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Immunoglobulin A nephropathy (IgAN), characterized bymesangial deposition of

galactose-deficient-IgA1 (Gd-IgA1), is the most common biopsy-proven primary

glomerulonephritis worldwide. Recently, an improved understanding of its

underlying pathogenesis and the substantial risk of progression to kidney

failure has emerged. The “four-hit hypothesis” of IgAN pathogenesis outlines a

process that begins with elevated circulating levels of Gd-IgA1 that trigger

autoantibody production. This results in the formation and deposition of

immune complexes in the mesangium, leading to inflammation and kidney

injury. Key mediators of the production of Gd-IgA1 and its corresponding

autoantibodies are B-cell activating factor (BAFF), and A proliferation-inducing

ligand (APRIL), each playing essential roles in the survival and maintenance of B

cells and humoral immunity. Elevated serum levels of both BAFF and APRIL are

observed in patients with IgAN and correlate with disease severity. This review

explores the complex pathogenesis of IgAN, highlighting the pivotal roles of BAFF

and APRIL in the interplay between mucosal hyper-responsiveness, B-cell

activation, and the consequent overproduction of Gd-IgA1 and its

autoantibodies that are key features in this disease. Finally, the potential

therapeutic benefits of inhibiting BAFF and APRIL in IgAN, and a summary of

recent clinical trial data, will be discussed.
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Introduction

Immunoglobulin A nephropathy (IgAN), characterized by

mesangial deposition of immune complexes containing galactose-

deficient-IgA1 (Gd-IgA1) and associated autoantibodies, is the

most common primary glomerulonephritis worldwide (1–4).

However, its true prevalence is uncertain, and estimates are

confounded by varying access to healthcare, quality of data

capture, and heterogeneity in screening practices and in

thresholds to perform a kidney biopsy between centers worldwide

(5, 6). Genetic factors are likely to have an important

contribution to the variable prevalence observed geographically

and between ethnicities (6–8). In North America, IgAN

represents approximately 10–20% of biopsy-proven primary

glomerulonephritis cases. Prevalence rises to 20–30% in Europe

and 40–50% in East Asia (3, 4). Studies spanning multiple countries

report an overall incidence of at least 2.5 cases per 100,000/year in

adults (9, 10).

IgAN often leads to a progressive reduction in kidney function

over several years and is associated with significant morbidity and

mortality (11, 12). In approximately 25–50% of patients, IgAN will

lead to kidney failure within 10–20 years after diagnosis (11, 13–15).

As IgAN is often diagnosed in young adults, many will reach kidney

failure in their lifetime, even with current optimal supportive care

and available therapy (11, 12, 15). The manifestation of IgAN in the

younger population also results in losses to the labor force and a

significant social burden (4, 16). In older patients with IgAN,

comorbidities such as hypertension, diabetes mellitus, or

cardiovascular disease are more likely to exist, and can exacerbate

the kidney damage caused by IgAN and complicate its management

(17). Late diagnosis in the presence of these comorbidities may

further worsen renal prognosis and increase the risk of

cardiovascular events (17). Life expectancy in IgAN is reduced by

an average of 6 years compared to standardized mortality rates,

mainly due to complications of kidney failure (18).

IgAN presents in a diverse array of clinical manifestations,

spanning from microscopic to macroscopic hematuria, variable

degrees of proteinuria with progressive kidney function decline,

to the rare extreme of rapidly progressive glomerulonephritis

(RPGN) (14). A kidney biopsy is required for the diagnosis of

IgAN, which demonstrates dominant or co-dominant mesangial

IgA deposition, and is often accompanied by immunoglobulin G

(IgG) and/or immunoglobulin M (IgM) (19). Additionally, there is

colocalization of complement 3 (C3) with IgA in >90% of patients,

indicative of complement activation. This is thought to occur

predominantly via the alternative and/or lectin pathways and is a

key mediator of glomerular inflammation and damage (19, 20). The

Oxford classification identified several histological features, each

independently associated with the risk of kidney disease

progression, specifically mesangial hypercellularity, endocapillary

hypercellularity, segmental glomerulosclerosis, tubular atrophy/

interstitial fibrosis, and the presence of crescents (21).

Understanding the interplay between the deposition of Gd-IgA1,

complement activation and subsequent glomerular injury may

provide further insights into the pathogenesis of IgAN and targets

for therapeutic intervention. Proteinuria is the strongest modifiable
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risk factor for kidney function decline in IgAN (22). Higher levels of

circulating Gd-IgA1 and anti-Gd-IgA1 antibodies are also

associated with reduced kidney function and, ultimately, kidney

failure (23–25).
Current state of clinical management

Ongoing research into the pathogenesis of IgAN, including

genome-wide association studies (GWASs) (6, 7, 26, 27), has

revealed insights into its underlying pathogenesis and potential

therapeutic targets. It has become clear that personalized treatment

is necessary for the optimal management of IgAN given its

complexity and variable prognosis. Early assessment is of great

importance, as delayed identification may impact prognosis and

responsiveness to treatment (28).

