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Chronic kidney disease (CKD) was the 12th leading cause of death globally in 2017 with
the prevalence of CKD estimated at ~9%. Early detection and intervention for CKD may
improve patient outcomes, but standard testing approaches even in developed countries
do not facilitate identification of patients at high risk of developing CKD, nor those
progressing to end-stage kidney disease (ESKD). Recent advances in CKD research
are moving towards a more personalised approach for CKD. Heritability for CKD ranges
from 30% to 75%, yet identified genetic risk factors account for only a small proportion of
the inherited contribution to CKD. More in depth analysis of genomic sequencing data in
large cohorts is revealing new genetic risk factors for common diagnoses of CKD and
providing novel diagnoses for rare forms of CKD. Multi-omic approaches are now being
harnessed to improve our understanding of CKD and explain some of the so-called
‘missing heritability’. The most common omic analyses employed for CKD are genomics,
epigenomics, transcriptomics, metabolomics, proteomics and phenomics. While each of
these omics have been reviewed individually, considering integrated multi-omic analysis
offers considerable scope to improve our understanding and treatment of CKD. This
narrative review summarises current understanding of multi-omic research alongside
recent experimental and analytical approaches, discusses current challenges and future
perspectives, and offers new insights for CKD.

Keywords: biomarkers, CKD, data integration, DKD, kidney, multi-omic, review, therapeutics
INTRODUCTION

Within the last decade, studies have generated a wealth of biological data by exploring the human
‘omes’; from genomics and epigenomics which explore gene variation and modification,
transcriptomics which explores gene expression, proteomics and metabolomics which explore the
abundance of key biological molecules, to phenomics which explores the potential outcomes or
consequences of such biological changes. The valuable insights gained by integrating multiple omic
technologies (via multi-omics) have improved our fundamental understanding of complex cellular
rg June 2022 | Volume 2 | Article 9230681
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processes, and highlighted how these processes become
disrupted during disease. Multi-omic studies have facilitated
exploratory analysis of human ‘omes’, improved our basic
understanding of their individual function and highlighted
important intricate interactions. This knowledge has been
harnessed to aid the development of disease biomarkers, the
diagnosis of rare disease, the identification of novel drug targets,
the design of precision or personalised medicine, and the
prediction of disease risk at a population level (1–5).

Multi-omic analyses have been harnessed to improve our
understanding of chronic kidney disease (CKD) (Figure 1). CKD
is a non-communicable disease with increasing prevalence
worldwide. In 1990, CKD was the 17th leading cause of death,
rising to the 12th leading cause of death by 2017, with 697.5
million cases globally that year (6, 7). Further increases in CKD
prevalence are expected, with this disease predicted to become
the 5th leading cause of death by 2040 (8). In 2017, diabetic
kidney disease (DKD) was the leading cause of CKD (7), and in
2018, diabetes accounted for 40% of incident end-stage kidney
disease (ESKD) cases in the USA (9). Diabetes is also increasing
in incidence worldwide (10, 11), and this, together with
increasing prevalence of CKD, is reflective of the aging global
population (6). Goal 3 of the United Nations sustainable
development goals includes an aim to reduce premature
mortality from non-communicable diseases by one third by
2030, with decreasing CKD disease burden highlighted as an
important factor in reaching that target (6, 12).
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Harnessing a multi-omic approach for the study of CKD is
valuable due to the sophisticated contributions frommany factors,
such as genetic, biological, environmental, lifestyle, social and
demographic, to the onset and progression of this disease.
Moreover, whilst studying each class of factors individually can
provide meaningful insights, proper integration of datasets via
multi-omic analyses advances our understanding how this
network of factors interact to ultimately disrupt biological
pathways and influence disease pathology. Advancing our
understanding of these complex systems, and how they become
disrupted during CKD, has provided opportunities to improve
diagnostics, advance treatment strategies, and deepened our
fundamental understanding of the causes and effects of CKD,
ultimately leading towards our ability to significantly reduce the
global impact of this disease.
MULTI-OMICS IN THE STUDY OF
CHRONIC KIDNEY DISEASE

The typical five-stage CKD classification system highlights the
heterogeneity of this disease, with both genetic and
environmental (i.e. encompassing built, natural and social
environments factors) influencing CKD onset and progression.
Multi-omic analyses have been harnessed to improve our
understanding of CKD pathogenesis and progression, as well
FIGURE 1 | Piecing together the multi-omic puzzle to facilitate the study of chronic kidney disease. ATAC-seq, Assay for Transposase-Accessible Chromatin
sequencing; ChIP-seq, Chromatin immunoprecipitation sequencing; eQTL, Expression quantitative trait loci; EWAS, Epigenome wise association study; GWAS,
Genome wide association study; Meth, Methylation; ncRNA, non-coding RNA; TWAS, Transcriptome wide association study.
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as how these processes vary between patients, with the ultimate
goal of advancing patient care, prioritising resources, and
improving patient outcomes.

Measuring the Influence of Genetic
Variation on CKD Pathogenesis and
Progression via Genomic Analysis
CKD heritability has been estimated between 30% and 75%,
depending on the measure of kidney function analysed, such as
Glomerular filtration rate (GFR), creatinine clearance or
albuminuria; varying also due to the influence of kidney disease
risk factors, such as diabetes and hypertension (13–16). Moreover,
heritability estimates can vary between studiesdue to the differences
in ethnicity, measurement methods and environment (17). Zhang
et al. recently highlighted a knowledge gap in the determination of
heritability estimates for CKD (17), identifying that most estimates
were determined using familial aggregation in late stage CKD cases
only (18–21). These authors presented a large (approximately
150,000 participants of predominantly European ancestry),
family-based study of kidney function and carried out the first
familial clustering analysis ofCKD to include early stages of disease,
reporting narrow-sense (additive) heritability estimates ranging
from approximately 20% to 50% (17). Interestingly, these authors
also reported that those with an affected first-degree relative
presented a 3-fold higher risk of CKD compared to the general
population, independent of risk factors such as hypertension or
diabetes. Thosewith an affected spouse presented a 1.56-fold higher
risk (17). This study highlighted the influence of genetic factors on
CKD risk, as well as contributions from environmental influences.

Heritability analyses are useful for guiding the estimates of how
much phenotypic variation can be attributed to genetic changes
(17).Up toapproximately30%ofCKDcaseshavebeenattributed to
monogenic (single-gene)mutations with strong phenotypic effects;
often resulting in early-onset disease (22). More common forms of
CKDhave been attributed topolygenetic (multiple gene)mutations
which cumulatively contribute to kidney function decline; with
these patients often presenting with adult-onset disease, subject to
variation due to environmental influences (22). Large numbers of
genome-wide association studies (GWAS) have been carried out to
identify significant associations between specific genetic variants
(often single nucleotide polymorphisms, or SNPs) and kidney
function or disease (23), recently reviewed by Tin and Köttgen
(24). These studies have identified over 250 highly reproducible
genetic loci, in both European and non-European populations,
associated with GFR (24, 25). Additional GWAS have since been
published reporting further genetic variants associated with kidney
function (26, 27). For example, Stanzick et al. harnessed a dataset of
over 1.2 million individuals to expand the number of genetic loci
associated with GFR to 424, with variation within these loci
explaining 9.8% variance observed in GFR measurements (26).
Zhang et al., however, estimated GFR heritability to be 44% (17),
highlighting the phenomenon of missing heritability.

Missing heritability in CKD has recently been discussed by
Cañadas-Garre et al. (16) and Anderson et al. (28), with these
authors exploring how genomic features such as rare variants,
copy number variation (CNV), telomeres, mitochondrial DNA
Frontiers in Nephrology | www.frontiersin.org 3
and sex chromosome variation may also contribute to the onset
and progression of CKD, accounting for some of this missing
heritability. These features have been less extensively studied
compared to common autosomal genetic variants. This is largely
because the GWAS method is most appropriate for identifying
common variants (present in more than 1% to 5% of the
population) with moderate effect sizes, which cumulatively
contribute towards common phenotypic changes (29, 30). This
‘common disease, common variant’ hypothesis is a fundamental
basis of GWAS (29, 31–33). Additionally, rare variants or
variants on sex chromosomes have decreased coverage in
sequencing arrays commonly used for GWAS analyses, with
the added limitation of decreased power when performing sex-
specific or rare variant analyses (29, 34). More recently, long read
sequencing has provided a promising opportunity to undertake
more comprehensive exploration of missing heritability,
providing insights into structural and rare variants (35, 36), as
well as facilitating adaptive sampling to enrich for sex
chromosome analysis (37). Zuk et al., however, propose that
due to the influence of genetic interactions, which are often not
considered during heritability calculations, the level of missing
heritability may in fact be over-estimated (38). This is an
important consideration when undertaking genomic analysis,
however, this does not invalidate the search for further genetic
variants significantly associated with a particular phenotype, but
it does highlight the importance of determining the biological
function of genetic variants in influencing health and disease, to
ultimately improve prevention, diagnosis and treatment (38).

Identifying genetic variants significantly associated with
kidney function and disease has also unlocked the potential to
explore the causal effects of modifiable risk factors with known
genetic associations on these kidney function outcomes. Using
Mendelian Randomization methods (39), causal associations
between kidney function and factors such as telomere length
(40–42), hormone levels (43, 44), coffee consumption (45),
macronutrient intake (46), physical activity or sedentary
behaviours (47), and education have been identified (48).
These studies have great scope to inform about behavioural
and environmental changes which may reduce the risk of
CKD, or slow disease progression; potentially aiding the
discovery of novel ways to moderate the global impact of
this disease.

Epigenetic Modifications Provide an
Additional Layer of Variation Influencing
CKD Pathogenesis and Progression
Beyond the study of genetic variants which contribute to the
onset and progression of diseases such as CKD, the contribution
of epigenetic variation has been investigated (23, 49, 50).
Epigenetics classically defines changes in gene expression
which are not the result of gene mutations but are heritable in
the absence of the signal which initiated the change (51).
Epigenetics is a broad term commonly used to describe the
study of DNA methylation, histone modifications, and non-
coding RNA (ncRNA); however, no mechanistic evidence
currently exists to confirm the heritability or self-perpetuating
June 2022 | Volume 2 | Article 923068
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capabilities of histone modifications or ncRNA (51–53). DNA
methylation of the fifth position of cytosine (5mC) is the most
commonly studied epigenetic modification, with these changes
having the potential to be both heritable and dynamic in
response to stimuli (54–56).

