, gender, time since stroke, baseline NIHSS, baseline NIHSS-motor arm and stroke location).

Subject ID Age Gender Months since stroke Baseline NIHSS NIHSS-motor arm Stroke location
Cl0o01 52 M 15 8 4 Left MCA

Cl002 62 F 16 8 4 Left precentral gyrus
Cl003 68 M 3 0 0 Left frontal lobe
Cl004 66 M 23 6 1 Left MCA

Cl005 73 F 2 0 0 Left MCA

CT0oO1 75 F 23 7 3 Right putamen
CT002 55 M 17 0 0 Left basal ganglia
CT003 49 M 6 3 1 Right pons
CT004 57 M 13 2 1 Left MCA

Mean + SD 61.89 £ 9.25 3F/6M 13.11 + 7.90 3.78 £ 3.49 1.56 + 1.67 3 sub-cortical

MCA, Middle Cerebral Artery.

All patients provided written informed consent. Patient profiles
are shown in Table 2.

BCI INTERVENTION PROCEDURES

All patients were administered up to 15 two-hour sessions of
interventional BCI therapy (13.11 & 2.20 sessions). Figure S1
illustrates a conceptual schematic of the system. A detailed
description of the procedures followed during each session is pro-
vided in the Supplementary Material. These sessions took place
over a period of up to 6 weeks with two to three intervention
sessions per week.

MOTOR FUNCTIONAL OUTCOME MEASURES

All patients were assessed for clinical stroke severity in addition to
neurologic examination at four time points throughout the inter-
vention (Table 1). The neurologic deficit was evaluated on the
basis of the severity of motor paresis using the National Institute
of Health Stroke Scale (NTHSS) (Brott et al., 1989). All patients’
motor function of the impaired arm was assessed using a neu-
ropsychological battery which included objective measures such
as the Action Research Arm Test (ARAT) (Carroll, 1965; Lang
et al., 2006) and subjective measures such as the Stroke Impact

Scale-Hand function domain (Duncan et al., 1999). The ARAT
is a standardized measure of upper-limb functioning assessing
grip, grasp, pinch and gross motor performance. Total ARAT
scores ranged from 0 to 57. The Stroke Impact Scale (SIS) hand
function subscale (SIS-Hand) was used to assess self-reported sat-
isfaction with hand use and to evaluate the relationship between
SIS-Hand scores and neuroimaging measures. Raw scores of SIS-
Hand assessment were transformed using the following algorithm
(Sullivan, 1995): Transformed scale = 100 x [(actual raw score —
lowest possible raw score)/possible raw score]. The transformed
scale of SIS-Hand score ranged from 0 to 100. All clinical assess-
ments of the stroke-affected limb for each patient at each time
point are shown in Table S3.

NEUROIMAGING DATA

Neuroimaging data acquisition and processing are described in
detail in the Supplementary Material. FA values were computed
for the ipsilesional and contralesional PLIC. In addition, asymme-
try indices between the ipsilesional and contralesional PLIC-FA
(aFA) were calculated as aFA = (FAcontra — FAjpsi)/(FAcontra +
FAjpsi) (Stinear et al., 2007; Schaechter et al., 2009; Lindenberg
etal., 2010). This yields a value of aFA ranging from —1.0 to +1.0
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with positive values indicating reduced FA in the ipsilesional
PLIC, a value of 0 indicating symmetrical FA measurements
from the two hemispheric PLIC, and a negative value indicating
reduced FA in the contralesional PLIC.

All patients performed a block-design sequential finger tap-
ping task during fMRI scans that consisted of alternating 20-s
blocks of tapping vs. rest. Patients were cued to rest or to tap
the fingers of one hand sequentially on a button box, using either
visual or tactile (for visually impaired patients) cues. All patients
underwent two fMRI scans using this paradigm —once when tap-
ping with the impaired hand (passive tapping if unable to generate
sufficient tapping independently) and again when tapping with
the unimpaired hand. Patients were instructed to hold their heads
still throughout the scans, and sufficient padding was provided to
discourage head movement.