Although much progress has been made in understanding the

fundamental mechanisms of the pathogenesis of IgAN, there is an

unmet need for disease-modifying treatments capable of selectively

influencing the synthesis of Gd-IgA1 and/or its associated

autoantibodies, both of which play a key role in disease

progression (29, 30). The current standard of care for patients

with IgAN with proteinuria above 0.5 g/day is supportive treatment

with blockade of the renin-angiotensin system (RAS) with either

angiotensin-converting enzyme (ACE) inhibitors or angiotensin

receptor blockers (ARB), regardless of whether the patient

exhibits clinical hypertension (31). Overall cardiovascular risk

should also be addressed which includes strict control of blood

pressure, dietary sodium reduction, smoking cessation, treatment of

hyperlipidemia, weight management, and regular exercise (29, 30).

The use of corticosteroids in the treatment of IgAN is

controversial, and there are many uncertainties as to the optimal

dosage, duration, and patient selection (32). The Therapeutic Effects

of Steroids in IgA Nephropathy (TESTING) study demonstrated

that treatment with steroids (6 to 9 months) as compared to placebo

reduced kidney function decline, kidney failure, or death due to

kidney disease. However, significant adverse events were noted in

the TESTING study, as well as several other studies evaluating

corticosteroids in IgAN, making long-term use problematic (29, 30,

33–35). Conversely, the STOP-IgAN study provided evidence that

affirms the use of supportive care in the treatment of IgAN as

opposed to immunosuppression (36). Participants received a

comprehensive program of supportive care including dietary

sodium reduction, smoking cessation, weight management, and

regular exercise. Approximately one-third of the participants, who

were initially thought to be candidates for immunosuppression,

were discontinued from the study as their levels of proteinuria

responded to these measures alone. In addition, in those who were

subsequently randomized in the second part of the study,

immunosuppression did not significantly affect rates of kidney

function decline compared to supportive care (36).

Even with optimized supportive care, a significant proportion of

patients will experience ongoing proteinuria and progressive decline

of kidney function (29, 30, 35). Long-term results from the STOP-

IgAN trial demonstrated that patients with IgAN with persistent

proteinuria >0.75 g/day continued to have an unfavorable
frontiersin.org

https://doi.org/10.3389/fneph.2023.1346769
https://www.frontiersin.org/journals/nephrology
https://www.frontiersin.org


Cheung et al. 10.3389/fneph.2023.1346769
prognosis (37), with approximately 50% of the participants

experiencing death, kidney failure, or greater than 40% decline in

estimated glomerular filtration rate (eGFR) over a median duration

of 7.4 years (37). Recent large scale epidemiologic data, including a

UK renal registry study of 2499 adults with IgAN, demonstrated

that the majority of patients are at risk for the development of

kidney failure during their lifetime (15).

The current Kidney Disease Improving Global Outcomes

(KDIGO) guideline (31) suggests that patients with IgAN who

exhibit proteinuria above 1 g/day after receiving 90 days of

supportive care could cautiously be considered for corticosteroid

therapy, but only after full consideration of the risks weighed

against potential benefits. The guideline emphasizes that the

clinical benefit of steroid therapy has not been fully established,

and patients should first be given an opportunity to participate in a

therapeutic clinical trial.

Sodium-glucose cotransporter-2 (SGLT2) inhibitors have

emerged as a potential therapeutic option in the management of

IgAN (38). The Dapagliflozin and Prevention of Adverse Outcomes

in Chronic Kidney Disease (DAPA-CKD) trial provided evidence

supporting the use of dapagliflozin in IgAN (39). This trial, which

was terminated early due to efficacy, included 270 patients

diagnosed with IgAN and demonstrated that the dapagliflozin

group experienced fewer primary outcome events, which was a

composite of >50% decline in eGFR, end-stage kidney disease, or

death from renal or cardiovascular causes over a median follow-up

period of 2.1 years. The EMPA-KIDNEY trial confirmed a

beneficial effect of the SGLT2 inhibitor empagliflozin in lowering

risk of progression of kidney disease or death due to cardiovascular

causes among a wide range of patients with CKD (40). These

findings were also observed in the 817 patients with IgAN studied

as part of EMPA-KIDNEY. Further description of the IgAN cohort

is forthcoming (41).