DNA methylation is commonly found within, but not limited
to, CpG sites; regions of DNAwhere a Cytosine residue is followed
by a Guanine residue. Of the approximate 29 million CpG sites in
the human genome, 60 to 80% are methylated (56). CpG sites are
not evenly distributed across the human genome, they accumulate
in two types of regions, with 25% of CpGs present within Alu
retrotransposons, and 2% within CpG islands (CGIs) (57–59). In
vertebrate genomes, over 50% of genes contain CGIs, with other
regions of the genome generally CpG-depleted (60). CGIs are
present in the promoter region of around 60% of human genes,
with these CGIs remaining largely unmethylated (60). CGIs and
their methylation status are highly conserved between species (61),
for example, 40% of promoter CGIs and 64% of intragenic non-
promoter CGIs presented orthologous methylation patterns
between mice and humans (62), highlighting the functional
importance of these configurations. Indeed, DNA methylation is
essential for processes such as X chromosome inactivation (for X
chromosome dosage compensation in females) (63, 64), genomic
imprinting (65), embryonic development (66), and tissue-specific
gene expression (67).

A range of enzymatic factors have been shown to be involved in
DNA methylation and demethylation, for example, the DNA
methyltransferases, Dnmt3a and Dnmt3b (68). A range of human
diseases, such as leukaemia, lymphoma, Tatton-Brown-Rahman
syndrome and autosomal dominant cerebellar ataxia have been
associated with genetic mutations within the genes encoding these
enzymes (66), highlighting the functional importance of DNA
methylation. Changes in DNA methylation status have been
associated with a wide range of diseases, including cancer,
metabolic disorders, autoimmune diseases, and neurological
disorders, reviewed by Jin and Liu (69). Environmental factors
such as nutritional intake, chemical exposure (pollutants or toxins),
and lifestyle can influence epigenetic status (70). Whilst these
environmental factors can disrupt epigenetic signals to cause
disease, disease states can initiate feedback mechanisms to further
alter epigenetic status. For example, when metabolism becomes
altered during diabetes (hyperglycaemia) or CKD (uraemia),
epigenetic changes can occur which result in altered gene
expression, potentially increasing the risk of disease
complications; with these processes referred to as metabolic,
hyperglycaemic, uremic or inflamed “memory” (71–78).

It is known that advancing age is a risk factor for chronic
diseases such as diabetes and CKD (79–86). DNA methylation is
an estimator of biological age, as highlighted by the introduction
of epigenetic clocks by Steve Horvath and the use of this
epigenetic biomarker across multiple tissue and cell types to
provide predictions of lifespan and healthspan (87–89). Evidence
suggests that accelerated epigenetic aging (an increased difference
between chronological and epigenetically predicted age) is
associated with CVD, diabetes, Alzheimer’s disease, cancer and
kidney disease (87, 90–99). Matıás-Garcıá et al. performed a
Frontiers in Nephrology | www.frontiersin.org 4
trans-ethnic meta-analysis of up to seven populations,
investigating five kidney traits (GFR, prevalent CKD, urine
albumin-to-creatinine ratio (uACR), microalbuminuria and
serum urate) and seven DNA methylation-based age/lifespan
predictors (91). These authors identified 23 significant
associations between several kidney traits and epigenetic clock
age/lifespan predictors; 6 replicated across ethnic groups, and 16
replicated in an ethnic-specific manor (91). Different epigenetic
clocks probe different aspects of aging, for example, the extrinsic
epigenetic age acceleration (EEAA) clock is a measure of immune
system aging (100, 101), whilst mortality risk scores (MRSs) have
been associated with oxidative stress (102). CKD is associated
with both increased inflammation and oxidative stress (103–
108), potentially explaining the strong predictive associations
obtained when using these methods in the study of kidney
function decline (91).

An alternativemethod to study epigenetic features of CKD is by
harnessing an epigenome-wide association study (EWAS)
approach (23, 71). Much like the SNP arrays harnessed for
GWAS analysis, commercial arrays have been developed to
facilitate the reproducible and high-throughput study of CpG
sites across the human genome, for example, the Illumina
MethylationEPIC BeadChip Infinium array investigates 853,307
CpG (850K) sites, with increased coverage of regulatory regions
compared to previous methylation arrays (109, 110). Alternative
forms of epigenetic regulation, such as ncRNA or chromatin
modifications, can be analysed via methods such as quantitative
polymerase chain reaction (qPCR), RNA sequencing (RNA-seq)
and chromatin immunoprecipitation sequencing (ChIP-seq) (111,
112), recently reviewed by Walters and Cox (113). Interestingly,
computational methods have facilitated the direct detection of
epigenetic modifications during Oxford Nanopore genome
sequencing (114), identifying a potential avenue for future kidney
disease research to intricately integrate and streamline genetic and
epigenetic analyses.

Epigenetic variation is associated with CKD and DKD across
multiple populations (16, 23, 71, 111, 115–126). Functional
annotation of these epigenetic variations has highlighted the
potential association of these variations with processes such as
haemostasis, endocrine or metabolic control, mitochondrial
function, apoptotic cell clearance, immune cell activation, or
regulation of cell shape (117, 118, 121, 125, 127). Due to the
dynamic and reversible nature of epigenetic medications, such
studies may provide attractive targets for therapeutic interventions
(128–132).

Functional effects of epigenetic modifications on kidney
conditions have been confirmed via studies harnessing mouse
models, validating effects in vivo (133, 134). Park et al. determined
that differential methylation of tumor necrosis factor alpha (TNF-
a) resulted in altered gene expression, with increased TNF
expression in diabetic mice increasing the severity of kidney
disease (123). Chen et al. determined that promoter regions of
mammalian target of rapamycin (mTOR) regulators were
differentially methylated in patients with diabetes (135). These
authors highlighted the role of the DNA methyltransferase,
DNMT1, in controlling the methylation of mTOR regulator
June 2022 | Volume 2 | Article 923068

https://www.frontiersin.org/journals/nephrology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/nephrology#articles


Hill et al. Multi-Omic Analysis of CKD
genes, with DNMT1 expression positively correlated with
inflammatory activity of peripheral blood mononuclear cells
(PBMCs) from diabetic patients (135). Harnessing mouse
models, Chen et al. also determined that mTOR dysregulation
in diabetic immune cells resulted in kidney inflammation
associated with DKD (135).

Specific DNA methylation patterns have also been associated
with kidney disease progression and co-morbidities (136, 137),
with different methylation profiles observed for early versus late
stages of DKD (116), Gluck et al. have shown improved
estimations of renal function in DKD patients upon the
incorporation of methylation status at CpG sites significantly
associated with renal function decline (124). Onishi et al.
determined that urine levels of 5-Methyl-2′-deoxycytidine
(5MedC), a by-product of DNA methylation, was significantly
associated with late-stage CKD prediction (138). Similarly,
Marumo et al. determined that SMTNL2 (Smoothelin Like 2)
methylation levels in urine sediment significantly correlated with
renal function decline and when incorporated into models to
predict faster GFR decline in diabetics, provided a more successful
prediction method (120). In a recent study by Dritsoula et al., the
relationship between CKD and cardiovascular disease (CVD), a
common CKD co-morbidity, was explored in the context of
methylation. These authors identified changes in DNA
methylation in the arterial wall of CKD patients and uncovered
interesting targets for future study to advance our understanding
of the molecular dysfunctions occurring in CKDwhich may result
in cardiovascular damage (137). These studies highlight the
diagnostic potential of methylation status determination for
both disease pathogenesis and progression.

A recent longitudinal study has also explored the effect of
various kidney disease treatment methods on methylation levels,
in 23 individuals (and 24 controls) with 1 year of follow-up data.
Witasp et al. recently identified that the number of significantly
differentially methylated CpG sites (compared to healthy
controls) fell from approximately 12,000 and 19,000 pre-
treatment, to approximately 300 and 400 12 months post-
treatment, for dialysis and transplant respectively (139). These
authors also noted distinct localisation patterns for differentially
methylated CpG sites for dialysis and transplant patients, and
highlighted that the methylation status of regions associated with
cellular aging or metabolism were particularly altered 12 months
post-treatment, to become more in line with healthy control
participants (139). 413 differentially methylated genes present in
both dialysis and transplant patients remained unaltered 12
months post-treatment, identifying potentially distinct and
robust CKD markers warranting future study (139).

Emerging Insights From Transcriptomic
Analysis of CKD
In order to gain additional functional insights into the effects of
genetic or epigenetic variants, studies have harnessed
transcriptomics, the study of RNA transcripts via technologies
such as microarrays, qPCR or RNA-seq (140). These
investigations have identified gene expression profiles and
determined how they differ during health and disease. Many
Frontiers in Nephrology | www.frontiersin.org 5
transcriptomic studies investigating kidney disease have focused
on examining messenger RNA (mRNA) or the ncRNA subtype,
micro RNA (miRNA) (23); however, attention has turned to the
contributions made by other ncRNAs such as, ribosomal RNA
(rRNA), transfer RNA (tRNA), small nuclear RNA (snRNA),
small nucleolar RNA (snoRNA) or long non-coding RNA
(lncRNA), with this area of research undergoing recent reviews
(141–143). Potential exists to harness RNAs as novel biomarkers
for kidney disease pathogenesis or progression, with a distinct
focus on urinary RNAs, particularly those contained with
extracellular vesicles (protective membrane bound carriers
released by cells), as a less invasive and robust means of
disease diagnosis (144–148).