In the passive motor tasks, patients were assisted by the inves-
tigator in finger movements (flexion-extension) to complete the
finger tapping tasks according to the experimental paradigm
design.

MOTOR-TASK GENERATED ACTIVE VOXELS

A previously published mask of the cortical components of the
motor network was used to identify statistically significantly
active voxels in the motor cortex during finger tapping. This
mask consisted of the cortical components of a previously iden-
tified motor network derived from an independent component
analysis (ICA) of whole-brain resting-state fMRI (rs-fMRI) scans
(Shirer etal., 2012). These independent components were visually
selected based on previous reports and then thresholded indepen-
dently and arbitrarily to generate distinct moderately sized ROIs
in the cortex and subcortical gray matter (voxels = 25) (Shirer
et al., 2012). It is worth noting that although rs-fMRI investi-
gates synchronous activations between brain regions occurring in
the absence of a task or stimulus, these synchronous activations
have been observed in somatosensory, visual, attention and other
higher-order brain areas and have shown close correspondence
between the independent analyses of resting and activation brain
dynamics (Biswal et al., 1995; Smith et al., 2009). In our study,
only the cortical components from the motor network for each
hemisphere were used for evaluation of corticomotor activity.
Once fMRI data was processed (see Supplementary Material), this
motor cortical mask was resampled into subject space and then
applied to the functional data to identify those statistically signif-
icantly active voxels within the motor cortex using a threshold of
t=4(p < 0.0001).

STATISTICAL ANALYSIS

Considering the relatively small sample size (1 =9), we used
non-parametric statistical tests for the analyses. The Wilcoxon
signed-rank test was used to compare ipsilesional and contrale-
sional PLIC FA values and to compare corticomotor fMRI activity
between the two motor cortices. The Spearman rank correlation
test was used for analyses of neuroimaging and motor outcome
measurements. To take advantage of a longitudinal, repeated-
measurement design of this study, we used generalized estimating
equations (GEE) for regression analyses. GEE analyses use the
generalized linear model to estimate more efficient and unbiased

regression parameters relative to ordinary least squares regression
(Ballinger, 2004). Most importantly, the GEE analyses take into
account the dependency of repeated measurements from the same
patient in the regression analysis. In addition, ANOVAs were used
to examine how factors of time (pre-, mid-, immediately post-,
and 1-month-post), PLIC (contralesional vs. ipsilesional side)
and interaction between time and PLIC affecting DTI and fMRI
measures. All statistical analyses were performed using RStudio
(version 0.97.318). A p value less than or equal to 0.05 was
considered statistically significant.

RESULTS
PATIENT CHARACTERISTICS AND CLINICAL MEASURES
Patient characteristics are summarized in Table 2. Average age was
61.89 years (SD = 9.25 years); average time from stroke onset was
13.11 months (SD = 7.90 months). There were no significant dif-
ferences in terms of left or right hemisphere stroke (p = 0.14),
cortical or non-cortical stroke (p = 0.36), or gender (p = 0.36).
Standard clinical MRI was used to assess damage to PLIC by the
neuroradiologist Dr. Prabhakaran. Six of the nine patients showed
damage to PLIC due to stroke. Patient CT004 with a left middle
cerebral artery (MCA) territory infarct showed minimal damage
to PLIC. Patients CI003 with a small left frontal lobe infarct and
CT003 with a right pontine infarct did not show damage to PLIC.
Clinical motor outcome measures are summarized in Table S3.
The ARAT scores varied from zero, indicating no ability to per-
form, to a maximum of 57, indicating unimpaired performance.
The SIS measure of hand function varied widely, with a value of
zero indicating a patient reporting no ability to use the impaired
hand, and higher positive values indicating decreasing levels of
difficulty using the impaired hand in daily activities such as car-
rying heavy objects, turning a doorknob, opening a can or jar,
tying a shoe lace and picking up a dime.