The mechanism of action of SGLT2 inhibitors in IgAN is

postulated to be mediated through the reduct ion of

intraglomerular pressure by tubulo-glomerular feedback, as well

as other less well-established effects which, in turn, may lead to a

reduction in proteinuria and renoprotection (39). The DAPA-CKD

trial highlighted a reduction in blood pressure in the dapagliflozin-

treated group, and it remains uncertain how much of this blood

pressure reduction contributed to the favorable outcomes observed

(38). In addition, there was no run-in period where supportive

measures were optimized. Therefore, it is unclear how many

patients could have responded to these measures alone. The event

rate in the placebo-treated group in DAPA-CKD was unusually

high. Nevertheless, the use of SGLT2 inhibitors in IgAN as part of

supportive care has been adopted widely (38).

Two other therapies have received accelerated approvals by the

US Food and Drug administration (FDA) for the treatment of

IgAN: targeted release formulation (TRF)-budesonide (Nefecon),

which targets the gut mucosal immune system, and sparsentan, a

dual endothelin and angiotensin receptor antagonist. Over 20 other

agents are currently in clinical development for the treatment of

IgAN that target B-cell production of Gd-IgA1, complement

activation, and other downstream pathways that are activated

following IgA deposition (29).
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Pathogenesis and the
four-hit hypothesis
A central feature of IgAN reported in multiple cohorts globally

is an increase in circulating levels of Gd-IgA1 (42, 43). The extended

hinge region of IgA1 is sequentially glycosylated by the addition of

O-glycans containing N-acetylgalactosamine (GalNAc) and

termina l ga lac tose r es idues under the influence o f

glycosyltransferases, as a post-translational modification process.

In patients with IgAN, there is an increase in IgA1 that lacks

galactose residues from its hinge region (termed galactose-deficient

IgA1 or Gd-IgA1), leading to exposure of GalNAc residues. These

GalNAc residues may be recognized by anti-glycan autoantibodies

in susceptible individuals, resulting in the formation of circulating

immune complexes (44). These immune complexes have a high

affinity for mesangial cells and, once deposited in the mesangium,

can trigger a series of inflammatory responses.

Several lines of evidence support a mucosal source for the

increased circulating Gd-IgA1 in IgAN (2, 45–47; Figure 1). The

majority of human IgA is produced by plasma cells residing in

mucosal-associated lymphoid tissue (MALT), and two major

regions are implicated in IgAN: the gut-associated lymphoid

tissue (GALT) and nasopharynx-associated lymphoid tissue

(NALT) (46, 48). The mucosal-kidney connection is evident in

patients with IgAN where hematuria may occur in close temporal

association with mucosal infections, such as tonsillitis or other

upper respiratory tract infections and gastrointestinal infections

(45, 48).

Within the MALT, antigens are taken up by antigen-presenting

cells, such as dendritic cells (DCs) resulting in naïve B-cell activation

and class switch recombination (CSR) to form committed IgA+ B

cells, which require a T-cell dependent (TD) or T-cell independent

(TID) co-stimulatory signal (Figure 1) (49, 50). In the context of

normal mucosal immunity, the switch to IgA production is of

paramount importance. IgA serves as the first line of defense at

mucosal surfaces, neutralizing pathogens while maintaining

homeostasis with host commensal organisms. However, the

pathogenesis of IgAN is intricately tied to aberrations in B-cell

activation and CSR that lead to the increased production of Gd-IgA1.

B-cell activating factor (BAFF) and a proliferation-inducing

ligand (APRIL), members of the tumor necrosis factor (TNF)

superfamily, play a key role in driving both TD and TID CSR and,

thus, production of IgA+ B cells (49–53). The IgA+ B cells then leave

the MALT and travel to effector sites via the lymphatic system and

circulation. It has been hypothesized that in patients with IgAN,

altered homing leads to mucosally-derived IgA+ plasma cells being

mis-trafficked to systemic sites, such as the bone marrow, resulting in

the production of “mucosal-type”Gd-IgA1 in the circulation (54–56).

Other recent work has highlighted possible roles for reverse

transcytosis of Gd-IgA1 from the gut lumen, or trafficking of IgA+

B cells to the kidneys in the pathogenesis of IgAN (57, 58).