A 2018 review summarised literature investigating
transcriptomic analysis in the context of kidney disease (23),
with a number of additional investigations published in recent
years (146, 148–159). An interesting study by Fan et al. carried
out RNA-seq analysis of kidney biopsies from early DKD,
advanced DKD, or control patients, to reveal gene expression
changes from healthy to disease states (158). Gene ontology
analysis highlighted that genes involved in iron transport and cell
differentiation were positively associated with GFR, whilst genes
involved in fibrosis and immune response were negatively
associated with GFR (158). Moreover, harnessing kidney
single-cell RNA-seq datasets (160, 161), Fan et al. deconvolved
their dataset to estimate the relative fraction of different kidney
cell types within their samples, reporting a significant increase in
macrophages, monocytes, fibroblasts, and myofibroblasts in
advanced DKD stages, along with a reduction in proximal
tubular endothelial cells (158). This transcriptomic analysis
reflected results obtained from studies harnessing alternative
methods, such as histological examination, which reported
increased inflammation and fibrosis during DKD, alongside
tubular cell injury (162). Indeed, harnessing single cell RNA-
seq has rapidly advanced the field of kidney disease research,
recently reviewed by Jiang et al. (163). A greater understanding
of how cell heterogeneity changes during kidney disease
advances our ability to identify cellular pathways of disease,
develop advanced or personalised therapies and improve disease
diagnosis or classification (151, 160, 164–166).

Harnessing Metabolomic and Proteomic
Analyses to Aid CKD Diagnosis and
Treatment Planning
Alternative methods to study the molecular pathways disrupted
during kidney disease involve the investigation of metabolomic
and proteomic profiles, recently reviewed by Cañadas-Garre et
al. (167). Whilst proteomics assesses the enzymatic, structural
protein, antibody, hormonal, DNA-associated or receptor
protein profiles, metabolomics assesses the sugar, amino acid,
lipid, organic compound or nucleotide profile, which can be
impacted by diet or the microbiome (168). These profiles are
dynamic and can provide insights into functional changes which
occur during kidney disease over time, with genetic, epigenetic or
transcriptomic alterations potentially impacting the downstream
protein and metabolite landscape. A recent review by Dubin et al.
June 2022 | Volume 2 | Article 923068
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summarised insights gained from the proteomic and
metabolomic study of kidney disease, highlighting that because
these methods can be easily applied to human blood or urine
samples, there is now considerable scope to develop novel
biomarkers for disease detection or treatment planning using
these approaches (168). Dubin et al. do, however, highlight the
challenge of interpreting metabolomic and proteomic studies,
with the direction of influence difficult to ascertain (i.e. does the
disease cause the protein/metabolite level to change, or vice
versa), and the need for downstream functional studies to
confirm causative associations (168).

Metabolomic and proteomic studies have resulted in advanced
tools to aid patient classification into CKD or DKD stages. Chen et
al. utilised ultra-performance liquid chromatography-tandemmass
spectrometry to identify five metabolites which explained 94.1% of
variation observed between CKD stages (169). Further animal
model and cell culture investigations into 5-methoxytryptophan
(5-MTP), which presented increased levels in serum as CKD
progressed, determined that this metabolite presented strong
anti-fibrotic and anti-inflammatory effects, and targeting its
regulatory enzyme tryptophan hydroxylase-1 (TPH-1) might
prove an effective therapeutic strategy to mitigate CKD
progression (169). Fan et al. utilised mass spectrometry to assess
the urine proteomic profile of CKDpatients without diabetes, DKD
patients and diabetic patientswithout nephropathy, identifying 509
disease specific differentially excreted proteins, and the related
pathways, such as late endosomal microautophagy and insulin-
like growth factor (IGF) transport regulation in diabetes, and
immune system or platelet activation in both DKD and CKD
(170). Strong correlations were identified between kidney
function measures, such as GFR or uACR, and 46 protein
abundance levels, with these authors harnessing urine proteomes
to develop models capable of distinguishing between various DKD
stages and diabetes (170), with potential future applications within
diagnostic testing.

Proteomic or metabolomic studies have been harnessed to assess
patient responses to treatment over time, aiding the development of
effective and appropriate treatment regimens, unique to each
patient. Zhu et al. compared the metabolomic profile of pre-
dialysis, haemodialysis and peritoneal dialysis patients, identifying
42 metabolites significantly altered among these three groups (171).
Pathway and functional annotation highlighted that haemodialysis
and peritoneal dialysis patients had potentially increased risk of
infection, increased cardiovascular risk and increased oxidative
stress (171). Additionally, Hu et al. carried out metabolomic
analysis in haemodialysis patients who had a cardiac death within
1 year of study enrolment, compared to haemodialysis patients
surviving after 1 year, with these authors identifying that greater
odds for cardiac death were associated with higher levels of several
lipid metabolites, an amino acid metabolite and phosphate (172).
As highlighted previously, urinary extracellular vesicles have proved
useful for the identification of excreted RNAs significantly
associated with kidney disease. Proteomic analysis of urinary
extracellular vesicles, carried out by Braun et al., identified
phosphoenolpyruvate carboxykinase 2 (PCK2) as an early
predictive marker of transplant outcome after 1 year (173).
Frontiers in Nephrology | www.frontiersin.org 6
These studies highlight how metabolomic and proteomic
studies have uncovered biomarkers to advance the assessment
of risk factors and advance the development of non-invasive
clinical tests for CKD. Moreover, these studies have advanced
CKD treatment planning to aid personalised medicine and
improve patient outcomes. With a greater understanding of the
functional changes which occur during CKD, metabolomic and
proteomic studies have uncovered novel targets to guide future
therapeutic development.

Insights Gained From Environmental
Datasets in the Study of Kidney Function
and Disease
Beyond the blood, urine or biopsy-derived omic changes
associated with kidney disease, researchers have also explored
the impact of external factors on CKD. Studies have determined
the influence of natural or built environments, pollution and
social disparities on CKD. Poverty can impact the development
of CKD by modifying health behaviour (due to limited
information regarding disease prevention or management),
reducing access to healthcare, impacting nutritional intake and
increasing exposure to risk factors such as stress, infectious
diseases and pollutants (174–177). Closer proximity to open or
green spaces has been associated with higher kidney function
(178, 179), with the distance to green space shown to increase
with social deprivation (180). Closer proximity to open and
green spaces may result in improved air quality, increased access
to physical recreation and relaxation areas, or reduced noise
pollution, with these factors each individually associated with
improved kidney function (178, 181–184). Many of these factors
change as a result of urbanisation, with urbanisation also shown
to modify the presence of potentially toxic elements (PTEs)
within the soil, with such PTEs associated with CKD
incidence, including CKD attributed to unknown aetiology
(185, 186). Urbanisation also modifies the association between
air pollutants (namely fine particulate matter and nitrogen
dioxide) and CKD (187). Interestingly, the strongest
associations between air pollutants and CKD were found in
medium-urbanised areas, likely because urbanisation not only
results in negative consequences, but also brings positive effects,
such as improved healthcare access or higher socio-economic
status (187). Scope exists to harness the “PROGRESS”
framework (place of residence, race/ethnicity/culture/language,
occupation, gender/sex, religion, education, socioeconomic
status, and social capital) to study complex environmental,
social and demographics interactions, to highlight differences
in CKD burden in disadvantaged populations and to identify
potential interventions to reach health equity (188).

A number of studies have harnessed a systematic, population
level approach to studying environmental impacts on CKD, via
environment-wide association studies (EnvWAS). Lee at al.
assessed bio-monitored chemicals (262 chemicals, measured in
blood or urine samples) in participants from the United States
National Health and Nutrition Examination Survey (NHANES,
46,748 participants), and identified significant associations with
multiple kidney function outcomes; 24 (9%) chemical levels were
June 2022 | Volume 2 | Article 923068
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associated with reduced eGFR, five (2%) with albuminuria, and
nine (3%) with composite CKD outcomes (albuminuria or
reduced eGFR) (189). These authors determined that increased
blood lead and cadmium levels were significantly associated with
reduced kidney function, in line with previous studies (189, 190).
Interestingly, Yimthiang et al. identified a significant association
between simultaneous exposure to cadmium and lead and
increased risk of high fasting plasma glucose and kidney
function decline, also highlighting the impact of this exposure
on DKD progression (191). Cadmium and lead exposure has
been associated with processes such as oxidative stress,
inflammation and fibrosis within the kidneys (192), with a
recent histological analysis by Barregard et al. determining that
even low levels of cadmium in the kidney can induce tubular
atrophy (193). Here, histological and experimental analyses have
be utilised to highlight the biological plausibility of significant
EnvWAS associations.

Zheng et al. recently reviewed the strategy and challenges of
EnvWAS, highlighting that whilst EnvWAS can provide insights
into factors influencing phenotypic changes, care must be taken
when drawing associations via statistical inference, with further
study required to determine the biological function or molecular
mechanism of these associations (194). These authors also
highlight aspects, such as biomarker or chemical half-lives,
spatial or temporal heterogeneity of the environment, detection
or quantifications limits of technical methods, and between-
factor associations, which can potentially influence EnvWAS
outcomes and must be carefully considered during each analysis
(194). These studies highlight how a range of data sources can be
used to deepen our understanding of the causes and effects of
kidney disease, improving our ability to target molecular
pathways in novel therapies and advise on the importance of
minimising environmental or occupational exposure to specific
chemical agents to lower disease risk. This is especially important
due to the impact of environmental variation on epigenetic
status, with the subsequent cellular effects of these changes
potentially resulting in disease or impacting future generations
via transgenerational epigenetic inheritance (195).
CHALLENGES WHICH REMAIN IN THE
MULTI-OMIC STUDY OF CKD

Each of the omic analyses discussed above bring their own
challenges, such as the effect of confounders or co-variables,
the requirement for adequate sample sizes to draw meaningful
associations, analytical considerations (significance thresholds,
false discovery rates and handling large multi-dimensional
datasets). Effective harmonisation and standardised quality
control are particular issues for multi-centre studies or those
using historical datasets, as well as variations between platform
technologies and batch effects. Variability also exists in terms of
CKD outcomes, patient characteristics, disease progression and
response to treatment, which makes the development of accurate
Frontiers in Nephrology | www.frontiersin.org 7
predictive models for CKD prognosis and prediction a challenge
(196, 197). Provenzano et al. reviewed the impact of such
variability on the study of CKD and highlighted a number of
statistical methods and adapted clinical trial designs which can
be harnessed to advance the development and assessment of
predictive CKD models, and build a more individualised focus to
CKD treatment (196, 197). These authors highlight the
importance of selecting an appropriate population for model
design, which is transferable for use in CKD patients. Moreover,
these authors highlight the need for more longitudinal studies
with larger datasets to ensure long-term outcomes which may
take years to present, such as ESKD or mortality, can be properly
assessed (196, 197). Overall, rigorous multi-omic methodologies
will advance our ability identify disrupted biological pathways,
stratify patients based on risk, prioritise resources, and deliver a
personalised treatment approach, ultimately improving patient
care and outcomes.