RELATIONSHIP OF PLIC-DTI MEASURES AND MOTOR OUTCOMES

An ANOVA was computed to examine the main effects of time
and PLIC (contralesional vs. ipsilesional side) as well as time x
PLIC interaction (Figure 1A). Only PLIC factor was significant
(p = 5.56e-07), and this was further validated with a Wilcoxon
signed-rank test. Ipsilesional PLIC FA values were significantly
lower when compared to the contralesional side (Wilcoxon
signed-rank test: p < 0.05) except at time point 3 (immediately
post-intervention) with a p-value equal to 0.055 trending toward
significance (Figure 1B).

To assess the relationship between PLIC-FA values and motor
outcome measures, a Spearman rank correlation test was first per-
formed on the longitudinal data acquired from all patients and
from all time points. The results suggested that higher ARAT
scores and higher SIS-Hand scores were significantly correlated
with higher FA values in ipsilesional PLIC (Figure2). PLIC
FA asymmetry (aFA) was negatively correlated with ARAT and
SIS-Hand scores (Figure 2). A secondary statistical analysis, the
GEE analysis, was further computed to control for the depen-
dence of repeated measurements from each patient across time
(Table 3). This analysis confirmed that the relationship observed
between PLIC-FA and motor outcomes remained statistically sig-
nificant. In addition, stroke severity as assessed by the NIHSS

Frontiers in Neuroengineering

www.frontiersin.org

July 2014 | Volume 7 | Article 31 | 4


http://www.frontiersin.org/Neuroengineering
http://www.frontiersin.org
http://www.frontiersin.org/Neuroengineering/archive

Song et al.

Neuroimaging correlates of stroke recovery

A
a===="0a
o = Eg= = 5 5.
n -
< E Contra
B |psi
<
E' o
S}
-
o
[ = ]
<
o
*
w
g_ ./ \.\.
1 2 3 4

Time points

FIGURE 1| FA values compared between the ipsilesional and
contralesional sides of the PLIC. (A) PLIC-FA changes across time
compared between two hemispheres using ANOVA tests. Contra,
contralesional PLIC; lIpsi, ipsilesional PLIC. (B) Boxplots showed
significantly lower FA in ipsilesional PLIC when compared to
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Table 3 | Correlation analyses of DTI, fMRI and motor recovery measures.

(A) SPEARMAN RANK CORRELATION TESTS ON NEUROIMAGING AND MOTOR OUTCOME MEASURES

Motor outcomes Spearman rank correlation test FA aFA Voxel counts

SIS-Hand correlation coefficient 0.795 —0.640 —0.463
p-value 2.566e-07 0.0002 0.012

ARAT correlation coefficient 0.768 —0.628 -0.414
p-value 1.135e-06 0.0003 0.026

(B) GEE REGRESSION ANALYSES BETWEEN NEUROIMAGING AND MOTOR OUTCOME MEASURES

Motor outcomes GEE

FA aFA Voxel counts

SIS-Hand Regression coefficient
p-value
ARAT Regression coefficient

p-value

229.89
1e-06
12793
0.001

—138.47
6.86e-10

—116.50
6.68e-09

—0.01
0.55
—0.03
0.27

was significantly and negatively correlated with ipsilesional
PLIC-FA values (Figure 3; GEE regression coefficient = —33.57,
p-value = 3.69¢-04).

PREDICTION OF MOTOR FUNCTION RECOVERY WITH BASELINE
NEUROIMAGING MEASURES

The linear regression analyses using a least-square fitting method
revealed that baseline ipsilesional PLIC-FA correlated with
the post-intervention ARAT and SIS-Hand scores (Figure 4;
r-squared values > 0.7). Ipsilesional PLIC FA values measured
at pre-intervention (baseline) were significantly and positively
correlated with motor outcome scores measured immediately
post- and 1-month-post intervention (p-value = 0.05). The
same approach was applied to fMRI voxel counts, which did not
reveal a predictive relationship with this fMRI measure on motor
recovery.