Irrespective of its exact source, raised Gd-IgA1 levels are not

sufficient to induce IgAN, as first-degree relatives of patients with

IgAN may also have similarly elevated levels of Gd-IgA1 and not

develop kidney disease (59, 60). Initiation of kidney injury
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associated with IgAN requires the formation of immune complexes

including Gd-IgA1 (61). These and other observations provide the

conceptual framework for the proposed four-hit hypothesis of the

pathogenesis of IgAN. This widely accepted hypothesis proposes

that increased levels of circulating Gd-IgA1 (Hit 1) induce the

production of IgA and IgG autoantibodies (Hit 2), resulting in the

formation of immune complexes (Hit 3), that are then deposited in

the glomeruli and induce kidney injury and damage (Hit 4)

(Figure 1) (42). Therefore, IgAN should be considered an

autoimmune disease (42, 61, 62). Activation of mesangial cells,

production of extracellular matrix, activation of the complement

system, and the subsequent release of cytokines and chemokines

lead to local inflammation and fibrosis. These, in turn, cause

glomerular injury, disruption of the glomerular filtration barrier,

and ultimately hematuria, proteinuria, and progressive kidney

dysfunction, which are characteristic features of IgAN.

Multiple therapeutics under development target different

aspects of IgAN pathobiology from the upstream plasma cells

that produce immune complexes to the downstream components

of the complement system (63).
Targeting B cells in the treatment
of IgAN

Central to the formation of circulating immune complexes in IgAN

are the B cells responsible for producing its components, specifically
Frontiers in Nephrology 04
Gd-IgA1 and IgG/IgA anti-glycan autoantibodies. Critical factors that

influence B-cell activity are the B-cell survival mediators, BAFF and

APRIL, members of the TNF superfamily that share considerable

homology and act via a shared set of B-cell receptors. These

cytokines have emerged as important therapeutic targets to

potentially impact formation of IgA, Gd-IgA1 and immune

complexes, and therefore also alter the progression of IgAN (45, 49).

BAFF and APRIL both bind to two receptors, B-cell maturation

antigen (BCMA) and transmembrane activator and calcium-

modulator and cyclophilin ligand interactor (TACI) (52, 53;

Figure 2). BCMA is primarily expressed on plasma cells, whereas

TACI is expressed on mature B cells and activated plasma cells. A

third receptor, BAFF receptor (BAFF-R), that is specific for BAFF, is

expressed mainly on B cells (52, 53, 64, 65). BAFF-R is also

expressed on human mesangial cells and tubular epithelial cells

(TECs) (66–68). BAFF causes increased BAFF-R expression in

human TECs, implicating an autocrine loop (67).

B cells undergo a sequential process of maturation and selection and

play a crucial role in the adaptive immune system by generating

antibodies as a response to foreign antigens (69). B cells have the

ability to differentiate into short-lived plasma cells/plasmablasts, and

long-lived plasma cells, which are responsible for producing

immunoglobulins, including IgA (53, 70, 71). In healthy individuals,

memory B cells and plasma cells comprise important and independently

regulated components of immunologic memory (72; Figure 3).

BAFF is instrumental in B-cell maturation. It is vital for the

activation, survival and differentiation of peripheral B cells. The
FIGURE 1

Within the mucosal-associated lymphoid tissue, antigens are taken up by antigen-presenting cells, such as dendritic cells, resulting in naïve B-cell activation
and class switch recombination (CSR) to form committed IgA+ B cells, which require a T-cell dependent (TD) or T-cell independent (TID) co-stimulatory
signal. B-cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL), members of the tumor necrosis factor superfamily, play a key role in driving
both TD and TID CSR and, thus, production of IgA+ B cells. The pathogenesis of IgAN is tied to aberrations in B-cell activation and CSR that lead to the
increased production of galactose-deficient IgA1 (Gd-IgA1) (Hit 1) and the subsequent synthesis of autoantibodies directed against Gd-IgA1 (Hit 2). The
formation of pathogenic IgA1-containing immune complexes (Hit 3) provokes inflammation leading to glomerular injury (Hit 4).
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interaction of BAFF with its primary receptor, BAFF-R, is crucial

for maintaining B-cell homeostasis (73). The activation of B cells

requires antigen presentation and a costimulatory signal via TD or

TID mechanisms (49, 50, 74). Microbial antigens containing

pathogen-associated molecular patterns (PAMPs) may induce the

release of BAFF and APRIL from antigen presenting cells such as

dendritic cells, by binding to pattern recognition receptors such as

Toll-like receptors on their cell surface, therefore linking innate and

adaptive immune responses (75). BAFF and APRIL are then able to

activate B cells via their receptors BAFF-R, BCMA, and TACI (see

Figure 2) (52, 53). The activation of these receptors facilitates the

process of IgA CSR and B-cell survival (52, 75), promoting the

microbial-driven effects on IgA B-cell responses in the mucosa (76).

BAFF supports the survival and differentiation of B cells into

long-lived plasma cells that reside within survival niches in the bone

marrow, secondary lymphoid organs and mucosal sites (77, 78).