An important consideration for the study of multi-omics is the
presence of ‘dark matter,’ consisting of those features which go
undetected via current methodologies, or those which remain
unannotated due to limited prior knowledge (198). For example,
coding regions make up only part of human genome (199), with
studies now turning to non-coding regions to gain a deeper
understanding of the impact of genetic, epigenetic or
transcriptomic changes on health and disease (200). Additionally,
the Human Metabolite Database (version 5.0) describes 253,243
metabolites; however, as of March 2022, only 24,309 (9.6%) have
been detected (with or without quantification) experimentally
(201), highlighting a deficit with current experimental
metabolomic methods. Interestingly, Odenkirk et al. recently
reviewed the application of artificial intelligence methods to
advance the annotation of unknowns and improve the estimation
of undetected features to improve statistical analysis and
interpretation in multi-omic datasets; however, these authors
emphasise the need for sufficient model training and downstream
validation to ensure confident conclusions can be drawn (198).

Functional Annotation of Features
Significantly Associated With CKD
Functional annotationof those variants or features identifiedduring
upstream omic analysis is an important step in the multi-omic
pipeline; translating information gained into knowledge which is
useful for biological validation, therapeutic development or real-
world applications. This is often achieved via gene ontology or
pathway analysis, with these processes providing insights into
functional commonalities and differences, even across different
methodologies and cohorts (202–204). Challenges remain in
achieving standardisation of pathway analysis annotations
between studies and databases, in the unification of similar
ontologies to streamline analyses and in advancing annotation
coverage (204). An interesting advancement came with the
development of an ontology hierarchy annotating the Human
Metabolite Database (201, 205), bringing metabolomic studies
more in line with the annotations available for genomic and
proteomic studies (202, 206, 207). Moreover, text and database
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mining methods provide additional opportunities to increase the
confidence in annotations, and reduce the burden of manual
curation of ontology or genotype-phenotype interaction databases
(208, 209).

Molecular quantitative trait loci (MolQTL), such as
expression (eQTL), methylation (mQTL), splicing (sQTL) or
chromatin assembly (caQTL) are genetic variants associated with
specific molecular traits. MolQTL were reviewed by Sullivan et al.
in the context of CKD, with these authors highlighting how
MolQTL are integrated with GWAS to prioritise target genes
(210). The Genotype–Tissue Expression (GTEx) project has
generated eQTL datasets for 49 human tissues (as of March
2022, release version 8), including the kidney, allowing tissue-
specific gene eQTLs to be identified (211). Xu et al. harnessed the
GTEx datasets to determine which transcriptionally active SNPs,
previously identified via GWAS to be associated with CKD
disease-defining traits, were associated with kidney-specific or
ubiquitous expression (212). This facilitated the prioritisation of
genes for downstream functional validation and Mendelian
Randomization analysis, which resulted in the discovery that
alternatively spliced MUC1 mRNA isoform expression was
causally related to GFR; with alternative splicing a potential
allele specific effect (212). This study is an excellent example of
how the integration of multiple methodologies can provide
biological insights and refine hypotheses to direct downstream
studies, such as animal model or cell culture assays, to explore
the molecular mechanisms of disease.

Challenges Faced During the Full
Integration of Multiple Omic Datasets
A significant challenge in the field of multi-omics is the full
integration of several omic datasets. A number of CKD studies
outlined above have carried out single-level analysis, for example,
carrying out a separate GWAS, EWAS or TWAS. For multi-level
analysis, integration of these datasets must occur, with data
integration taking either the form of integrating the same
datatype from multiple studies (horizontal integration), or the
study of different ‘omes’ within the same cohort (vertical
integration) (213, 214). Vertical integration allows a range of
methods to be harnessed, each reflecting different aspects of
disrupted biological function during disease. For example,
proteomics may provide a better understanding of disrupted
protein interactions and binding, whereas metabolomics may
provide better insights into dysregulated chemical processes.
Moreover, ‘ome’ interactions, such as allele specific methylation
(215), allele specific chromatin assembly or gene expression (216,
217), and non-coding RNA modulation of protein or gene
expression (218), may be overlooked unless a fully integrated
multi-omic approach is utilised, meaning vital insights into the
molecular mechanisms of kidney disease may go undiscovered.

Data integration can take multiple forms, for example,
individual omics can be processed separately and integrated
later in the pipeline, or alternatively, omic datasets can be
concatenated into a single matrix to be processed and analysed
together (219). Merging multiple complex and highly variable
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biological datasets brings with it many challenges, summarised in
Figure 2; with many tools now available to optimise this process
(220). Researchers must ensure the most appropriate and
optimal approach is taken, depending on the biological
question and the omic datasets available. Table 1 highlights a
number of studies which have utilised an integrated multi-omic
approach to study kidney disease.

Improving Cohort Phenotype Information
to Improve Multi-Omic Analyses of CKD
An additional aspect ofmulti-omic studies which holds potential to
advance the analysis and interpretation of data is carefully
phenotyped cohorts. For multi-omic studies, particularly those
carried out between cohorts or consortia, lack of standardisation
in themeasures and classificationof kidney functionor co-variables
can limit the Findability, Accessibility, Interoperability, and Reuse
(FAIR) of datasets (231). Clinical, epidemiological and
demographical records provide a wealth of data, and with careful
and proper integration into multi-omic datasets, they can provide
advanced phenotypic information, recently reviewed by de
Maturana et al. (232). Shang et al. provide an excellent
demonstration of harnessing clinical records to study CKD;
developing an algorithm capable of classifying patients into CKD
stages based on electronic clinical records (233). Via an
observational study, these authors determined the presence of co-
morbidities across CKD stages, identifying novel associations, such
as the prevalence of several psychiatric comorbidities among
patients with mild CKD compared to those patients with normal
renal function, independentof age and sex (233).These authors also
utilised their algorithm in the Electronic Medical Records and
Genomic (eMERGE) network, carrying out a GWAS analyses of
CKD (Stage 3 or greater) which identified significant associations
withUMOD and APOL1 (233, 234). An additional Phenome-wide
association study (PheWAS) identified further associations for
these genes with a number of additional kidney associated
phenotypes, such as kidney transplantation, ESKD, and dialysis
(233). The methods developed by Shang et al. have the potential to
support the provisionof personalisedmedicine for those livingwith
kidney disease; facilitating risk stratification for optimised
treatment planning. These authors do highlight the need for
further investigations to be conducted in adult and child cohorts,
across diverse ancestral backgrounds (233), to ensure that the tools
developed are appropriate for use across all patients, in a fair and
equitable manner.

Considering Sex Imbalances in the Multi-
Omic Study of Kidney Disease
Whilst future studies must incorporate the assessment of CKD
across diverse ancestral backgrounds, work is also required to
assess CKD between sexes. In 2017, the age-standardised
prevalence of CKD was higher in females (9.5%) compared to
males (7.3%), whereas the age-standardised incidence of dialysis
and transplantation was higher in males (13.7 per 100 000
population) compared to females (8.6 per 100 000 population)
(7). Moreover, the global age-standardised CKD mortality rate
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TABLE 1 | Examples of kidney disease studies which have harnessed a more integrated multi-omic analysis approach from 2018.

Title Summary of methodology Main findings Reference

Multimodal single
cell sequencing of
human diabetic
kidney disease
implicates
chromatin
accessibility and
genetic background
in disease
progression

Kidney cortex samples; snATAC-seq (6 HC, 7 DKD); snRNA-seq (6
HC, 5 DKD); Transcribed cis-regulatory element (tCRE) detection (2
HC, 2 DKD); Glucocorticoid Receptor binding/foot printing;
Transcription factor motif enrichment; Functional annotation;
Validation in alternative dataset.

Increased VCAM1+ injured proximal tubule cells in
DKD. These cells present pro-inflammatory
expression and transcription factor motifs involved in
NF-kB signalling. Allele-specific chromatin changes
associated with GFR. Differentially accessible regions
enriched for glucocorticoid receptor motifs. Altered
chromatin accessibility potentially alters cellular
responses during DKD.

(217)
Wilson et
al., 2022
(pre-print)

Assessment of
differentially
methylated loci in
individuals with
end-stage kidney
disease attributed
to diabetic kidney
disease: an
exploratory study

Blood derived DNA from up to 253 T1D controls and up to 107 T1D-
ESKD patients (depending on comparative analysis); Differentially
methylated loci; eQTL and overlapping SNP analysis; Transcription
factor motif enrichment; Functional annotation.

Identified associations between differential
methylation and T1D-ESKD. Eight top-ranked genes
showed eQTL support in a T2D cohort. 13 genes
were supported by gene expression and/or
methylation data from kidney tubule or glomerular
tissues. Top-ranked enrichment pathways included
cancer, TGF-b signalling and Th17 cell differentiation.

(118)
Smyth et
al., 2021

Serum integrative
omics reveals the
landscape of human
diabetic kidney
disease

Discovery cohort (n = 1102) containing HC, T2D, Early DKD, and
Advanced DKD patients; Proteomics on random 30 samples per
group; Metabolomics on complete discovery cohort; ML on
metabolomics data to predict DKD status; Proteomics and
metabolomics integration to enhance prediction power; Functional
annotation; Internal and external validation.

a2-macroglobulin, cathepsin D, and CD324 are
protein DKD progression biomarkers. Galactose and
glycerolipid metabolism majorly disturbed in DKD,
with glycerol-3-galactoside useful in predicting DKD
pathogenesis. Integrating proteomic and
metabolomic data improved DKD prediction models.