RELATIONSHIP OF CORTICOMOTOR ACTIVITY AND MOTOR OUTCOMES
For the impaired finger tapping task, counts of active voxels
were not significantly different between the two motor cortices
(Wilcoxon signed-rank test: p = 0.28) (Figure 5A). Note, pas-
sive motor-task fMRI data was collected for patients CI001,
CI002, CI004, CT001, and CT003 who were unable to perform
motor tasks during fMRI scans. For the unimpaired finger tap-
ping task, active voxel counts were significantly greater within
contralesional motor cortex compared with the ipsilesional side
(Wilcoxon signed-rank test: p = 0.038) (Figure 5B). An ANOVA
was computed to examine the effects of time and PLIC (contrale-
sional vs ipsilesional side) and the time X lesion interaction for
both fMRI measures from impaired and unimpaired finger tap-
ping. The results revealed no significant changes in corticomotor
activity due to any of these factors (Figures 5C,D). However, the
influence of PLIC trended toward significance (p = 0.064) for the
unimpaired finger tapping task.

Given the changes observed in corticomotor activity across
time for impaired finger tapping compared to unimpaired
finger tapping, another ANOVA was computed to test the
effects of time (pre-, mid-, immediately post- and 1-month-
post), PLIC (contralesional vs. ipsilesional), hand-impairment
(impaired vs. unimpaired), and interaction between time and

10
\\
|
|
J
!
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:
*

- T | 1 | 1 1
0.1 0.2 03 0.4 0.5 06

Ipsilesional PLIC-FA

FIGURE 3 | Correlation analyses on stroke severity (NIHSS scores) and
structural integrity of PLIC (FA values). The Spearman rank correlation
test (p = —0.695; p-value = 2.892e-05) and GEE regression analysis (GEE
p-value = 3.691e-04) showed significant relationships between PLIC-FA
values and patients’ clinical severity assessments (NIHSS scores).

hand-impairment. We found that both the effect of hand-
impairment and interaction between time and hand-impairment
were significant (p-value = 0.005 and 0.015 respectively).

The Spearman rank correlation tests also demonstrated that
fMRI measures (i.e., active voxel counts in ipsilesional motor
cortex generated from impaired finger tapping task) were asso-
ciated with motor outcomes. This negative association between
motor outcomes and fMRI measurements may suggest that
better motor outcomes after BCI-intervention are associated
with a smaller number of active voxels within the ipsilesional
motor cortex (Figure S2). However, this relationship was no
longer significant after GEE regression analyses accounted for
the dependence of repeated measurements from each patient
(Table 3).
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1-month-post intervention (M4). Linear regression analyses
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demonstrated that baseline PLIC-FA can predict motor outcomes.
Pearson’s correlation coefficients (p) and rsquared (R?) values are shown
on the figures.
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FIGURE 5 | Comparison of active voxel counts during impaired and
unimpaired finger tapping during fMRI scans. (A) Impaired finger tapping
condition examining lesion factor, (B) Unimpaired finger tapping condition
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examining lesion factor, (C) Impaired finger tapping condition examining both
lesion and time factors, (D) Unimpaired finger tapping condition examining
both lesion and time factors.

RELATIONSHIP BETWEEN DTI AND fMRI MEASUREMENTS

The corticospinal pathway from the primary motor cortex
through the PLIC approaches the midline of lower medulla
oblongata and crosses to the contralateral side at the pyrami-
dal decussation (Vulliemoz et al., 2005). A small percentage of
fibers (10-25%), however, remain ipsilateral (Davidoff, 1990). A
schematic illustration of the PLIC and motor cortex is shown
in Figure 6. Taking this fact into account, we examined the

DTI-fMRI relationship within each hemisphere for both impaired
and unimpaired finger tapping tasks. The Spearman rank corre-
lation test followed by GEE was used for correlation analyses.