These plasma cells can continuously produce antibodies, including

Gd-IgA1, without the need for further stimulation. By supporting

TD and TID CSR to IgA and IgG and the differentiation and

survival of these B cells, BAFF may contribute to the sustained

production of Gd-IgA1 and anti-Gd-IgA1 autoantibodies in IgAN.

APRIL is also crucial for B-cell survival and differentiation (53,

70). Through its receptors, APRIL can influence the differentiation

of B cells into plasma cells (53, 70, 71). Both Gd-IgA1 and anti-Gd-

IgA1 autoantibody production are believed to be driven primarily

by mucosal plasma cells that contribute to autoimmune disorders

by producing high quantities of autoantibodies (24, 79, 80). APRIL
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can stimulate the production of IgA by B cells. In the mucosal

environment, where IgA production is predominant out of all

immunoglobulin subclasses, APRIL, like BAFF, can induce naive

B cells to undergo class switching to IgA-producing B cells through

signaling via TACI and/or BCMA (75). In vitro studies have

demonstrated that when cultured B cells from IgAN patients are

stimulated with APRIL, there is an increased production of Gd-

IgA1, suggesting a direct role in promoting the aberrant

glycosylation of IgA1 (81) (see Figure 1).

Given their pivotal roles in the production of Gd-IgA1 and their

autoantibodies, targeting BAFF and APRIL offers a logical

therapeutic strategy for IgAN. Extensive preclinical and clinical

studies have been conducted as to the potential efficacy of inhibition

of BAFF and/or APRIL.
Preclinical and clinical evidence for
the role of BAFF in IgAN

Preclinical evaluation of the role of BAFF

Transgenic mice overexpressing BAFF (BAFF-Tg) exhibit

several notable immunological changes compared to wild-type

mice. One of the most prominent observations is elevated serum

levels of IgA (71). This increase in IgA is accompanied by an

increased number of IgA+ plasma cells in the gut lamina propria.

Deposition of IgA immune complexes in the glomerular
FIGURE 2

B-cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL), members of the tumor necrosis factor superfamily, both bind to two
receptors, B-cell maturation antigen (BCMA) and transmembrane activator and calcium-modulator and cytophilin ligand interactor (TACI). BCMA is
primarily expressed on plasma cells, whereas TACI is expressed on mature B cells and plasma cells. A third receptor, BAFF receptor (BAFF-R), that is
specific for BAFF, is expressed mainly on immature and mature naive B cells. BAFF and APRIL have pivotal roles in the interplay between gut mucosal
hyper-responsiveness, B cell activation, and the consequent overproduction of Gd-IgA1 and its autoantibodies resulting in immune
complex formation.
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mesangium, in a similar manner to human IgAN, is also observed.

These mice demonstrated an expanded B-cell compartment which

may contribute to autoimmunity. Additionally, BAFF-Tg mice

demonstrate excessive numbers of mature B cells, spontaneous

germinal center reactions, secretion of autoantibodies, high

plasma cell numbers in secondary lymphoid organs, elevated

numbers of effector T cells, and Ig deposition in the kidneys (73,

82). These results support that BAFF alone can directly stimulate B-

cell proliferation. The overexpression of BAFF also increased B-cell

viability, via BAFF-R.

In further studies of this model (76), BAFF-Tg mice had

increased levels of aberrantly glycosylated polymeric IgA,

mesangial IgA deposits and expanded mesangial matrix. BAFF-Tg

mice also developed IgA-dependent hematuria and proteinuria.

Commensal bacteria were required for the development of the

IgAN-like phenotype. BAFF-Tg mice raised in germ-free

environments that prevented gut colonization by commensal

bacteria were protected from the development of elevated serum

IgA, renal IgA deposits, IgA+ plasma cells in the gut and presence of

commensal-bacteria reactive IgA antibodies in the bloodstream, but

these occurred when commensal bacteria were re-introduced.

Currie and colleagues (57) characterized the immune responses

to mucosal microbiota in BAFF-Tg mice. Mice nasally infected with

Neisseria meningitidis (Nme) had increased levels of circulating

Nme-specific IgA with increases in mesangial expansion and IgA

deposition. Interestingly, an increase in anti-Nme IgA+ secreting

cells was observed in kidney tissue, suggesting that these cells

migrated there following priming from a mucosal source, and

could contribute locally to IgA production and its glomerular

deposition in IgAN. These observations together suggest that

perturbations to the mucosal microbiota and increased reactivity
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of B cells driven by high levels of BAFF could both contribute to the

IgAN-like features in this model.
Clinical evidence of the role of BAFF

The central role of BAFF in B-cell proliferation, differentiation,

and production of IgA1 and associated autoantibodies suggests that

it has an important clinical role in IgAN (71, 83). Multiple studies

have demonstrated that serum levels of BAFF are elevated in IgAN

patients compared to healthy controls (49, 76, 84, 85). A positive

correlation has been observed between serum levels of BAFF and

IgA1 levels in IgAN patients (84). In addition, BAFF appears to be

associated with the severity of IgAN, both histologically and

clinically (84). Serum levels of BAFF have been positively

correlated with mesangial IgA deposition density (85),

and presence of mesangial hypercellularity, segmental

glomerulosclerosis and interstitial fibrosis/tubular atrophy (84).