(224)
Liu et al.,
2021

Transcriptome-wide
association analysis
identifies DACH1 as
a kidney disease
risk gene that

TWAS to prioritise genes from two previous eGFR GWAS (n =
765,348 and 280,722); Previous human kidney eQTL data (n = 121);
Human kidney RNA-seq (n = 20); Mendelian randomisation; Previous
human (n = 10) and mouse (2 P0, 2 adult) snATAC-seq; Previous
mouse kidney scRNA-seq (7 healthy); Previous gene expression of
microdissected human kidney tubules (n = 95, healthy or disease);

Dachshund homolog 1 (DACH1), a cell-fate
determination factor, was identified as a kidney
disease risk gene.

(152)
Doke et
al., 2021

(Continued)
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TABLE 1 | Continued

Title Summary of methodology Main findings Reference

contributes to
fibrosis

ChIP-qPCR (n = 3); Immunostaining; Functional annotation; External
validation.

Mapping the genetic
architecture of
human traits to cell
types in the kidney
identifies
mechanisms of
disease and
potential treatments

Human kidney genotype and RNA-seq (303 glomeruli, 359 tubule);
eQTL analysis; scRNA-seq deconvolution; snATAC-seq (n = 2); LD
score regression; Previously published GWAS summary statistics for
multiple kidney traits; Transcription factor foot printing and motif
analysis; Functional annotation; Multi-trait Bayesian colocalization;
Drug Gene Interaction Database search; External validation.

Kidney cell-type-eQTLs prioritised proximal tubules
for kidney function, and endothelial cells or distal
tubule segments for blood pressure. 200 genes were
nominated contributors towards kidney function and
hypertension association. rs4292 was nominated as
a potential variant causing disrupted ACE expression
which may result in hypertension and CKD
progression.

(165)
Sheng et
al., 2021

A single genetic
locus controls both
expression of
DPEP1/CHMP1A
and kidney disease
development via
ferroptosis

CKDGen eGFR GWAS summary statistics; Human kidney mQTL
analysis (n = 188); Previous eQTL in the tubule (n= 121) and
glomerular (n = 119) compartments; Previous snATAC-seq (mouse (n
=3) and human (n = 2)); Human kidney RNA-seq (n = 432) or
Western Blot; Functional annotation; External validation.

Two kidney disease genes, Dipeptidase 1 (DPEP1)
and Charged Multivesicular Body Protein 1 A
(CHMP1A), identified as important regulators of
ferroptosis, leading to kidney disease development
by altering cellular iron trafficking,

(225)
Guan et
al., 2021

Single cell
regulatory
landscape of the
mouse kidney
highlights cellular
differentiation
programs and
disease targets

Mouse kidney snATAC-seq (2 P0, 2 adult), scRNA-seq (1 P0, 1 adult)
and whole kidney bulk ATAC-seq (2 P0, 2 3-week old, 2 8-week old);
Human kidney snATAC-seq (n = 10); Previous ChIP-seq data;
Previous kidney function GWAS; Functional annotation; Motif
enrichment; Immunofluorescence.

Chromatin and gene expression changes occur
during kidney cell differentiation. Mapping genetic
variants associated with human kidney disease onto
the mouse cell-specific chromatin landscape
implicated specific cell types, developmental stages,
genes, and regulatory mechanisms.

(226)
Miao et
al., 2021

Single cell
transcriptional and
chromatin
accessibility
profiling redefine
cellular
heterogeneity in the
adult human kidney

snRNA-seq and snATAC-seq of healthy adult kidneys (n =5);
Genotyping and variant annotation of snATAC libraries; Deconvolution
of previous bulk RNA-seq (human and mouse); ChIP-qPCR (n = 3);
Functional annotation; Immunohistochemistry/Immunofluorescence;
External validation.

The activation of NF-kB promotes VCAM1
expression to drive proximal tubule epithelial cell
transition (and associated gene expression changes),
with the proportion of transitioned cells increasing
during kidney injury or disease.

(164)
Muto at
al., 2021

Systematic
integrated analysis
of genetic and
epigenetic variation
in diabetic kidney
disease

EWAS (CpG methylation) for DKD (250 fast progressing, 250 slow
progressing patients); Cell-type expression; mQTL analysis (n = 473);
Multi-trait Bayesian colocalization; Mendelian randomization; External
validation; Functional annotation.

Forty loci likely mediating kidney function decline
associated with inflammation, apoptotic cell
clearance and complement activation.

(127)
Sheng et
al., 2020

Integration of GWAS
summary statistics
and gene
expression reveals
target cell types
underlying kidney
function traits

GWAS summary statistics for four kidney functions (CKDGen
Consortium: eGFR n =567,460, BUN n = 243,031, UACR n =
547,361, Urate n = 288,666) or alternative conditions (UK Biobank
cohort: Asthma, 28,628 patients, 423,636 controls/CLOZUK 1 PGC2
cohort: Schizophrenia, 40,675 patients, 64,643 controls); RNA-seq of
53 tissues (GTEx); previous scRNA-seq or bulk RNA-seq datasets
(from humans, mice or rats); Functional annotation.

Genes associated with kidney function were enriched
the in kidney and liver, in particular in the proximal
tubule. Enrichment of genes implicated in monogenic
glomerular diseases in podocytes.

(227)
Li et al.,
2020

Functional
methylome analysis
of human diabetic
kidney disease

Microdissected human kidney tubule samples (5 HC, 5 DKD) for
whole-genome bisulfite sequencing (WGBS) and RNA-seq; Validation
using previous methylation array data (n = 91); Bulk RNA-seq
deconvolution; Previous ChIP-seq; Previous mouse kidney scRNA-
seq (7 healthy); Functional annotation; Immunohistochemistry;
External validation.

Methylation differences occur within the kidney of
DKD patients, particularly in the TNF locus, resulting
in TNF gene expression changes. Increased TNF
levels contributed to disease progression in mouse
models, highlighting the potential contribution of this
pathway to kidney disease in those with diabetes.

(123)
Park et
al., 2019

Genome-wide
association meta-
analyses and fine-
mapping elucidate
pathways
influencing
albuminuria

Trans-ethnic GWAS meta-analysis of UACR (n = 564,257),
harnessing 54 studies; PheWAS harnessing electronic medical
records (n = 192,868); Previously published RNA-seq datasets for 44
tissues (GTEx), kidney cortex (The Cancer Genome Atlas, n = 99) or
human kidneys (n = 96); Previous microarray expression data for
microdissected glomerular and tubulointerstitial tissues (n =187);

68 UACR-associated loci, with PheWAS revealing
associations with proteinuria, hyperlipidaemia, gout,
and hypertension. Differential expression levels (RNA
or protein) observed for UACR-associated genes in
the kidney. Knockdown of prioritised genes (OAF
and PRKCI) in Drosophila nephrocytes reduced

(228)
Teumer
et al.,
2019

(Continued)
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was 1.39 times greater in males compared to females (7),
suggesting that whilst more females are diagnosed with CKD,
males may have faster disease progression. Sex-specific variations
in omic datasets are potentially overlooked when both sexes are
analysed in a single analysis. Bond et al. highlight that sex biases
within curated databases may also result in uninformative or
lower significance results in scenarios where sex differences exist
(235). These authors provide action points for scientists,
databases and funding agencies to tackle this problem, adding
that including sex as a covariate in a mixed cohort analysis is
insufficient to account for this fundamental variable, with the
need for analyses to be run in both mixed and sex-stratified
groups to optimise data analysis and interpretation (235).

A small number of sex-stratified analyses of the healthy kidney
and kidney disease have been carried out (236–238), however,more
work is needed in this area. Graham et al. recently determined that
SLC47A1 (also known as MATE1 (multidrug toxin and extrusion
protein 1)) was significantly associatedwithGFR in females but not
in males (239). This gene presented cell-type specific expression in
the mouse kidney proximal tubule, with previous studies also
supporting hormonal regulation of this gene (239–241),
highlighting biological plausibility that this gene may influence
sex-specific features of kidney disease. Sex chromosomes may also
contribute to sex-specific pathogenesis and progression of CKD;
however, more advanced sex chromosome imputation and wider
inclusion of sex chromosome genes on genotyping or methylation
arrays is required to gain further insights from these largely ignored
chromosomes (16, 28).Mosaic loss of the Y chromosome (mLOY),
which increaseswith age andhas been strongly associatedwith both
Frontiers in Nephrology | www.frontiersin.org 11
diabetes and cardiovascular disease (242), two common CKD
comorbidities, has been explored in the context of renal cancers
(243, 244), but not CKD. This work highlights an interesting focus
for future study,whichmayuncover novel sex-specificmechanisms
of CKD pathogenesis, potentially useful for the development of
novel diagnostics or personalised therapeutic targets.
LINKING CAUSES AND CONSEQUENCES
OF CKD TOGETHER

This review highlights multiple forms of omic analyses which
have been conducted to investigate the factors influencing CKD,
such as genomics, epigenomics, transcriptomics, metabolomics
and proteomics, phenomics, as well as exploring social and
environmental impacts. The visual representation shown in
Figure 3 summarises influences and consequences of multi-
omic biomarkers on CKD and associated variables. Whilst
many studies have explored single-level omic analysis,
significant value can be achieved by harnessing multi-level
analysis by combining numerous omic datasets. Various
challenges exist when fully integrating multiple omic datasets
for the study of CKD, such as optimising data merging,
incorporating the study of sex-biases, and improving
nomenclature and phenotyping. These processes must be
properly considered for each analysis to enhance data analysis
and improve interpretation. Moreover, by understanding these
challenges prior to experimental design, more effective data and
meta-data generation can be achieved, aiding data sharing and
TABLE 1 | Continued

Title Summary of methodology Main findings Reference

eQTL analysis; pQTL (n = 3301); Previous genome-wide summary
statistics for genetic correlation; Functional annotation.

albumin endocytosis, highlighting novel pathways
potentially important for albuminuria.