For the impaired finger tapping, crossing fibers form the
majority of ipsilesional PLIC, and may be affected by the small
percentage of PLIC fibers on the contralesional side (Vulliemoz
et al., 2005). We found that ipsilesional PLIC-FA negatively
correlated with active voxel counts within the ipsilesional motor
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FIGURE 6 | A schematic illustration of the PLIC and motor cortex. A significant negative correlation was observed between ipsilesional PLIC-FA and

cortex (Figure7). We did not, however, observe a significant
relationship between contralesional PLIC-FA and voxel counts
within the contralesional motor cortex. A similar approach was
applied for measurements from unimpaired finger tapping. No
significant relationship was found between PLIC-FA and voxel
counts within ipsilesional or contralesional hemisphere during
unimpaired finger tapping.

DISCUSSION

Much of the focus of fMRI in stroke studies has been on whether
its application provides a better understanding of brain func-
tional reorganization accompanying motor recovery after stroke
(Riecker et al., 2010; Garrison et al., 2013; Havsteen et al., 2013;
Heiss and Kidwell, 2014). In a recent study, fMRI-derived mea-
sures have been correlated with movement recovery achieved with
robot-assisted BCI therapy (Varkuti et al., 2013), while another
study found that fMRI measures do not contribute significantly
to the prediction of motor recovery (Zarahn et al., 2011). Another
non-invasive MRI-based technique, DTI, has been widely used
to evaluate the integrity of the white matter tracts after stroke.
DT1I-derived measures have been shown to be potential biomark-
ers for tracking motor impairment (Lindenberg et al., 2010; Chen
and Schlaug, 2013) and motor recovery (Liang et al., 2009) after
stroke. This study investigated the relationship between white
matter integrity evaluated by DTI FA at the PLIC and cor-
ticomotor activity measured by motor-task fMRI, and further
examined if these imaging measurements correlate with motor
functional recovery in stroke patients receiving a BCI-facilitated

intervention. Although our findings are preliminary and based on
a moderate-size dataset, we observed consistent and robust results
which are discussed here.

STRUCTURAL INTEGRITY OF THE PLIC VS. MOTOR RECOVERY

Previous human and animal studies have characterized changes
in FA in the corticospinal system due to stroke (Liu et al., 2007;
Kusano et al., 2009; Schaechter et al., 2009; Lindenberg et al.,
2012). In our study, DTT analyses on 9 stroke patients with vary-
ing lesion locations and size of infarct affected the corticospinal
system and yielded consistent observations, specifically, decreased
FA in the ipsilesional PLIC compared to the contralesional side.
This has been suggested as a characteristic of chronic white matter
“Wallerian” degeneration (Yu et al., 2009; Lindenberg et al., 2012)
and is thought to arise from the loss of tissue structural integrity
(Liu et al., 2007).

In the current study, we found that higher ARAT and SIS-
Hand scores were significantly correlated with higher FA values
measured within ipsilesional PLIC after accounting for repeated
measurements (Table 3). To account for potential changes in
contralesional PLIC, FA asymmetry between the ipsilesional
and contralesional sides were calculated (Stinear et al., 2007;
Lindenberg et al., 2010) and then correlated with motor out-
come measurements. The relationship between FA asymmetry
and motor outcomes was significant even when accounting for
repeated measurements. Lower or near zero aFA values indi-
cate better preserved integrity of the ipsilesional PLIC and were
correlated with better motor outcomes. Given our observation
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that the ipsilesional PLIC had decreased FA compared with
the contralesional side, these findings suggest that the more
the ipsilesional PLIC-FA resembled the contralesional PLIC, the
greater the potential for functional recovery in stroke-affected
limb.