Circulating BAFF levels have been associated with reduced kidney

function in patients with IgAN, in terms of reduced eGFR and

increased serum creatinine (84). Additional studies have

demonstrated that tonsillar mononuclear cells from patients with

IgAN can be induced to express increased levels of BAFF and IgA as

compared to cells from non-IgAN controls (86, 87).

The efficacy and safety of blisibimod, a selective inhibitor of

BAFF, was evaluated in patients with IgAN in a Phase 1/2 study

known as BRIGHT-SC (NCT02062684). Preliminary findings were

presented in 2016 that indicated a significant reduction in B-cell

subsets and Ig levels within the blisibimod group, providing

evidence of the pharmacological suppression of BAFF (88).

Proteinuria levels remained stable with blisibimod, while a
FIGURE 3

B cells undergo a sequential process of maturation and selection and play a crucial role in the adaptive immune system by generating antibodies as
a response to foreign antigens. B cells have the ability to differentiate into short-lived plasma cells/plasmablasts, and long-lived plasma cells, which
are responsible for producing immunoglobulins, including IgA. HSC: hematopoietic stem cells.
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marked worsening was observed in those treated with placebo,

although full results from this study have not been published to

date. The long-term effectiveness of targeting BAFF alone in IgAN

are unknown.
Preclinical and clinical evidence for
the role of APRIL in IgAN

Preclinical evidence of the role of APRIL

Mouse models have also provided insights into the potential

role of APRIL in IgAN. APRIL-deficient mice display impaired IgA

class switching, defective IgA antibody responses in response to

mucosal immunization and markedly decreased numbers of IgA+

plasma cells in the lamina propria of the small intestine (89).

The role of APRIL inhibition has been studied in the grouped

ddY mouse model of IgAN (90). These studies demonstrated that

anti-APRIL treatment significantly decreased albuminuria, serum

IgA levels, and glomerular IgA deposition. These results suggest

that the APRIL signaling pathway is also implicated in the

production of pathogenic IgA in this model (34).

Myette et al. (91) evaluated the effectiveness of APRIL

inhibition in the grouped ddY (gddY) mouse model of IgAN.

Treatment of gddY mice with a mouse anti-APRIL monoclonal

antibody led to lower serum IgA levels, reduced circulating immune

complexes, reduced IgA, IgG, and C3 glomerular deposits, and a

reduction in proteinuria.
Clinical evidence of the role of APRIL

Multiple observations support the role of APRIL in the

pathogenesis of IgAN. A polymorphism in the gene encoding

APRIL (TNFSF13) and the TACI receptor (TNFRSF13B) confer

susceptibility to IgAN (8, 49, 92). Increased APRIL levels have been

demonstrated in patients with IgAN and correlate with disease

severity (proteinuria and eGFR) and increased expression of Gd-

IgA1 (81). Additionally, higher levels of APRIL are associated with a

worse prognosis in IgAN (93). Therapeutic strategies inhibiting

APRIL have the potential to limit IgA and, therefore, Gd-IgA1

production by autoimmune-associated plasma cells (63).

The anti-APRIL antibody, VIS649 (sibeprenlimab), has been

studied in healthy volunteers and patients with IgAN. In healthy

volunteers, treatment with VIS649 led to suppression of serum free

APRIL levels, and reductions in serum Gd-IgA1, IgA, IgM, and to a

lesser extent IgG. The authors note that median changes of BAFF

levels from baseline were less than 35% (94). A Phase 2 study of

sibeprenlimab has been completed which randomized 155 patients

with IgAN to receive monthly intravenous (IV) sibeprenlimab doses

at 2, 4, or 8 mg/kg or placebo for 12 months (95). This study

demonstrated that treatment with sibeprenlimab reduced Gd-IgA1

and IgA levels with associated significant reductions in proteinuria

compared to placebo, with reductions in 24-hour urinary protein to

creatinine ratio (UPCR) at 12 months of 47.2%, 58.8%, and 62.0% in
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the 2, 4, or 8 mg/kg IV doses respectively, compared to a 20.0%

reduction in the placebo group. The change in eGFR at 12 months

was -2.7, +0.2, and -1.5 mL/min/1.73m2, in the sibeprenlimab 2, 4,

and 8 mg/kg groups respectively, compared to a -7.4 mL/min/

1.73m2 decrease in the placebo group, suggesting that treatment

with sibeprenlimab slowed the decline of kidney function. No safety

concerns were noted with sibeprenlimab treatment. A Phase 3 trial

of sibeprenlimab in IgAN is in progress (VISIONARY; https://

clinicaltrials.gov/study/NCT05852938).