Mapping eGFR loci
to the renal
transcriptome and
phenome in the VA
Million Veteran
Program

Meta-analyses of eGFR GWAS (n = 280,722), stratified by ancestry,
diabetes status, and hypertension status; Replication in a trans-ethnic
GWAS meta-analysis of eGFR (n = 765,289); PheWAS (n = 192,868);
Previous human eQTL datasets (microdissected kidney tissues (n =
151), kidney cortex (The Cancer Genome Atlas (n = 99) and 121
tubule/glomerulus samples); Previous scRNA-seq murine kidney (7
healthy) dataset; Genetic risk score.

82 previously unreported variants and confirmed 54
loci associated with eGFR, with consistency
observed across ancestries. Genetically predicted
gene expression and eGFR association revealed 36
previously unreported and 9 known genes, with gene
expression mapping to renal cell types. An eGFR
genetic risk score was associated with several
kidney disease-related phenotypes.

(229)
Hellwege
et al.,
2019

The Use of Targeted
Next Generation
Sequencing to
Explore Candidate
Regulators of TGF-
b1’s Impact on
Kidney Cells

Mouse primary mesangial cells (TGF-b1 and control treated (n = 3))
underwent miRNA-seq and RNA-seq (from total RNA extractions);
MeDIP-Seq (DNA Methylation); ChIP-Seq (H3K27me3 methylation);
Functional annotation.

Confirmed the regulation of DNA methylation and
H3K27me3 after TGF-b1 treatment of kidney cells in
culture. KLF7 and Gja4 expression levels were linked
to DNA methylation during TGF-b1 treatment,
suggesting that TGF-b1 regulates these two genes.
Identified the association between epigenetic
changes and expression of genes related to kidney
injury.

(230)
Wang et
al., 2018
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ATAC-seq, Assay for Transposase-Accessible Chromatin sequencing; BUN, Blood urea nitrogen; ChIP, chromatin immunoprecipitation; CKD, Chronic kidney disease; DKD, Diabetic
kidney disease; eGFR, Estimated Glomerular Filtration Rate; eQTL, Expression quantitative trait loci; EWAS, Epigenome-wide association study; GTEx, Genotype-Tissue Expression
project; GWAS, Genome wide association study; HC, Healthy control; MeDIP-seq, Methylated DNA immunoprecipitation sequencing; ML, Machine Learning; mQTL, Methylation
quantitative trait loci; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; PheWAS, Phenome wide association study; pQTL, Protein quantitative trait loci; qpCR,
quantitative polymerase chain reaction; RNA-seq, RNA sequencing; sc, single cell; sn, single nucleus; T1D, Type 1 Diabetes; T1D-ESKD, Type 1 Diabetes with End Stage Kidney Disease;
T2D, Type 2 Diabetes; TGF, transforming growth factor; TNF, Tumor necrosis factor; TWAS, Transcriptome wide association study; UACR, Urine Albumin-to-Creatinine Ratio.
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accessibility between studies, ultimately accelerating this
research field.
CONCLUSION

CKD is a heterogeneous disease presenting a significant impact
on global healthcare budgets. Decreasing the burden of CKD has
been identified as an important factor in achieving the United
Nations sustainable development goal of reducing premature
mortality from non-communicable diseases by one third by
2030. In order to achieve this target, a range of approaches have
been taken to better understand CKD pathogenesis and
progression. Multi-omic studies have facilitated the discovery
of novel genetic and epigenetic variants significantly associated
with CKD, with gene ontology or pathway analysis, as well as
data mining, facilitating the prioritisation of those targets
significantly associated with kidney function decline. The
functional consequences of such variations have been assessed
via transcriptomic, proteomic, metabolomic and phenomic
analyses, as well as by harnessing in vitro and in vivo models.
Whilst challenges remain in the comprehensive integration of
Frontiers in Nephrology | www.frontiersin.org 12
such complex and multifaceted biological datasets, a multi-level
approach to combining such datasets has facilitated the
discovery of novel pathways associated with CKD pathology,
provided insights into the biological effect of different treatment
routes, and improved our understanding of disease progression
at an individual patient level. Many opportunities remain in the
field of multi-omics, with improved machine learning, DNA or
RNA sequencing, molecule detection, data analysis and
statistical tools being developed, applicable for studying a
range of human diseases, including CKD. The multi-omic
study of CKD has thus far aided the identification of new
therapeutic targets, paved the way towards personalised
treatment plans and advanced our knowledge of risk factors
for CKD and its progression, with the ultimate goal of
improving patient care and outcomes.
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Genome-Wide Studies to Identify Risk Factors for Kidney Disease With a
Focus on Patients With Diabetes. Nephrol Dial Transplant (2015) 30(Issue
suppl_4):iv26–34. doi: 10.1093/ndt/gfv087

14. Satko SG, Sedor JR, Iyengar SK, Freedman BI. Familial Clustering of Chronic
Kidney Disease. Semin Dial (2007) 20(3):229–36. doi: 10.1111/j.1525-
139X.2007.00282.x

15. O’Seaghdha CM, Fox CS. Genetics of Chronic Kidney Disease. Nephron Clin
Pract (2011) 118(1):c55–63. doi: 10.1159/000320905

16. Cañadas-Garre M, Anderson K, Cappa R, Skelly R, Smyth LJ, McKnight AJ,
et al. Genetic Susceptibility to Chronic Kidney Disease - Some More Pieces
for the Heritability Puzzle. Front Genet (2019) 10:453. doi: 10.3389/
fgene.2019.00453

17. Zhang J, Thio CHL, Gansevoort RT, Snieder H. Familial Aggregation of
CKD and Heritability of Kidney Biomarkers in the General Population: The
Lifelines Cohort Study. Am J Kidney Dis (2021) 77(6):869–78. doi: 10.1053/
j.ajkd.2020.11.012

18. Lei HH, Perneger TV, Klag MJ, Whelton PK, Coresh J. Familial Aggregation
Study of Renal Disease in a Population-Based Case-Control Study. J Am Soc
Nephrol (1998) 9(7):1270–6. doi: 10.1681/ASN.V971270

19. Madeira EPQ, da Rosa Santos O, Santos SFF, da Silva LA, Innocenzi AM,
Santoro-Lopes G. Familial Aggregation of End-Stage Kidney Disease in
Brazil. Nephron (2002) 91(4):666–70. doi: 10.1159/000065029

20. Wu HH, Kuo CF, Li IJ, Weng CH, Lee CC, Tu KH, et al. Family Aggregation
and Heritability of ESRD in Taiwan: A Population-Based Study. Am J Kidney
Dis (2017) 70(5):619–26. doi: 10.1053/j.ajkd.2017.05.007

21. Skrunes R, Svarstad E, Reisæter AV, Vikse BE. Article Familial Clustering of
ESRD in the Norwegian Population. Clin J Am Soc Nephrol (2014) 9
(10):1692–700. doi: 10.2215/CJN.01680214

22. Connaughton DM, Hildebrandt F. Personalized Medicine in Chronic
Kidney Disease by Detection of Monogenic Mutations. Nephrol Dial
Transplant (2020) 35(3):390–7. doi: 10.1093/ndt/gfz028

23. Cañadas-Garre M, Anderson K, McGoldrick J, Maxwell AP, McKnight AJ.
Genomic Approaches in the Search for Molecular Biomarkers in Chronic
Kidney Disease. J Transl Med (2018) 16(1):292. doi: 10.1186/s12967-018-
1664-7

24. Tin A, Köttgen A. Genome-Wide Association Studies of CKD and Related
Traits. Clin J Am Soc Nephrol (2020) 15(11):1643–56. doi: 10.2215/
CJN.00020120

25. Wuttke M, Li Y, Li M, Sieber KB, Feitosa MF, Gorski M, et al. A Catalog of
Genetic Loci Associated With Kidney Function From Analyses of a Million
Individuals. Nat Genet (2019) 51(6):957–72. doi: 10.1038/s41588-019-0407-x

26. Stanzick KJ, Li Y, Schlosser P, Gorski M, Wuttke M, Thomas LF, et al.
Discovery and Prioritization of Variants and Genes for Kidney Function in
>1.2 Million Individuals. Nat Commun (2021) 12(1):4350. doi: 10.1038/
s41467-021-24491-0

27. Gorski M, Jung B, Li Y, Matias-Garcia PR, Wuttke M, Coassin S, et al. Meta-
Analysis Uncovers Genome-Wide Significant Variants for Rapid Kidney
Function Decline. Kidney Int (2021) 99(4):926–39. doi: 10.1016/
j.kint.2020.09.030

28. Anderson K, Cañadas-Garre M, Chambers R, Maxwell AP, McKnight AJ.
The Challenges of Chromosome Y Analysis and the Implications for
Chronic Kidney Disease. Front Genet (2019) 10:781. doi: 10.3389/
fgene.2019.00781

29. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ,
et al. Finding the Missing Heritability of Complex Diseases. Nature (2009)
461(7265):747–53. doi: 10.1038/nature08494

30. McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis
JPA, et al. Genome-Wide Association Studies for Complex Traits:
Consensus, Uncertainty and Challenges. Nat Rev Genet (2008) 9(5):356–
69. doi: 10.1038/nrg2344

31. Reich DE, Lander ES. On the Allelic Spectrum of Human Disease. Trends
Genet (2001) 17(9):502–10. doi: 10.1016/S0168-9525(01)02410-6