PREDICTIVE VALUE OF THE PLIC-FA IN MOTOR RECOVERY

One novel finding of this study is the predictive value of
PLIC-FA in predicting recovery of motor function. Baseline
FA values were significantly correlated with motor outcomes
measured after intervention both immediately post-intervention
and 1-month-post intervention (Figure 4). This suggests PLIC-
FA may be useful as a novel biomarker to predict upper-
limb motor functional recovery of stroke patients receiving BCI
interventions.

CORTICOMOTOR ACTIVITY

For impaired finger tapping, we observed a bilateral pattern of
corticomotor activity (Figure 5A), while unimpaired finger tap-
ping produced significantly more lateralized activity within the
contralesional motor cortex in comparison to ipsilesional motor
cortex (Figure 5B). When comparing corticomotor activity for
impaired and unimpaired finger tapping, we observed a signifi-
cant difference due to the factor of hand-impairment (ANOVA
test, p-value = 0.005). Furthermore, the pattern of changes in
voxel counts (i.e., interaction between factors of time and hand-
impairment) was also significant between the two tapping condi-
tions (ANOVA test, p-value = 0.015). These findings may suggest
that a potential bilateral pattern of corticomotor activity evolved
during motor recovery in these stroke patients receiving BCI
intervention.

CORTICOMOTOR ACTIVITY VS. STRUCTURAL INTEGRITY OF THE PLIC
Our results are that greater stroke severity is significantly cor-
related with compromised PLIC in the ipsilesional hemisphere
(Figure 3). Furthermore, the ipsilesional PLIC-FA values are neg-
atively correlated with ipsilesional corticomotor activity during
impaired finger tapping (Figure 7). Thus, a greater burden of
cortical activation is placed on the ipsilesional motor cortex for
impaired finger tapping in patients with greater stroke severity
with an overall bilateral pattern of motor cortical involvement.
The BCI intervention may contribute to the increased utilization
of ipsilesional and contralesional motor cortex with more bilat-
eral activity seen during impaired finger tapping, rather than the
lateralized activity seen normally during unimpaired finger tap-
ping (Figures 2A,B). These factors may ultimately place demands
on both ipsilesional and contralesional motor cortices during
stroke recovery. This is novel in comparison to previous studies
that suggest successful therapeutic intervention produces restora-
tion of motor function mediated by re-lateralization of motor
cortical activation (Ward et al., 2003a,b; Saur et al., 2006; Schlaug
et al., 2008).

LIMITATIONS

The small sample size (n = 9) and the heterogeneity of stroke
patients (Table 2) were the primary limitations of this study. Four
of the 9 patients exhibited no or little improvement in functional
recovery as assessed by clinical behavioral performance. Those
patients were severely impaired and minimally able to perform
the designed intervention tasks, resulting in a floor effect in some
outcome measurements. While changes in fMRI and DTI mea-
surements were observed across time, an ANOVA did not show
these changes to be significant, which may also be due to small
sample size and high between-patient variance. It is also worth
noting that our current findings are preliminary and are based on
a moderate-size dataset.

Another limitation of our study is the combined analysis
of passive and active finger tapping tasks performed by these
patients. Passive vs. active tasks may have different effects on cor-
ticomotor activity which was further described and discussed in
Supplementary Material.

Current DTT techniques remain limited in their ability to
untangle the mix of PLIC fibers from the ipsilateral and contralat-
eral hemispheres as they descend along the corticospinal pathway.
Although we used task fMRI with each hand to investigate the
structure-function relationship of the PLIC and the motor cortex,
the current study design does not allow us to separate the mixture
of white matter tracts from ipsilateral and contralateral corti-
cospinal pathways within the PLIC which constrains our current
findings. Future studies may therefore need to be done utilizing
high resolution DTT and tractography techniques to further inves-
tigate the relationship between structural and functional changes
in stroke patients.
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