Interim results from an open-label single arm Phase 1/2 study

evaluating another anti-APRIL monoclonal antibody, BION-1301

(zigakibart), in patients with IgAN also demonstrated sustained

reductions in levels of Gd-IgA1, IgA and to a lesser extent IgG,

which was accompanied by a reduction in proteinuria maintained

throughout the study (96). Zigakibart is also now being studied in a

global Phase 3 clinical trial (BEYOND; https://clinicaltrials.gov/

study/NCT05852938).
The role of BAFF and APRIL in IgAN
and the rationale for dual inhibition

Current preclinical and clinical evidence support a potential

role for both BAFF and APRIL on the generation and survival of

plasma cells producing both Gd-IgA1 and anti-Gd-IgA1

autoantibodies (53, 54, 76–78, 97, 98). BAFF and APRIL each

mediate signals to their cognate receptors that result in the

activation, differentiation and survival of pathogenic plasma cells

in IgAN patients. This suggests that dual inhibition may be

beneficial (99, 100). Whether long-term sole inhibition of APRIL

or BAFF alone could result in unintended compensatory

upregulation of the other pathway in patients with IgAN is

unknown. A report of a rare case of common variable

immunodeficiency and complete deficiency in APRIL

demonstrated elevated levels of BAFF in the circulation (101).

Similarly, a human monocyte cell line lacking BAFF displayed

increased levels of APRIL (102).

Both BAFF and APRIL play crucial roles in B-cell homeostasis

and function (52, 78, 97). In the context of IgAN, the dysregulation

of BAFF and APRIL, and their signaling pathways, may contribute

to the pathogenesis of the disease by affecting B cell and plasma cell

function, thereby influencing IgA and anti-glycan autoantibody

production, immune complex formation and their subsequent

deposition in the kidneys (76, 103). BAFF is primarily involved in

the survival and maturation of B cells (97). It supports the survival

of transitional and mature B cells, and is crucial for B-cell

maturation into immunoglobulin-producing cells and also has a

role in their survival (52, 78, 97). APRIL has a more defined role in

the later stages of B-cell differentiation and is also important for the

survival of long-lived plasma cells and other B-cell subsets (78). The

significance of this process is particularly pronounced within

the bone marrow and MALT where enduring plasma cells reside,

generating antibodies (see Figure 3).

The interaction of APRIL with its receptors TACI, and

especially BCMA, facilitates plasma cell survival. Additionally,
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BAFF has been shown to selectively enhance the survival and

effector function of CD38+ plasmablasts generated from activated

human memory B cells (104). Plasma cells are characterized by high

cell surface expression of CD38 and loss of CD20 (72). This may

provide a rationale for the lack of efficacy in IgAN of rituximab that

targets CD20+ B cells (30, 63, 72, 105). In a randomized controlled

trial, despite adequate depletion of peripheral B cells, treatment of

patients with IgAN with rituximab did not reduce serum levels of

Gd-IgA1 or anti-Gd-IgA1 autoantibodies. In addition, no clinical

benefit in terms of proteinuria or kidney function was observed

compared with standard therapy (106).

As noted, current supportive treatments for IgAN such as use of

renin-angiotensin inhibitors are aimed at slowing disease progression,

and are not specific for IgAN. The dual inhibition of BAFF and APRIL

offers a targeted approach that addresses the underlying immunological

basis of the disease, potentially providing a disease-modifying

therapeutic strategy that could slow or halt IgAN progression.

Although long term data regarding the clinical impact of APRIL

and/or BAFF inhibition are not yet available, dual inhibition of

BAFF and APRIL in a preclinical lupus model appeared to be

optimal in comparison to BAFF inhibition alone, with regards to

preventing development of proteinuria, reducing plasma cell numbers,

and reducing the production of autoantibodies (anti-double stranded

deoxyribonucleic acid [DNA] antibodies) (107).

A novel biological agent that targets both BAFF and APRIL, and

suppresses B-cell-mediated autoimmune responses, has been

approved for use in systemic lupus erythematosus in China (108,

109). Telitacicept contains the Fc portion of IgG1 combined with

the extracellular soluble portion of TACI (110). Results from a

recent clinical trial in China in IgAN patients indicate that

telitacicept reduced proteinuria and was well tolerated (33).