32. Pritchard JK. Are Rare Variants Responsible for Susceptibility to Complex
Diseases? Am J Hum Genet (2001) 69(1):124–37. doi: 10.1086/321272
June 2022 | Volume 2 | Article 923068

https://kumu.io
https://kumu.io
https://doi.org/10.1186/s13023-020-01376-x
https://doi.org/10.3389/fimmu.2021.590742
https://doi.org/10.3389/fgene.2020.616435
https://doi.org/10.1186/s12882-019-1517-5
https://doi.org/10.1186/s12882-019-1517-5
https://doi.org/10.3390/ijms20194781
https://doi.org/10.1038/s41581-020-0268-7
https://doi.org/10.1016/S0140-6736(20)30045-3
https://doi.org/10.1016/S0140-6736(18)31694-5
https://adr.usrds.org/2020/suggested-citation#:~:text=Suggested%20citation%20for%20this%20rep ort,%2C%20Bethesda%2C%20MD%2C%202020.
https://adr.usrds.org/2020/suggested-citation#:~:text=Suggested%20citation%20for%20this%20rep ort,%2C%20Bethesda%2C%20MD%2C%202020.
https://adr.usrds.org/2020/suggested-citation#:~:text=Suggested%20citation%20for%20this%20rep ort,%2C%20Bethesda%2C%20MD%2C%202020.
https://doi.org/10.1038/s41598-020-71908-9
https://diabetesatlas.org/en/
https://doi.org/10.1093/ndt/gfv087
https://doi.org/10.1111/j.1525-139X.2007.00282.x
https://doi.org/10.1111/j.1525-139X.2007.00282.x
https://doi.org/10.1159/000320905
https://doi.org/10.3389/fgene.2019.00453
https://doi.org/10.3389/fgene.2019.00453
https://doi.org/10.1053/j.ajkd.2020.11.012
https://doi.org/10.1053/j.ajkd.2020.11.012
https://doi.org/10.1681/ASN.V971270
https://doi.org/10.1159/000065029
https://doi.org/10.1053/j.ajkd.2017.05.007
https://doi.org/10.2215/CJN.01680214
https://doi.org/10.1093/ndt/gfz028
https://doi.org/10.1186/s12967-018-1664-7
https://doi.org/10.1186/s12967-018-1664-7
https://doi.org/10.2215/CJN.00020120
https://doi.org/10.2215/CJN.00020120
https://doi.org/10.1038/s41588-019-0407-x
https://doi.org/10.1038/s41467-021-24491-0
https://doi.org/10.1038/s41467-021-24491-0
https://doi.org/10.1016/j.kint.2020.09.030
https://doi.org/10.1016/j.kint.2020.09.030
https://doi.org/10.3389/fgene.2019.00781
https://doi.org/10.3389/fgene.2019.00781
https://doi.org/10.1038/nature08494
https://doi.org/10.1038/nrg2344
https://doi.org/10.1016/S0168-9525(01)02410-6
https://doi.org/10.1086/321272
https://www.frontiersin.org/journals/nephrology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/nephrology#articles


Hill et al. Multi-Omic Analysis of CKD
33. Collins F, Guyer M, Charkravarti A. Variations on a Theme: Cataloging
Human DNA Sequence Variation. Science (1997) 278(5343):1580–1. doi:
10.1126/science.278.5343.1580

34. Wise AL, Gyi L, Manolio TA. EXclusion: Toward Integrating the X
Chromosome in Genome-Wide Association Analyses. Am J Hum Genet
(2013) 92(5):643–7. doi: 10.1016/j.ajhg.2013.03.017

35. De Coster W, Weissensteiner MH, Sedlazeck FJ. Towards Population-Scale
Long-Read Sequencing. Nat Rev Genet (2021) 22(9):572–87. doi: 10.1038/
s41576-021-00367-3

36. Ebert P, Audano PA, Zhu Q, Rodriguez-Martin B, Porubsky D, Jan Bonder
M, et al. Haplotype-Resolved Diverse Human Genomes and Integrated
Analysis of Structural Variation. Science (2021) 372(6537):eabf7117. doi:
10.1126/science.abf7117

37. Martin S, Heavens D, Lan Y, Horsfield S, Clark MD, Leggett RM. Nanopore
Adaptive Sampling: A Tool for Enrichment of Low Abundance Species in
Metagenomic Samples. Genome Biol (2022) 23(11):1–27. doi: 10.1186/
s13059-021-02582-x

38. Zuk O, Hechter E, Sunyaev SR, Lander ES. The Mystery of Missing
Heritability: Genetic Interactions Create Phantom Heritability. Proc Natl
Acad Sci U S A (2011) 109(4):1193–8. doi: 10.1073/pnas.1119675109

39. Bowden J, Holmes MV. Meta-Analysis and Mendelian Randomization: A
Review. Res Synth Methods (2019) 10(4):486–96. doi: 10.1002/jrsm.1346

40. Gurung RL, Dorajoo R, M Y, Wang L, Liu S, Liu J-J, et al. Association of
Leukocyte Telomere Length With Chronic Kidney Disease in East Asians
With Type 2 Diabetes: A Mendelian Randomization Study. Clin Kidney J
(2021) 14(11):2371–6. doi: 10.1093/ckj/sfab067

41. Park S, Lee S, Kim Y, Cho S, Kim K, Kim YC, et al. A Mendelian
Randomization Study Found Causal Linkage Between Telomere Attrition
and Chronic Kidney Disease. Kidney Int (2021) 100(5):1063–70. doi:
10.1016/j.kint.2021.06.041

42. Taub MA, Conomos MP, Keener R, Pankratz N, Reiner AP, Mathias RA.
Genetic Determinants of Telomere Length From 109,122 Ancestrally
Diverse Whole-Genome Sequences in TOPMed. Cell Genomics (2022) 2
(1):100084. doi: 10.1016/j.xgen.2021.100084

43. Zhao JV, Schooling CM. Sex-Specific Associations of Sex Hormone Binding
Globulin With CKD and Kidney Function: A Univariable and Multivariable
Mendelian Randomization Study in the UK Biobank. J Am Soc Nephrol
(2021) 32(3):686–94. doi: 10.1681/ASN.2020050659

44. Zhao JV, Schooling CM. The Role of Testosterone in Chronic Kidney
Disease and Kidney Function in Men and Women: A Bi-Directional
Mendelian Randomization Study in the UK Biobank. BMC Med (2020) 18
(1):122. doi: 10.1186/s12916-020-01594-x

45. Kennedy OJ, Pirastu N, Poole R, Fallow JA, Hayes PC, Grzeszkowiak EJ,
et al. Coffee Consumption and Kidney Function: A Mendelian
Randomization Study. Am J Kidney Dis (2020) 75(5):753–61. doi: 10.1053/
j.ajkd.2019.08.025

46. Park S, Lee S, Kim Y, Lee Y, Kang MW, Kim K, et al. Causal Effects of
Relative Fat, Protein, and Carbohydrate Intake on Chronic Kidney Disease:
A Mendelian Randomization Study. Am J Clin Nutr (2021) 113(4):1023–31.
doi: 10.1093/ajcn/nqaa379

47. Park S, Lee S, Kim Y, Lee Y, Kang MW, Kim K, et al. Causal Effects of
Physical Activity or Sedentary Behaviors on Kidney Function: An Integrated
Population-Scale Observational Analysis and Mendelian Randomization
Study. Nephrol Dial Transplant (2021) 37(6):1059–68. doi: 10.1093/ndt/
gfab153.

48. Park S, Lee S, Kim Y, Lee Y, Kang MW, Kim K, et al. Causal Effects of
Education on Chronic Kidney Disease: A Mendelian Randomization Study.
Clin Kidney J (2020) 14(8):1932–8. doi: 10.1093/ckj/sfaa240

49. Zhang L, Cao W. Histone Deacetylase 3 (HDAC3) as an Important
Epigenetic Regulator of Kidney Diseases. J Mol Med (2021) 100(1):43–51.
doi: 10.1007/s00109-021-02141-8

50. Ingrosso D, Perna AF. DNA Methylation Dysfunction in Chronic Kidney
Disease. Genes (Basel) (2020) 11(7):811. doi: 10.3390/genes11070811

51. Ptashne M. On the Use of the Word ‘Epigenetic’. Curr Biol (2007) 17(7):
R233–6. doi: 10.1016/j.cub.2007.02.030

52. Greally JM, Drake AJ. The Current State of Epigenetic Research in Humans
Promise and Reality. JAMA Pediatr (2017) 171(2):103–4. doi: 10.1001/
jamapediatrics.2016.3508
Frontiers in Nephrology | www.frontiersin.org 14
53. Ptashne M. Epigenetics: Core Misconcept. Proc Natl Acad Sci U S A (2013)
110(18):7101–3. doi: 10.1073/pnas.1305399110

54. Kim M, Costello J. DNA Methylation: An Epigenetic Mark of Cellular
Memory. Exp Mol Med (2017) 49(4):e322. doi: 10.1038/emm.2017.10

55. Smith ZD, Meissner A. DNAMethylation: Roles in Mammalian Development.
Nat Rev Genet (2013) 14(3):204–20. doi: 10.1038/nrg3354

56. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-filippini J, et al.
Human DNA Methylomes at Base Resolution Show Widespread Epigenomic
Differences. Nature (2009) 462(7271):315–22. doi: 10.1038/nature08514

57. Luo Y, Lu X, Xie H. Dynamic Alu Methylation During Normal
Development, Aging, and Tumorigenesis. BioMed Res Int (2014)
2014:784706. doi: 10.1155/2014/784706

58. Deaton M, Bird A. CpG Islands and the Regulation of Transcription. Genes
Dev (2011) 25(10):1010–22. doi: 10.1101/gad.2037511

59. Babenko VN, Chadaeva IV, Orlov YL. Genomic Landscape of CpG Rich
Elements in Human. BMC Evol Biol (2017) 17(Suppl 1):19. doi: 10.1186/
s12862-016-0864-0

60. Jones PA. Functions of DNA Methylation: Islands, Start Sites, Gene Bodies
and Beyond. Nat Rev Genet (2012) 13(7):484–92. doi: 10.1038/nrg3230

61. Zhou J, Sears RL, Xing X, Zhang B, Li D, Rockweiler NB, et al. Tissue-
Specific DNA Methylation is Conserved Across Human, Mouse, and Rat,
and Driven by Primary Sequence Conservation. BMC Genomics (2017) 18
(1):724. doi: 10.1186/s12864-017-4115-6

62. Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr ARW, James KD,
Turner DJ, et al. Orphan CpG Islands Identify Numerous Conserved
Promoters in the Mammalian Genome. PloS Genet (2010) 6(9):e1001134.
doi: 10.1371/journal.pgen.1001134