Another dual inhibition agent, povetacicept, was shown to inhibit

BAFF and APRIL in a mouse lupus nephritis model, with significant

reductions in serum IgM, IgA, and IgG levels after a single dose

(111). Povetacicept is currently being evaluated in an open-label

Phase 2 study in adult patients with IgAN, membranous

nephropathy, or lupus nephritis to determine its safety, efficacy,

and optimum dose in these autoimmune renal diseases (https://

clinicaltrials.gov/study/NCT05732402).

Atacicept is a novel immunomodulatory therapy composed of a

fully humanized recombinant fusion protein consisting of the Fc

region of human IgG1 and the binding portion of TACI (99, 100,

112). Atacicept acts by binding soluble BAFF and APRIL, and

membrane-bound BAFF, interfering with the cellular interactions

of these cytokines and their receptors. Atacicept has been studied in

over 1500 patients, with no concerning safety signals to date (113).

The JANUS trial was a Phase 2a, multinational, randomized,

double-blind, placebo-controlled study to investigate the safety and

efficacy of atacicept in patients with IgAN and persistent

proteinuria (100). The study enrolled a total of 16 patients, with 5

receiving placebo, 6 receiving atacicept 25 mg, and 5 receiving

atacicept 75 mg for up to 72 weeks. Atacicept demonstrated a safety

profile that was comparable to placebo, with no new safety signals

identified. Importantly, there was no increase in severe TEAEs,

including severe hypogammaglobulinemia, with long-term

atacicept exposure. Atacicept treatment led to dose-dependent
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reductions in serum IgA, IgG, and IgM. Moreover, substantial

reductions in the levels of Gd-IgA1 were observed, with changes

of -25% and -60% at week 24 for atacicept 25 mg and 75 mg,

respectively. A clinically meaningful reduction in 24-hour

proteinuria was observed with atacicept. While there was a

decline in renal function by eGFR in the placebo group, both

doses of atacicept resulted in stabilization of eGFR, with

improvements observed up to week 72 (100).

Based on these positive findings, the Phase 2b ORIGIN study

was initiated (114). ORIGIN completed the global randomized,

double-blind, placebo-controlled portion of the Phase 2b trial that

enrolled 116 IgAN participants. The primary endpoint was met

with a mean UPCR that was reduced from baseline by 31% in the

pooled atacicept 150 mg and 75 mg arms compared with a 7%

reduction from baseline in the placebo arm (D=25%, p=0.037) at 24
weeks. The atacicept 150 mg arm achieved a 33% proteinuria

reduction from baseline at Week 24 and was the only individual

treatment arm that showed a statistically significantly greater

reduction than placebo (D=28%, p=0.047). At 36 weeks, there was

a decrease from baseline in mean UPCR of 33% in the atacicept 150

mg arm compared to a 3% increase in the placebo arm, resulting in

a 35% reduction at week 36 with atacicept 150 mg versus placebo

(p=0.012). Results of the intent-to-treat (ITT) analysis are

supported by a prespecified per-protocol (PP) analysis (n=26

atacicept 150 mg; n=26 placebo), where the atacicept 150 mg arm

showed a 40% reduction from baseline in UPCR at 36 weeks

compared with a 5% reduction in the placebo arm (D=43%,

p=0.003). At week 36, mean eGFR increased from baseline by

1.6% in the atacicept 150 mg arm compared with an 8.5%

reduction from baseline in the placebo arm, resulting in an 11%

difference (p=0.038). The difference in the adjusted geometric mean

change in eGFR at week 36 was 5.8 mL/min/1.73m2 in the atacicept

150 mg arm versus placebo. In addition, the atacicept 150 mg arm

achieved a 64% reduction from baseline at week 36 in Gd-IgA1

(p<0.0001) (114).

The safety results indicated that atacicept was generally well-

tolerated with no increased rate of infections compared to placebo, a

low rate (2%) of serious AEs overall with none in the atacicept 150

mg group, and no study drug discontinuation or interruptions due

to hypogammaglobulinemia (114).
Conclusions

The findings from the various preclinical and clinical studies

discussed underscore the potential importance of BAFF and APRIL in

the modulation of the immune system, and particularly in the immune

dysregulation that is observed in IgAN. The early studies supporting the

safety and efficacy of inhibiting these cytokines open a promising avenue

for the treatment of IgAN, showcasing a dose-dependent reduction in

serum IgA levels alongside substantial reductions in the levels of Gd-

IgA1. Results from Phase 2 IgAN trials support the potential benefits of

dual inhibition of BAFF and APRIL in IgAN, and ongoing Phase 3

clinical studies will shed light on how this approach may offer greater

and/or more sustained efficacy in preserving kidney function and

preventing kidney failure in patients with IgAN.
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