63. Fang H, Disteche CM, Berletch JB. X Inactivation and Escape: Epigenetic
and Structural Features. Front Cell Dev Biol (2019) 7:219. doi: 10.3389/
fcell.2019.00219

64. Lyon MF. Gene Action in the X-Chromosome of the Mouse (Mus Musculus
L.). Nature (1961) 190:372–3. doi: 10.1038/190372a0

65. Peters J. The Role of Genomic Imprinting in Biology and Disease: An
Expanding View. Nat Rev Genet (2014) 15(8):517–30. doi: 10.1038/nrg3766

66. Greenberg MVC, Bourc’his D. The Diverse Roles of DNA Methylation in
Mammalian Development and Disease. Nat Rev Mol Cell Biol (2019) 20
(10):590–607. doi: 10.1038/s41580-019-0159-6

67. Han H, Cortez CC, Yang X, Nichols PW, Jones PA, Liang G. DNA
Methylation Directly Silences Genes With non-CpG Island Promoters and
Establishes a Nucleosome Occupied Promoter. Hum Mol Genet (2011) 20
(22):4299–310. doi: 10.1093/hmg/ddr356

68. Okano M, Bell DW, Haber DA, Li E. DNA Methyltransferases Dnmt3a and
Dnmt3bAre Essential forDeNovoMethylation andMammalianDevelopment.
Cell (1999) 99(3):247–57. doi: 10.1016/S0092-8674(00)81656-6

69. Jin Z, Liu Y. DNAMethylation in Human Diseases. Genes Dis (2018) 5(1):1–
8. doi: 10.1016/j.gendis.2018.01.002

70. Tiffon C. The Impact of Nutrition and Environmental Epigenetics on
Human Health and Disease. Int J Mol Sci (2018) 19(11):3425. doi:
10.3390/ijms19113425

71. Smyth LJ, Duffy S, Maxwell AP, McKnight AJ. Genetic and Epigenetic
Factors Influencing Chronic Kidney Disease. Am J Physiol Renal Physiol
(2014) 307(7):F757–76. doi: 10.1152/ajprenal.00306.2014

72. Golestaneh L, Melamed ML, Hostetter TH. Uremic Memory: The Role of
Acute Kidney Injury in Long-Term Outcomes. Kidney Int (2009) 76(8):813–
4. doi: 10.1038/ki.2009.314

73. Keating ST, El-Osta A. Glycemic Memories and the Epigenetic Component
of Diabetic Nephropathy. Curr Diabetes Rep (2013) 13(4):574–81. doi:
10.1007/s11892-013-0383-y

74. Pirola L, Balcerczyk A, Okabe J, El-Osta A. Epigenetic Phenomena Linked to
Diabetic Complications. Nat Rev Endocrinol (2010) 6(12):665–75. doi:
10.1038/nrendo.2010.188

75. Villeneuve LM, Natarajan R. The Role of Epigenetics in the Pathology of
Diabetic Complications. Am J Physiol Renal Physiol (2010) 299(1):F14–25.
doi: 10.1152/ajprenal.00200.2010

76. Villeneuve LM, Reddy MA, Lanting LL, Wang M, Meng L, Natarajan R.
Epigenetic Histone H3 Lysine 9 Methylation in Metabolic Memory and
Inflammatory Phenotype of Vascular Smooth Muscle Cells in Diabetes. Proc
Natl Acad Sci U S A (2008) 105(26):9047–52. doi: 10.1073/pnas.0803623105
June 2022 | Volume 2 | Article 923068

https://doi.org/10.1126/science.278.5343.1580
https://doi.org/10.1016/j.ajhg.2013.03.017
https://doi.org/10.1038/s41576-021-00367-3
https://doi.org/10.1038/s41576-021-00367-3
https://doi.org/10.1126/science.abf7117
https://doi.org/10.1186/s13059-021-02582-x
https://doi.org/10.1186/s13059-021-02582-x
https://doi.org/10.1073/pnas.1119675109
https://doi.org/10.1002/jrsm.1346
https://doi.org/10.1093/ckj/sfab067
https://doi.org/10.1016/j.kint.2021.06.041
https://doi.org/10.1016/j.xgen.2021.100084
https://doi.org/10.1681/ASN.2020050659
https://doi.org/10.1186/s12916-020-01594-x
https://doi.org/10.1053/j.ajkd.2019.08.025
https://doi.org/10.1053/j.ajkd.2019.08.025
https://doi.org/10.1093/ajcn/nqaa379
https://doi.org/10.1093/ndt/gfab153
https://doi.org/10.1093/ndt/gfab153
https://doi.org/10.1093/ckj/sfaa240
https://doi.org/10.1007/s00109-021-02141-8
https://doi.org/10.3390/genes11070811
https://doi.org/10.1016/j.cub.2007.02.030
https://doi.org/10.1001/jamapediatrics.2016.3508
https://doi.org/10.1001/jamapediatrics.2016.3508
https://doi.org/10.1073/pnas.1305399110
https://doi.org/10.1038/emm.2017.10
https://doi.org/10.1038/nrg3354
https://doi.org/10.1038/nature08514
https://doi.org/10.1155/2014/784706
https://doi.org/10.1101/gad.2037511
https://doi.org/10.1186/s12862-016-0864-0
https://doi.org/10.1186/s12862-016-0864-0
https://doi.org/10.1038/nrg3230
https://doi.org/10.1186/s12864-017-4115-6
https://doi.org/10.1371/journal.pgen.1001134
https://doi.org/10.3389/fcell.2019.00219
https://doi.org/10.3389/fcell.2019.00219
https://doi.org/10.1038/190372a0
https://doi.org/10.1038/nrg3766
https://doi.org/10.1038/s41580-019-0159-6
https://doi.org/10.1093/hmg/ddr356
https://doi.org/10.1016/S0092-8674(00)81656-6
https://doi.org/10.1016/j.gendis.2018.01.002
https://doi.org/10.3390/ijms19113425
https://doi.org/10.1152/ajprenal.00306.2014
https://doi.org/10.1038/ki.2009.314
https://doi.org/10.1007/s11892-013-0383-y
https://doi.org/10.1038/nrendo.2010.188
https://doi.org/10.1152/ajprenal.00200.2010
https://doi.org/10.1073/pnas.0803623105
https://www.frontiersin.org/journals/nephrology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/nephrology#articles


Hill et al. Multi-Omic Analysis of CKD
77. Chen XJ, Zhang H, Yang F, Liu Y, Chen G. DNA Methylation Sustains
“Inflamed” Memory of Peripheral Immune Cells Aggravating Kidney
Inflammatory Response in Chronic Kidney Disease. Front Physiol (2021)
12:637480. doi: 10.3389/fphys.2021.637480

78. Kato M, Natarajan R. Epigenetics and Epigenomics in Diabetic Kidney
Disease and Metabolic Memory. Nat Rev Nephrol (2019) 15(6):327–45. doi:
10.1038/s41581-019-0135-6

79. Zhao J, Miao K, Wang H, Ding H, Wang DW. Association Between
Telomere Length and Type 2 Diabetes Mellitus: A Meta-Analysis. PloS
One (2013) 8(11):e79993. doi: 10.1371/journal.pone.0079993

80. Jeanclos E, Krolewski A, Skurnick J, Kimura M, Aviv H, Warram JH, et al.
Shortened Telomere Length in White Blood Cells of Patients With IDDM.
Diabetes (1998) 47(3):482–6. doi: 10.2337/diabetes.47.3.482

81. Adaikalakoteswari A, BalasubramanyamM, Mohan V. Telomere Shortening
Occurs in Asian Indian Type 2 Diabetic Patients. Diabetes Med (2005) 22
(9):1151–6. doi: 10.1111/j.1464-5491.2005.01574.x

82. Testa R, Olivieri F, Sirolla C, Spazzafumo L, Rippo MR, Marra M, et al.
Leukocyte Telomere Length is Associated With Complications of Type 2
Diabetes Mellitus. Diabetes Med (2011) 28(11):1388–94. doi: 10.1111/j.1464-
5491.2011.03370.x

83. White WE, Yaqoob M, Harwood SM. Aging and Uremia: Is There Cellular
and Molecular Crossover? World J Nephrol (2015) 4(1):19–30. doi: 10.5527/
wjn.v4.i1.19

84. Guo J, Zheng HJ, ZhangW, LouW, Xia C, Han XT, et al. Accelerated Kidney
Aging in Diabetes Mellitus. Oxid Med Cell Longev (2020) 2020:1234059. doi:
10.1155/2020/1234059

85. Liu J, Yang JR, Chen XM, Cai GY, Lin LR, He YN. Impact of ER Stress-
Regulated ATF4/p16 Signaling on the Premature Senescence of Renal
Tubular Epithelial Cells in Diabetic Nephropathy. Am J Physiol Cell
Physiol (2015) 308(8):C621–30. doi: 10.1152/ajpcell.00096.2014

86. Verzola D, Gandolfo MT, Gaetani G, Ferraris A, Mangerini R, Ferrario F,
et al. Accelerated Senescence in the Kidneys of Patients With Type 2 Diabetic
Nephropathy. Am J Physiol Renal Physiol (2008) 295(5):F1563–1573. doi:
10.1152/ajprenal.90302.2008

87. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, et al. An
Epigenetic Biomarker of Aging for Lifespan and Healthspan. Ageing (2018)
10(4):573–91. doi: 10.18632/aging.101414

88. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, et al. DNA
Methylation GrimAge Strongly Predicts Lifespan and Healthspan. Aging
(Albany NY) (2019) 11(2):303–27. doi: 10.18632/aging.101684

89. Horvath S. DNA Methylation Age of Human Tissues and Cell Types.
Genome Biol (2013) 14(10):R15. doi: 10.1186/gb-2013-14-10-r115

90. Horvath S, Raj K. DNA Methylation-Based Biomarkers and the Epigenetic
Clock Theory of Ageing. Nat Rev Genet (2018) 19(6):371–84. doi: 10.1038/
s41576-018-0004-3
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